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Introduction

Strongly coupled physics is notoriously difficult to
access.

We do not have small parameters in which to do a
perturbative expansion. Our most basic notions of field
theory are of a perturbative nature.

Make use of symmetries, look at special limits/
subsectors where things simplify.

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into
sectors of fixed charge Q.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a
perturbative expansion!



emergent phenomena

| |
semiclassical description
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works also for strongly coupled systems!

4



Introduction

Is the microscopic theory
accessible!?

weakly coupled

large-N limit strongly coupled

€ expansion ¥

>H5Y work @large Q
4

large Q + large N 4

large Q + € expansion large-Q EFT,

large Q + susy expansion in 1/Q

2
go beyond perturbation theory in 1/Q, calculate
non-perturbative (exponential) corrections!
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Introduction

The seem to be 2 main categories for systems at large
quantum number:

Superfluid
isolated vacuum

Wilson-Fisher CFT

NRCFT (unitary EFT of the moduli

| space
Fermi gas) moduli spéce of vacua
N=2 SCFT in 3d

free boson

asymptotically safe
model in 4d

3d chiral Gross-

N=2 theories in 4d

Neveu/NJL model




Introduction

Conformal field theories play an important role in
theoretical physics: ‘/*31“\\;\\\ X
- fixed points in RG flows IR

- critical phenomena
»quantum gravity (via AdS/CFT) . !

» string theory (WS theory)
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But: CFTs do not have any intrinsic scales, most have by
naturalness couplings of O(1).

Possibilities: analytic (2d), conformal bootstrap (d>2),
lattice calculations, non-perturbative methods...

Prime candidate for the large-charge approach.
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Introduction

Example: Scalar field theories in 2<D<4 have a strongly-
coupled interacting fixed point, the Wilson-Fisher FP.
g2

§ 1T° CFT, strongly coupled

A <N\
. i&\\\&\\ / ~j»uPerquid at large Q

O(2N) vector model in D=3:

Sl =Y [ atas [9(0,6)1 (0)00) + r(6]60) + (8160

For r=R/8, this flows to the WF fixed pt in the IR, v« —+
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The O(2) model

Simplest example: O(2) model in (2+1) dimensions
Luy = 0u¢* " d — g°(¢7 )7
Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

poir =aeX  Global U(l) symmetry: x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(I) charge Q:

,01/2 N Q1/2/R
Study the CFT at the fixed point in a sector with

UV scale
1 1/2
= < A< QR < g2/

N

cut-off of effective theory
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The O(2) model

LSM: Assume large vev for a: A < ¢® < ¢°
scalar curvature (w. conf. coupling)

1 L 172 2 L R‘2/ A 6 . : .

Lir = 5 0,a0"a+ 50%a 0, x 0" x — TGYJECL + higher derivative terms
dimensionless constants

¢ has approximately mass dimension |/2 and the action

has a potential term o |¢|°

Lagrangian is approximately scale-invariant.

Semi-classical analysis: solve classical e.o.m. at fixed
Noether charge.

Solution must be homogeneous in space.
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The O(2) model

Charge density: »="b%"x, Q = p- Vol(S5?)
Lowest-energy solution: a = v = const.
non-const. vev
X = pt e = bzpvz
Determine radial vev v by minimizing the classical
otential: 2
Va(v) G TA\V) 202 160 6
™ cen rifugal term
U~ Q1/4
large condensate is
compatible with our
assumption a > 1
) o ptl?
U
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The O(2) model

Ground state at fixed charge breaks symmetries:

S0O(3,2) x O(2) = SO(3) x D x O(2) ~» SO(3) x D’

/

D' =D — u0O(2)

Broken U(I) - superfluid!

Energy of classical ground state at fixed charge:

. . cannot be calculated
2 dimensionless parameters

ithin EFT!
/ \ wit .
€1/2 RWQ1/2 4 O(Q—I/Q)

R

dependence on manifold

Classical solution at lowest energy and fixed global
charge becomes the vacuum of the quantum theory.
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The O(2) model

Quantum story: study the low-energy spectrum
Parametrize fluctuations on top of the classical vacuum

a=1v-+a X:Mt_|_z<—Goldstone
massive mode, not relevant —
for low-energy spectrum m ~ O(1/Q)

Go to NLSM: Integrate out a (saddle point for LO).
Dynamics is described by a single Goldstone field X:

A AN get this purely by
Lro = k3/2(0ux 0" x) dimensional analysis

Use dimensional analysis, parity and scale invariance to
determine (tree-level) operators in effective action
beyond LO (Lorentz scalars of scaling dimension 3,
including couplings to geometric invariants)

Use p-scaling to determine which terms are not
suppressed: Oy ~ V2. ... Oy ~ p I/
14



The O(2) model

Result for NLSM action: scale-inv. but NOT
. LO Lagrangian /conformally inv.

