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Statement of Result

Kazhdan-Lusztig Equivalence

Theorem (D. Kazhdan and G. Lusztig ’94)

If c ∈ C \Q, or c ∈ m

n
∈ Q<0 for (m, n) = 1 and m not too small, then

there exists a braided monoidal equivalence KLκ(G )♡ ≃ Repq(G )♡.

ĝκ Central extension of g((t)) given by the 2-cocycle

κ :=
c − h∨

2h∨
Kilg

KLκ(G )♡ Abelian category of finitely generated, smooth,
G [[t]]-integrable ĝκ-modules at level κ

ULus
q (g) Lusztig’s quantum group specialized at q := e

πi
dc , where d is

the lacing number of g

Repq(G )♡ Abelian category of finite dimensional Λ̌-graded

ULus
q (g)-modules, where Λ̌ is the weight lattice
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Statement of Result

The K-L equivalence compares two different ways to quantize the
classical category Rep(G )♡. At rational levels, the behavior becomes much
more complicated.

It is closely related to the WZW/CS correspondence in physics, which
we’ll not touch in this talk.

Natural question: what about the BGG category O?

Let g -modB denote the (unbounded) derived category of
(g,B)-Harish-Chandra modules. Candidates:

ĝκ -modI , the derived category of (ĝκ, I )-Harish-Chandra modules,
where I is the Iwahori subgroup;

Repmxd
q (G ), the derived category of “mixed” quantum group

representations (coming up!)

At generic levels both are equivalent to g -modB . Rational levels are more
interesting.
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ĝκ -modI , the derived category of (ĝκ, I )-Harish-Chandra modules,
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Statement of Result

Main Result

Theorem (L. Chen and Y.F.; Conjectured by D. Gaitsgory)

If c ∈ C \Q, or c ∈ m

n
∈ Q for (m, n) = 1 and m not too small, then

there exists an equivalence of (DG) categories

ĝκ -modIren ≃ Repmxd
q (G )ren.

Renormalization is necessary for both sides; after doing so, neither side
is the derived category of its heart. The equivalence is not t-exact;

The proof is independent from the original one by K-L. Comparison
with K-L is ongoing work;

The RHS carries a braided monoidal structure (compatible with
Repq(G )♡); consequently it equips LHS with a braided monoidal
structure. We do not yet know how to describe it explicitly.
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Statement of Result

Context: Quantum Geometric Langlands

Recall the (conjectural) unramified global geometric Langlands
equivalence:

DMod(BunG ) ≃ IndCohNilp(LocSysǦ )

here BunG is the moduli of G -bundles on a smooth complete curve X , and
LocSysǦ is the moduli of Ǧ -local systems on X .

RHS is certain enlargement of QCoh(LocSysǦ ); this enlargement is
needed because LocSysǦ is not smooth.

Recent works of Arinkin, Gaitsgory, Beraldo and Chen reduce the
above to the following “tempered version”:

DModtemp(BunG ) ≃ QCoh(LocSysǦ )

which are full subcategories of the two sides of above (the rest comes from
parabolic induction from proper Levi). We shall not define what LHS is.
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Statement of Result

In establishing the tempered version the following1 is crucial:

Theorem (Geometric Casselman-Shalika Formula)

There exists an equivalence of factorization categories

Whit(GrG ) ≃ Rep(Ǧ ).

Here Whit(GrG ) := DMod(GrG )
N((t)),χ, where χ : N((t)) → Ga is a

non-degenerate character of N((t)).

