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Tension?

Hints of tension between measurements of the amplitude of the 
matter power spectrum from the CMB and from galaxy surveys.

Chen, White, DeRose & 
Kokron 2022
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Why might this be interesting?

The growth of large scale structure is a competition between the 
expansion of the universe and gravitational collapse.

Depends on law of gravity 
Expansion sensitive to metric (curvature)
Depends on mass/energy density of particle species

CMB fits predict growth of structure from snapshot of early 
universe.
Use LSS to compare to this prediction, differences have 
implications for all of the above.



Tension?

(modeling or data) systematics driving the trends?
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Lyman alpha
tSZ auto-power spectrum

RSD template fitting

Chen, White, DeRose & 
Kokron 2022



Case Study: DESI LRGs x Planck CMB lensing



DESI imaging LRGs x Planck 
lensing 

M. White, R. Zhou, JDR et al. 2022

x

Use “standard” SMICA lensing convergence map from Planck.
DESI LRGs from Legacy Imaging Survey data.

18k square degrees of overlap, 0.3 < z < 1.1.



DESI LRGs: Low angular 
systematics

LSS visible even in raw maps!



DESI LRGS: Low redshift 
systematics

LRG spectroscopic completeness is ~99%, so we can safely use redshift
distributions measured from early DESI data to calibrate n(z)s for full 18k 

square degrees of the DESI imaging survey data.



Signal dominated only on large 
scales

We use auto and cross angular power spectra as our summary statistic. 
Signal saturates at about .ℓ ∼ 400



A purely perturbation theory model

We use convolutional Lagrangian effective field theory (CLEFT) for our 
model

thus we must limit our analysis to k < knl



M. White, R. Zhou, JDR et al. 2022

Projection effects complicate Bayesian interpretation of tensions.
What can we do to alleviate this issue?

M. White, R. Zhou, JDR et al. 2022

Tension?



Limitations of current analyses

With Planck, high ell 
CMB lensing cross 
correlations are noise 
dominated, but with 
upcoming CMB 
surveys this will no 
longer be the case.
Galaxy-galaxy lensing 
already throwing 
away a lot of data due 
to non-linear 
modeling uncertainty.

Chen, White, JDR, Kokron 2022



Perturbation theory or Simulations?

Perturbation theory: 
Accurate, flexible, fast, but low k reach.
Ansatz:              

In real space, the scale to which we can perturbatively compute the 
matter field is often the limiting factor.

δg(x) ∼ ∑
i

biδm(x)i; δm(x) = ∑
n

δn
m(x)

Foreman et al 2015



Simulation or Perturbation theory?

N-body simulations are converged to k ∼ 1

Springel et al 2021



Simulation or Perturbation theory?

How to know when to stop?

Yuan et al 2022

Main difficulty with using simulations is connecting to galaxy distribution.



Combining Simulations and LPT

F[δ(q)] = 1 + b1δL(q) + b2δ2
L(q) + bss2(q) + b∇ ∇2δL(q) + . . .



Combining Simulations and LPT

Pgg(k) = ∑
X,Y

bXbYPXY(k)

Sum up all combinations of 
fields to get predictions.

Asymptotes to LPT on large 
scales
Much less stringent simulation 
requirements than HOD
Can check convergence by 
including progressively higher  
order bias operators

Kokron, JDR, Chen, White, Wechsler 2021



Ability to fit complex samples
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This model can handle modest amounts of assembly bias.
Fits to  lead to agreement better than 1% out to k~1kmax ∼ 0.6h Mpc−1



Baryons?

The  bias 
operators 
(counterterm) can 
fit baryonic effects 
on the scales where 
the model is valid

∇2δ

Kokron, JDR, Chen, White, Wechsler 2021



Power spectrum of this should be ~poisson if model fits well.
Very stringent test of the model, since it incorporates all N-point 

statistics.

What about higher order stats?
We can use HEFT to fit at the field level by minimizing the following loss 

function:

Measure residuals:



Field level fitting

Kokron, JDR, Chen, White, Wechsler 2021
Field level fits of HEFT to HOD mocks are a very stringent test of the model

Error power spectrum converges as we include higher order bias operators
Inferred bias parameters do not depend on  for sufficiently low mass 
samples.

kmax



Sampling Cosmological Parameter 
Space

4 DEROSE ET AL.

Figure 1. Optimization of the Latin Hypercube
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Figure 2. Allowed CMB parameter space with the cosmologies of our 40 building boxes (black) and 7 test cosmologies (red) overplotted.