L = ks /5(0,x0"x)*? + k12 R(0,x0"x)** + O(Q~Y/?)

\

dimensionless parameters suppressed by inverse
powers of Q

To be understood as an expansion around the classical
ground state ut + X

Expand action around GS to second order in fields:

£ o k‘3/2,U,3 + kl/gR,U, + (815)2)2 — %(VS2>A<)2 4+ ...

Compute zeros of inverse propagator and get

dispersion relation: 7]
Wy = NG — dictated by conf. invariance 1/v/d

= X is indeed a “conformal” Goldstone (type |)
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The O(2) model

Let’s calculate observables: CFT data!
Scaling dimensions, fusion coefficients.

Use state-operator correspondence of CFT:

R® R x Sd-1
H. R
N

conformal s-1.-7"

dimension 7™— energy

Scl—1

Scaling dimension of lowest operator of charge Q:
/energy of class. ground state
D(Q) = Ro(Eo + Ecas) = 03/2Qg/2 + 01/2Ql/2 —0.0937- -+ 0(Q™'/?)

N

quantum correction from Casimir energy of Goldstone
S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]

16



The O(2) model

Testing our prediction:

C
D(Q) = 2?\’%@3/2 + 2/ e 5QY? —0.094 + O(Q™Y?)
Independent calculation on the lattice:
14 | | | |
12 +
10 + 1 Excellent
5 8F { agreement!!
o 5|
4 r ] 01/2 — 0075(10)
2 - 1
MC da}ta ——
it —
O I I I I I
works for small—" 2 4 6 8 10
C h d rge * W h)” 7 Q D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]

Large-charge expansion works extremely well for O(2).
17
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Beyond O(2):
3d O(2N) vector model
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Beyond O(2)

Where else can we apply the large-charge expansion!?

Obvious generalization in 3d: O(2N) vector model
non-Abelian global symmetry group: new effects

Different symmetry breaking patterns possible,
inhomogeneous ground states possible.

Homogeneous case: same form of ground state,

S0O(3,2) x O(2N) = SO3) x D x U(N) — SO(3) x D' x U(N — 1)

We expect dim[U(N)/U(N-1)] = 2N-| Goldstone d.o.f.

On top of the conformal Goldstone of O(2), a new

sector with N-I| non-relativistic type Il Goldstones and
N-1 massive modes with m=2p appears.
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The O(2N) vector model

Dispersion relation: S

The non-relativistic Goldstones count double.

Nielsen and Chadha; Murayama and Watanabe

Counting type | and type |l modes, indeed,

1 +2(N —1) = 2N — 1 = dim(U(N)/U(N — 1))

Non-relativistic Goldstones contribute to the conformal
dimensions only at higher order.

The ground-state energy is again determined by a single
relativistic Goldstone!

Same formula for scaling dimensions as for O(2):

/N-dependent /universal for O(ZN)

/2 13/2 | 9 1/2 _ 0094 4+ O(O-1/2
zﬁQ F2vmer ' ‘& vegﬂiﬁed at large N for
CP(N_l) mode| delaFuente

20 L.Alvarez-Gaume, O. Loukas, D. Orlando and S. R., arXiv:1610.04495 [hep-th]

D(Q) =



The O(2N) vector model

Testing our prediction:

D(Q) = ;%QS/Q + 2\/E01/2Ql/2 —0.094 + O(Q~'/?)
New lattice data for O(4) model:

12 — - . . . . .

10 ¢

8 N

03/2 — 1068(4)
61/2 — 0083(3)

05 1 15 2 25 3 35 4 45 5
j D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542

Again excellent agreement with large-Q prediction!
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The large-N limit

Start in the UV with

u

St =Y [ atas [g(0,6)1 (@}00) + r(6]60) + (8160
For r=R/8, this flows to the WF fixed pt in the IR, v -
Instead: keep u finite - explore the RG flow.