We shall say what factorization categories are in a minute. Intuitively,
these are categories that “can move along the curve” and “can be
integrated”. And, very roughly speaking, we have

DModtemp(BunG ) ≃
∫
X
Whit(GrG ) ≃

∫
X
Rep(Ǧ ) ≃ QCoh(LocSysǦ )

1Credit: Frenkel-Gaitsgory-Kazhdan-Vilonen-Raskin.
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1Credit: Frenkel-Gaitsgory-Kazhdan-Vilonen-Raskin.
Yuchen Fu (RIMS, Kyoto University) Iwahori Kazhdan-Lusztig October 18, 2022 7 / 37



Statement of Result

Now we move away from the critical level. The usual form of the
global quantum Langlands conjecture is

DModκ(BunG ) ≃ DModκ̌(BunǦ )

here κ is a gerbe on X determined by our κ from before; it is used to twist
D-modules.

What replaces the Casselman-Shalika formula is the following:

Conjecture (Fundamental Local Equivalence)

There exists an equivalence of factorization categories

Whitκ(GrG ) ≃ KLκ̌(Ǧ )

This statement is also key to the categorical local geometric
Langlands corresondence (i.e. what happens to S1 for the geometric
Langlands QFT).
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Statement of Result

Without the word “factorization”, the (pointwise) statement is
known, and follows from the following tamely ramified version:

Theorem

There exists an equivalence of categories

Whitκ(FlG ) ≃ ˆ̌gκ̌ -modǏren;

here FlG is the affine flag variety.

There are two ways to prove this:

1 (Campbell-Dhillon-Raskin) via affine Soergel bimodules;

2 (Chen-F., Yang) via comparing both with Repmxd
q (G )ren.

Our secret hope is that (2) is extendable to the factorization setting.
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Proof Strategy: Factorization

Proof Strategy

The following strategy works (only) for c > 0. The c < 0 case follows
formally via categorical duality.

ĝκ -modIren //

JKM∗ ≃
��

Repmxd
q (G )ren

JQuant
∗≃
��

ΩKM-FactModalg Riemann-Hilbert

≃ // ΩQuant-FactModtop

In general, given a lax monoidal functor F : C → D between monoidal
categories, it automatically factors as

C ≃ 1C -mod(C )
Fenh−−→ F (1C ) -mod(D)

oblv−−→ D;

Fenh is more likely to be an equivalence. Our JKM∗ and JQuant
∗ will follow

the factorizable (≈ braided monoidal) version of this pattern.
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Proof Strategy: Factorization

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a
constructible sheaf, depending on the context.

A Λ̌-graded factorization algebra A is formally a sheaf on the
configuration space of Λ̌-colored divisors on X , with some more data.

Over main diagonal, the configuration space is X Λ̌; over X 2 \ X it is

X Λ̌×Λ̌. The additional data includes an isomorphism

ι!
λ̌x+µ̌y

(A) ≃ ι!
λ̌x
(A)⊗ ι!µ̌y (A)

for all λ̌, µ̌, x ̸= y .
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Proof Strategy: Factorization

Assume for now A is locally constant with finite-dimensional fibers.

Then we can associated to it a bialgebra B(A), such that ι!
λ̌·x(A) is

the λ̌-component of ExtB(A)∨(1, 1), and ι∗
λ̌·x(A) is the λ̌-component of

TorB(A)(1, 1).

(Intuition: look at the (co)stalks as we move towards the diagonal
from the open stratum. More on next slide.)

Similarly, a factorization module for A encodes simultaneously an
B(A)-module structure and an B(A)-comodule structure. Together: a
Yetter-Drinfeld module structure.

This story on the abelian level is well understood by the works of
Bezrukavnikov, Finkelberg, Schechtman, Kapranov et al, using hyperbolic
restriction.
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Proof Strategy: Factorization

We take a different approach following Lurie. Namely, under Koszul
duality, the above is equivalent to saying (direct sum) of !-fibers has a
E2-algebra structure.

This structure is encoded in the gluing maps in the open-closed
Cousin decomposition.

To incorporate quantum levels, use twisted sheaves instead.