4 MCCLINTOCK, T., ET AL.
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Figure 2. The CMB allowed parameter space(contours) for �8 and
⌦M , which is a union of BAO from BOSS DR11, the Union SNIa
catalog, and Planck/WMAP9. Contour levels are the 1, 2, and 3�
confidence contours. Points are the locations of the AEMULUS sim-
ulations used to construct the emulator. The red stars mark the lo-
cations of the test suite.

None of the test suite simulations were used in the construc-
tion of the emulator.

2.1. Cosmological Models

Cluster abundance is most sensitive to the matter power
spectrum normalization �8 and matter content ⌦M . The
AEMULUS simulations exist in the parameter space p 2
[⌦bh

2,⌦ch
2,w,ns,H0,Neff,�8] where ⌦b is the baryonic mat-

ter fraction, ⌦c is the cold dark matter fraction, ns is the
power spectrum index, h = H0/100km/s/Mpc is the Hub-
ble constant, and Neff is the effective number of relativistic
species.

2.2. Halo Identification

Halos were identified using the ROCKSTAR halo finder
(Behroozi et al. 2013), which identifies halos across simu-
lation snapshots. We use the M200b mass definition, where
the halo is defined as a spherical overdensity (SO) � = 200
times more dense than the background. We conservatively
only consider halos with 200 or more particles. The mass
and abundance of the lightest halos were found to depend on
the mass resolution of the simulations. To account for this
systematic, we applied a correction to the recovered abun-
dances as described in Section 4.2.5 in DeRose 2018.

Halos in each snapshot were split into mass bins begin-
ning at the minimum halo mass resolved in each simulation.

The maximum edge was fixed arbitrarily at 1017
h

-1M�, and
no simulation had halos at or above 1016. Subhalos were
ignored. Using 83 = 512 spatial jackknife subregions, we es-
timated the covariance matrix between bins in a given snap-
shot. We ignore correlations between mass bins across dif-
ferent snapshots when performing the fits described in Sec-
tion 2.3.

2.3. Mass Function

Our emulators were not trained on the measured mass
functions directly. Instead, we fit the mass function of each
simulation snapshot with a modified version of the mass
function presented in appendix C of Tinker et al. (2008).
Similar fitting functions were presented in Jenkins et al.
(2001) and Warren et al. (2006). In Tinker et al. (2008),
the cosmological parameters altered the mass function in two
ways: 1) changing the contribution of matter to the critical
density ⌦m⇢c and 2) the mapping from mass to the RMS
variance of the linear density field �(M,z). We extend this
approach by allowing the fitting function parameters to have
cosmological dependence as well, which we captured via the
Gaussian Processes that underpin the emulator.

This fitting function has the following form

dn

dM
= G(�)

⇢̄m

M

d ln�-1

dM
(2)

where the halo multiplicity function G(�) is given by

G(�) = B

⇣�

e

⌘-d

+�- f

�
exp(-g/�2) (3)

where �2 is the rms variance of the linear density field

�2 =
1

2⇡2

Z
P(k,z)Ŵ (kR)k2

dk. (4)

evaluated at the Lagrangian scale of the halo, i.e. R =
(3M/4⇡⇢̄m)1/3. P(k,z) is the linear matter power spectrum
as a function of wavenumber k and redshift z, and Ŵ is the
Fourier transform of the real-space top-hat window function.
Additionally, we enforce that all dark matter resides in halos,
which means that

Z
G(�)d ln�-1 = 1. (5)

The simulation is unable to sample arbitrarily small modes
of the power spectrum due to the finite size of the box. We
confirmed that our results are insensitive to a cut in k = 2⇡/R

at the scale of our simulation R = 1.05 h
-1Gpc. We use the

publicly available CLASS1 to calculate the power spectrum.

1
http://class-code.net/

JDR et al. 2018



Emulating HEFT Spectra
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A realistic test

Construct mock data from a 
set of independent 
simulations (UNITsims), 
populated with an HOD that 
has been fit to DES data.

UNITsims are higher 
resolution at a cosmology 
not in the training data.
Simultaneously fit 

 to Pgg(k) and Pgm(k)
k = 0.6 h Mpc−1



What bias parameters are 
necessary?

Kokron, JDR, Chen, White, Wechsler 2021



Aemulus ν

150 simulations in a 
 parameter space.

Flat, broad priors on 
cosmological parameters, 
especially important for 
modern analyses that 
prefer low S8.

3LPT initial conditions in 
order to mitigate transients 
in force computation —> 
better convergence 
properties.

wνCDM

DeRose et al, in prep.



Combining simulations and 
analytics

Sample variance in our simulations makes it difficult to switch to
analytic theory on large scales. Also makes problem of emulation more 

difficult.