We can use the standard large-N approach but we need to
fix the charge:

r Hc;i HeeQ Tr[e BHHeeQ]

The charge fixing can be implemented via a boundary
condition or via a covariant derivative:

22



The large-N limit

Tr[e PH-10Q] = J D e~ Saleil
N (Pi(ﬁ,x):(Pi(O,x)
_ V(DO V(D . UL J Y,
Solei —;Jdtdi [9“ (Dl@i) (D@i) +reiei+ 5 (@iei)

o (ao+i%) 0 ifu=0
},L(pi — .
01 otherwise.

Perform Stratonovich transform: introduce collective d.o.f.

(e7¢:) and Lagrange multiplier A, write EFT in terms of A:
A : * : )\2
SG[(pi/ Al = Z Jdt dX [(Dh(pl) (Dh(pl) + (r+ }\)(p%"(pi — E

1=1

Can integrate out ¢i. From the saddle-point equations we
find that due to the chemical potential, A gets a vevm;
where 02 — —m2p>2

Adding the chemical potential gives us more structure to
work with! »



The large-N limit

From Z we find the grand potential (LO in N):

in flat space

(m? — r)? [m3 (m? - r>2]

r 1 1
_— = — — ——E — -
IN oy gl m) + on T 4w

This is exactly the NLSM for m* = 8,x8"x

This expression contains the full information about the
model. More transparent, if we extract the effective
potential. The LSM has the for:m/ vev of radial mode

Ligvm = ®°m? — V()

° \
E.o.m. for radial mode: q vev of angular mode

2— —
m d(clﬂ)v 0

Plugging the solution back in, we must recover

d*m? — V(®) = L(m)
b=P(m?)

L is the Legendre transform 0211 Vin ®°



The large-N limit

Pay attention to convexity! Use more general definition of
Legendre transform: f*(y) = sup(zy — f(z))

u

3

Vip) =

There are three cases, depending on the value of r:
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The large-N limit

Examine the critical case:

Scaling dimension of the lowest operator of a given charge

is identified by the state-operator correspondence with the
grand-canonical free energy:

A(Q) 9 0 3/2 4 0 1/2 - 0 —1/2 -1 0 —3/2
ON 3 (ﬁ) G (W) 720 (ﬁ) 181440 <2N> e
/"

. . L. Alvarez-Gaume, D. Orlando, S.R. 1909.02571
same Q-scaling as in EFT

All these results are straightforwardly obtained thanks to

the interplay between large Q and large N - no Feynman
diagrams needed!

NLO in N: reproduce dispersion relations of Goldstones.
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The large-N limit

Since we have an extra control parameter at large N, we
can go beyond EFT results!

Find coefficients of the expansion (leading order in N):

1 /2 1 /N
/2= 3\ N 2= 3\ g

Comparison to lattice data:

Leading coupling ¢z Subleading coupling ¢y,
0.50 1 "'_ «-«- Large-N: (2/3)N~12 0.50 .- Large-N: (1/6) N2
@ Lattice MC, this work @ Lattice MC, this work .

0.45 - T T Lattice MC, literature ~ 0.45 A T T Lattice MC, literature I
% . G K
G] " (o)
o 0.40 c 0.40
= 2
o o

o .

2 0.35 S 0.35 JE )
(@) tﬁ (@) ‘.‘
o c o
c ©
ki 0.30 A o E 0.30 ﬁ
& . E 0.

0259 T 90254

=
0.20 - ' 0.204 °
2 4 6 8 10 2 4 6 8 10
N N

Singh, arXiv:2203.00059 [hep-lat]



The large-N limit

Small charge limit: At large N, we now have more control
and can also take the limit of @/Nv <« 1.

In this limit, the operator of charge Q whose dimension we
are calculating is ¢

engineering dimension of ¢

NOIRCER: O(Q)2
Q@ 2 mENT

2N

one-loop
tree-level

Jack, Jones; Antipin et al.

Can be verified by a perturbative (loop) calculation around
the zero-charge vacuum (Benvenuti, unpublished)!
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Resurgence analysis

Since we can compute all the coefficients of the large-Q
expansion, we see that it is an asymptotic series which
diverges as (2L)!

We can write the transseries and the non-perturbative

corrections go like
o—2mk\/Q/(2N)

Geometric interpretation: particles of
mass J propagating on the equator of
the 2-sphere.

CFT + resurgence: This picture must work for any N.

The optimal truncation is 0(1/Q) terms.This explains why
the comparison to the lattice calculation works so well.