Riemann-Hilbert allows the comparison between algebraic
factorization modules (D-modules) and topological ones (constructible
sheaves).
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Quantum Side

1 Statement of Result

2 Proof Strategy: Factorization

3 Quantum Side

4 Affine Side

5 Global Methods
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Quantum Side

Mixed Quantum Groups

Recall that both the Lusztig algebra ULus
q (n) and the Kac-De Concini

algebra UKD
q (n) can be realized as Hopf algebras internal to Repq(T )♡.

The abelian category Repmxd
q (G )♡ consists of V ∈ Repq(T )♡ with a

locally nilpotent ULus
q (n) action and a compatible (arbitrary) UKD

q (n−)
action.

The DG category Repmxd
q (G )ren is a certain modification (at

cohomological level −∞) of D(Repmxd
q (G )♡).
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Quantum Side

Proposition

There exists an E2-algebra (≃ topological factorization algebra) ΩQuant

and an equivalence of DG categories

JQuant
∗ : Repmxd

q (G )ren ≃ ΩQuant -modE2(Repq(T ))

≃ ΩQuant-FactModtop(Shvq(GrŤ ))

At abelian level, this is analogous to the main result of [BFS06]. We
use Koszul duality and [Lur12] instead (thus give a new proof to [BFS06]).

The fact that we work with Repq(T ) and not Rep(T ) makes the
situation fairly more complicated.

Remark

ι!
λ̌·0(J

Quant
∗ (M)) is the λ̌-component of Ext•ULus

q (n)(C,M), and

ι∗
λ̌·0(J

Quant
∗ (M)) is the λ̌-component of Tor•UKD

q (n−)(C,M).
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At abelian level, this is analogous to the main result of [BFS06]. We
use Koszul duality and [Lur12] instead (thus give a new proof to [BFS06]).

The fact that we work with Repq(T ) and not Rep(T ) makes the
situation fairly more complicated.

Remark

ι!
λ̌·0(J

Quant
∗ (M)) is the λ̌-component of Ext•ULus

q (n)(C,M), and

ι∗
λ̌·0(J

Quant
∗ (M)) is the λ̌-component of Tor•UKD

q (n−)(C,M).

Yuchen Fu (RIMS, Kyoto University) Iwahori Kazhdan-Lusztig October 18, 2022 18 / 37



Quantum Side

A bit more details:

Exhibit Repmxd
q (G )ren as the Hochschild center (HC) of

Repq(B) := ULus
q (n) -mod(Repq(T ))locally nilpotent

relative to the Repq(T ) action on the right;

If A is a commutative algebra, [Fra12] showed that

HC(A -mod) ≃ A -modE2 ;

we prove a non-commutative version of this statement (this is the
first equivalence);

We establish a categorical Verdier duality to switch between
factorization cosheaves of categories (coming from E2 via Lurie) and
factorization sheaves of categories (this is the second equivalence).
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Affine Side

1 Statement of Result

2 Proof Strategy: Factorization

3 Quantum Side

4 Affine Side

5 Global Methods
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Affine Side

Lie Algebra Representation via Coherent Sheaves

Let G∧
1 denote the formal completion of G at the identity, and BG∧

1

its classifying prestack.

We have an equivalence of DG categories

g -mod ≃ IndCoh(BG∧
1 )

where IndCoh denotes ind-coherent sheaves developed in [GR17].

S. Raskin extended this to the affine setting by developing the theory
of renormalized ind-coherent sheaves. It yields

g((t)) -mod
G [[t]]
ren ≃ IndCoh!ren(BG ((t))∧G [[t]]),

where renormalization on both sides mean taking the ind-completion of
the category of objects induced from finite dimensional smooth
representations of G [[t]].
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Affine Side

To each κ one can assign a twisting (an infinitesimal gerbe) on
BG ((t))∧G [[t]] and use it to twist the IndCoh category. A slight variant of
above is

KLκ(G )ren := IndCoh!ren,κ(BG ((t))∧G [[t]]).