Kokron, JDR, Chen, White, Wechsler 2021



Sample Variance Reduction

A few methods of 
improving sample variance 
in simulations beyond 1/N 
scaling exist.
Best known: “pairing and 
fixing” has a few 
downsides

Abandons gaussianity 
of ICs
Still requires running 2 
simulations

Angulo & Pontzen 2016



Alternative: Control Variates

Given a noisy quantity (i.e. a measurement from simulations), 
but have access to a cheap correlated “control variate”, we can construct:

̂y ≡ ̂x − β( ̂c − μc)
we can then optimize  to minimize the variance of , givingβ ̂y

̂β =
cov[x̂, ̂c]

var[ ̂c]
leading to a reduction in variance of

var[ŷ]
var[x̂]

= 1 −
Cov2[x̂, ̂c]

Var[ ̂c]Var[x̂]
+

̂β2Var[ ̂c]
MVar[x̂]



Alternative: Control Variates
var[ŷ]
var[x̂]

= 1 −
Cov2[x̂, ̂c]

Var[ ̂c]Var[x̂]
+

̂β2Var[ ̂c]
MVar[x̂]

Application to cosmology introduced as CARPool in Chartier et al 
20, Chartier & Wandelt 21, Chartier & Wandelt 22.

Usually use approximate N-body simulations like COLA/
FastPM for 
e.g. DESI FastPM effort (Ding et al 2022) used 500 FastPM 
mocks, each requiring 810 Gb of storage, and required 21M CPU 
hours in total

̂c

= 1 − ρ2
xc +

̂β2Var[ ̂c]
MVar[x̂]

https://arxiv.org/abs/2009.08970
https://arxiv.org/abs/2009.08970
https://arxiv.org/abs/2106.11718
https://arxiv.org/abs/2204.03070


Alternative: Control Variates

var[ŷ]
var[x̂]

= 1 − ρ2
xc +

̂β2Var[ ̂c]
MVar[x̂]

Application to cosmology introduced as CARPool in Chartier et al 
20, Chartier & Wandelt 21, Chartier & Wandelt 22.

Usually use approximate N-body simulations like COLA/
FastPM for 
e.g. DESI FastPM effort (Ding et al 2022) used 500 FastPM 
mocks, each requiring 810 Gb of storage, and required 21M CPU 
hours in total

̂c

Need a control variate that is:
Inexpensive

Highly correlated with 
Analytically known 

̂x
μc

https://arxiv.org/abs/2009.08970
https://arxiv.org/abs/2009.08970
https://arxiv.org/abs/2106.11718
https://arxiv.org/abs/2204.03070


Zel’dovich approximation to the 
rescue

Kokron et al 2022 (incl. JDR)



Zel’dovich approximation to the 
rescue

ZA is inexpensive, highly correlated with the non-linear matter field,
and we can predict its mean exactly.

Kokron et al 2022 (incl. JDR)



Zel’dovich approximation to the 
rescue: An illustrative example

Because the Zel’dovich realization is highly correlated with the N-body, 
we can simply subtract the difference between grid ZA and analytic ZA 

from the N-body measurement to remove noise.

JDR et al. 2022



ZCV + HEFT 

Applying Zel’dovich Control Variates to HEFT spectra leads to sub-percent 
errors on component spectra at all relevant scales

Kokron et al. 2022 (incl. JDR)



What about galaxy statistics?

Galaxy/halo bias and shot noise lead to significant decorrelation between 
biased tracer power spectra and unbiased ZA.

JDR et al. 2022



Including non-linear bias

JDR et al. 2022

By including bias operators in our control variate, i.e.:

cross correlation with halo spectra reaches the limit imposed by shot noise



The upshot
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When applying ZCV, one never needs more than (2 Gpc/h)^3 
of simulated volume to remove sample variance as an important source of 

error for 2-point statistics in simulations.



Analyses applying these techniques to DESI cross correlations with galaxy 
and CMB lensing ongoing. Keep your eye out for them in the next ~year!

Figure: Chris Blake

Clustering & Lensing w/ DESI



Summary

Thanks!

We need new models to take full advantage of the amazing 
upcoming data that we are gathering.
Combining N-body simulations and LPT into HEFT can extend the 
k reach of perturbation theory, with minimal additional 
assumptions.
This model can be consistently combined with RSD fits.
We can construct emulators for this model that are accurate and 
cover a broad cosmological parameter space.

Zel’dovich control variates drastically reduce variance on 
simulations for free, enabling denser cosmological sampling.



ZCV + HEFT 

Applying Zeldovich Control Variates to HEFT spectra leads to sub-percent 
errors on component spectra at all relevant scales

Kokron et al 2022 (incl. JDR)