Proposition ([Ras20])

When restricted to bounded-below objects, the functor

KLκ(B)ren ≃ IndCoh!ren,κ(BB((t))∧B[[t]])
♠−→
≃

IndCoh∗ren,κ−κcrit
(BB((t))∧B[[t]])

∗-push−−−−→ IndCoh∗ren,κ−κcrit
(BT ((t))∧T [[t]]) ≃ KLκ−κcrit(T )ren

coincides with Feigin’s semi-infinite cohomology C
∞
2

∗ (n((t)),N[[t]],−).
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Affine Side

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.

Proposition

There exists an unital factorizable crystal of categories KLκ(G )ren whose
1-point fiber is KLκ(G )ren.

Among other things, this means that we have a sheaf of categories
KLκ(G )[2] over A2 such that

At every x ∈ A1(C) on the diagonal, the fiber is KLκ(G )ren;

At every (x , y) ∈ A2(C) where x ̸= y , the fiber is
KLκ(G )ren⊗KLκ(G )ren;

The behavior as we approach the diagonal encodes the fusion structure of
KLκ(G ).
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Affine Side

Unitality means, for instance, that {x} ↪→{x , y} yields a map

insx⇝(x ,y) : KLκ(G )ren → KLκ(G )ren⊗KLκ(G )ren

given by M 7→ V0
κ ⊠M, where

V0
κ := Ind

KLκ(G)♡

Rep(G [[t]])♡
(C)

is the vacuum representation.

Similarly, to ĝκ -modIren we attach a factorizable module category
IKLκ(G ). Its diagonal fiber is ĝκ -modIren, and off-diagonal fiber (say, over
A2) is KLκ(G )ren⊗ ĝκ -modIren.

It encodes the fusion action of KLκ(G ) on ĝκ -modI , originally due to
Finkelberg.
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Finkelberg.

Yuchen Fu (RIMS, Kyoto University) Iwahori Kazhdan-Lusztig October 18, 2022 24 / 37



Affine Side

Unitality means, for instance, that {x} ↪→{x , y} yields a map

insx⇝(x ,y) : KLκ(G )ren → KLκ(G )ren⊗KLκ(G )ren

given by M 7→ V0
κ ⊠M, where

V0
κ := Ind

KLκ(G)♡

Rep(G [[t]])♡
(C)

is the vacuum representation.
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Affine Side

General yoga of factorization categories gives

ĝκ -modIren ≃ V0
κ-FactMod(IKLκ(G )),

which is the factorization analogue of C ≃ 1C -mod(C ).

For simplicity we write C
∞
2 := C

∞
2

∗ (n((t)),N[[t]],−). The map

ĝκ -modIren
Res−−→ KLκ(B)ren

C
∞
2−−−→ KLκ−κcrit(T )

is a lax-unital factorizable functor (this is the analogue of being lax E2),
and thus factors through an “enhanced” map

C
∞
2

enh : ĝκ -modIren → C
∞
2 (V0

κ)-FactMod(KLκ(T )).
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Affine Side

Proposition (“Torus FLE”)

There exists an equivalence of factorizable crystals of categories

FLET : KLκ(T )ren ≃ DModκ̌(GrŤ );

where GrŤ is the affine Grassmannian for the dual torus Ť .

At one point this is induced by the Contou-Carrére symbol, but one
needs to exhibit a factorization equivalence.

Key fact: GrŤ is ind-flat over each X I .

Remark

This ind-flatness should be true for general GrǦ ; despite multiple claims in
the literature, this is still open.

We define ΩKM := FLET ◦ C
∞
2 (V0

κ). Now we can define

JKM∗ := FLET ◦ C
∞
2

enh : ĝκ -modIren → ΩKM-FactMod(DModκ̌(GrŤ )).
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Affine Side

Recall our strategy:

ĝκ -modIren //

JKM∗ ≃
��

Repmxd
q (G )ren

JQuant
∗≃
��

ΩKM-FactModalg Riemann-Hilbert

≃ // ΩQuant-FactModtop

We have argued that JQuant
∗ is an equivalence. The remaining tasks are:

Showing that ΩKM and ΩQuant match up under Riemann-Hilbert; and

Showing that JKM∗ is an equivalence for c > 0.
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Affine Side

Matching Factorization Algebras

Let us do the first part.

Recall that, !-fiber of ΩQuant are components
of Ext•ULus

q (n)(C,C), and that of ΩKM are components of C
∞
2 (V0

κ).

Problem: neither is easy to compute / explicitly known.

However, it turns out both objects are perverse sheaves, and
factorization property implies that it suffices to compare !- and ∗-fibers up
to H2.

One can use direct computation (using e.g. Kashiwara-Tanisaki
localization) to achieve this.
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Affine Side

Here’s the precise meaning in case anyone wants to see:

Proposition

There exists an unique Λ̌<0-graded factorization algebra Ω such that:

if λ̌ /∈ Λ̌<0, then the !-fiber at λ̌x is zero;

the !-fiber at every λ̌x has no negative cohomology;

if λ̌ is a simple negative root, then either the ∗-fiber at λ̌x is C[1], or
the !-fiber at λ̌x is C[−1];

if λ̌ equals w(ρ̌)− ρ̌ for some ℓ(w) = 2, then the !-fiber at λ̌x
vanishes at H0 and H1, and ∗-fiber at λ̌x vanishes at H0 and H−1;

otherwise, the !-fiber at λ̌x vanishes at H0, and ∗-fiber at λ̌x vanishes
at H0, H−1 and H−2.
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Global Methods

Proving JKM∗ is an Equivalence

The category ΩKM-FactModalg has a highest weight structure: it
contains standard objects which are compact generators, and costandard
objects which are their right orthogonals.

It suffices to show that (co)standards map to (co)standards.

Standards Costandards

ĝκ -modIren M !,λ̌
KM := Dcan(W1,−λ̌−2ρ̌

−κ [dim(n)]) M∗,λ̌
KM := Ww0,λ̌

κ

Ω-FactModalg M !,λ̌
fact (!-extensions) M∗,λ̌

fact (∗-extensions)

Dcan is the canonical (not contragredient) duality between ĝκ -modIren
and ĝ−κ -modIren, whose pairing map is C

∞
2 (ĝ2κcrit , g[[t]], (−)⊗(−)).

W1,µ̌
−κ is the Wakimoto module (of type 1) of highest weight µ̌ and

level −κ. Ww0,λ̌
κ is the Wakimoto module of type w0 at level κ.
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and ĝ−κ -modIren, whose pairing map is C

∞
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2 (ĝ2κcrit , g[[t]], (−)⊗(−)).

W1,µ̌
−κ is the Wakimoto module (of type 1) of highest weight µ̌ and

level −κ. Ww0,λ̌
κ is the Wakimoto module of type w0 at level κ.

Yuchen Fu (RIMS, Kyoto University) Iwahori Kazhdan-Lusztig October 18, 2022 31 / 37



Global Methods

Proving JKM∗ is an Equivalence

The category ΩKM-FactModalg has a highest weight structure: it
contains standard objects which are compact generators, and costandard
objects which are their right orthogonals.

It suffices to show that (co)standards map to (co)standards.

Standards Costandards
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and ĝ−κ -modIren, whose pairing map is C

∞
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2 (ĝ2κcrit , g[[t]], (−)⊗(−)).

W1,µ̌
−κ is the Wakimoto module (of type 1) of highest weight µ̌ and

level −κ. Ww0,λ̌
κ is the Wakimoto module of type w0 at level κ.

Yuchen Fu (RIMS, Kyoto University) Iwahori Kazhdan-Lusztig October 18, 2022 31 / 37



Global Methods

Proving JKM∗ is an Equivalence

The category ΩKM-FactModalg has a highest weight structure: it
contains standard objects which are compact generators, and costandard
objects which are their right orthogonals.

It suffices to show that (co)standards map to (co)standards.

Standards Costandards
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and ĝ−κ -modIren, whose pairing map is C

∞
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Global Methods

Wakimoto modules are the
∞
2
-analogues of Verma modules.

At generic c , M !,λ̌
KM becomes the affine Verma module IndĝκLie(I )(C),

and M∗,λ̌
KM becomes the dual affine Verma module.

Remark

Our choice is made such that Extĝκ -modIren
(M !,λ̌

KM,N) gives the

λ̌-component of C
∞
2 (N).

It follows from definition that JKM∗ (M∗,λ̌
KM) ≃ M∗,λ̌

fact.

To show M !,λ̌
KM 7→ M !,λ̌

fact it suffices to compute the ∗-fiber of M !,λ̌
KM at

every µ̌x . This is much less straightforward.
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(M !,λ̌

KM,N) gives the

λ̌-component of C
∞
2 (N).

It follows from definition that JKM∗ (M∗,λ̌
KM) ≃ M∗,λ̌

fact.

To show M !,λ̌
KM 7→ M !,λ̌

fact it suffices to compute the ∗-fiber of M !,λ̌
KM at

every µ̌x . This is much less straightforward.

Yuchen Fu (RIMS, Kyoto University) Iwahori Kazhdan-Lusztig October 18, 2022 32 / 37



Global Methods

Wakimoto modules are the
∞
2
-analogues of Verma modules.

At generic c , M !,λ̌
KM becomes the affine Verma module IndĝκLie(I )(C),
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and M∗,λ̌
KM becomes the dual affine Verma module.

Remark

Our choice is made such that Extĝκ -modIren
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KM at

every µ̌x . This is much less straightforward.
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Localization

Fix a collection −→x of r points on P1. Set
BunG (P1)−→x := BunG (P1)×(pt/G)r (pt/B)

r . There exists a localization
(a.k.a. compactification) functor

Loc
−→x
G : (ĝκ -modI )⊗ r → DModκ(BunG (P1)−→x ),

where the !-fiber at the trivial bundle is given by conformal block of the r
modules (placed at −→x ) over P1.

Work of N. Rozenblyum tells us that there is also a chiral localization
functor

Loc
−→x
T ,Ω : C

∞
2 (V0

κ)-FactMod−→x (KLκ−κcrit(T )ren) → DModκ−κcrit(BunT (P
1));

the !-fiber is more interesting here (intuitively, it computes conformal
block with C

∞
2 (V0

κ) occupying all points away from −→x ).
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Global Methods

Let CT∗ : DModκ(BunG (P1)−→x ) → DModκ−κcrit(BunT (P
1)) denote

the !-pull-∗-push along

BunB(P1)

tt ))

BunG (P1)−→x BunT (P1)

(followed by a κcrit shift).

A central result we prove is the commutativity of the following
diagram:

(ĝκ -modI )⊗ r C
∞
2
//

Loc
−→x
G

��

C
∞
2 (V0

κ)-FactMod−→x (KLκ−κcrit(T )ren)

Loc
−→x
T ,Ω

��

DModκ(BunG (P1)−→x ) CT∗
// DModκ−κcrit(BunT (P1))

from which the ∗-fibers can be computed, via contraction principle.
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Global Methods

The diagram above is very non-trivial; in particular, it crucially relies
on the unital factorization structure.

Here are some ideas that go into
proving it (first two essentially due to [BD04]):

The propagation-restriction method (“conformal blocks can be
computed relative to any background theory”);

The factorization homology of a commutative factorization algebra is
the ring of functions of the space of horizontal sections;

BunN is a co-affine stack, in the sense that

BunN(R) ≃ MapsCAlg(C
∗(BunN),R)

for any connective (derived) commutative algebra R.
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