A. Dondi, I. Kalogerakis, D.Orlando, S.R, arXiv: 2102.12488 [hep-th]
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General dimensions

So far: D=3. Repeat the analysis for general dimension.
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We see that for 4<D<6, L is unbounded from below.
Instability!
If we formally compute the conformal dimension for D=5:

branch1 branch2 branch3 branch 4

A(Q) = roFss(Q) = 2N fl%g (%)4 ~ f_\/Z_ (%)4 , f o ein/d o—in/d o374 o-3mi/4
3 f5 e3i7r/4 e—3i7r/4 eTti/4 e—Tti/4
Interpretation as non-unitary CFT. Giombi, Hyman:

30 Moser, Orlando, Reffert 2110.07617



Fermions@large Q
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Fermions@large Q

Will large Q work for fermionic models!?

Antipin, Bersini, Panopoulos;

Let’s start with the multicomponent Nambu-Jona-Lasinio
(NJL) model, also known as the chiral Gross-Neveu (GN)
model in 3D:

Secn = = [ &% [ + S (Bar)® + (Fuinsva)?)
There are two conserved currents:
JH =Py, 7o = Py
We can study this model at large N.
After a Stratonovich transform, we have

L = %’i@% + (ﬂza@ba - imﬁaf% T %(02 + 7T2) + M@EGWO/}/Swa

We can make the scalar fields dynamical and arrive at the
Yukawa-NJL model which is the UV completion of the NJL

model.
32



Fermions@large Q

Now we can integrate out the fermions and do the saddle-

point analysis.
We find that only the axial charge gives rise to a

condensate at criticality:

log det(id + o + imy° + py°~°)

o +im| = VK2 —1p k= 1.19968...

Scaling dimension: large Q

A ,/\/5 0 3/2 ! 0 1/2
N3 (KN) +3\/5( ) T
1Q 1 /QY’
/_§N+7T2 (N) -+ ...
small Q »




Fermions@large Q

We find that like for the scalar case, we get a condensate at
fixed charge, but not WF universality class.

The end result is similar in the sense that we have an EFT in
terms of Goldstones fluctuating around a condensate.

Can go to a different frame using the Pauli-Gursey
transformation: ! !

Py 5(1 — 7 )the + 5(1 +7°)CY;

Sucs = = [ 4% [uidhpa + S (FaCTT) (6] O

This model gives rise to superconductivity from Cooper
pair formation!

The condensate consists of Cooper pairs - superconductor!

Dondi, Hellerman, Kalogerakis, Moser,
Orlando, Reffert, 2211.15318
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Fermions@large Q

Different story in the standard Gross-Neveu model:
SGN — _/dgx {&aiawa T %(%%)2}
Only one current, can fix its associated charge.

Result@leading order in N: the fixed-charge ground state is
not a condensate, but a Fermi surface.

Different from all other cases studied before, as fixing the
charge does not lead to SSB.

9 oLl + 1, 55 = Luno)(Lro) + DLl + 1 = 222 1
Ars  2(Q 3/2 1(Q 1/2 1 ({Q -1/2 Q ~3/2 0
W=g(m) +ﬁ(ﬁ) _192(21\1) +0 (ﬁ) Foan

Interaction is exponentially suppressed in N, behaves like a
free fermion.

Result consistent with free fermion results of Komargodski,

Mezei, Pal, Raviv-Moshe. -






Summary

Concrete examples where a strongly-coupled CFT simplifies

at large charge. O(2N) model in 3d:in the limit of large

g2
| U(l) charge Q, we computed the
\ =—iC conformal dimensions in a controlled
g \\§ perturbative expansion:
G \\§ *  Excellent agreement with lattice
N \\\ ts for O(2), O(4
F results for O(2), O(4)
NN large Q and large N: path integral at
. saddle pt., more control than in EFT,
Euu can calculate coefficients
E

can follow the flow away from
conformal point
find the full effective potential

New results for fermionic models.
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Things | didn’t say
Non-relativistic CFTs with global U(I).

Large-charge expansion exists, quantum
corrections and higher-derivative terms are

suppressed

results in 3+1D match eff. theory for unitary Fermi
gas

qualitatively different behavior to relativistic case

SCFT with and without moduli space behave very
differently

w/o: same result as for O(2)
|d: EFT is a free theory+W/Z term

prediction matches localization results
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Further directions

Further study of supersymmetric models at large R-
Charge (higher_dim. moduli Spaces) Hellerman, Maeda, Orlando, Reffert, Watanabe;

Argyres et al.
Loukas, Orlando, Reffert, Sarkar;

Connection to holography (gravity duals) pets Fuene zoso

Giombi, Komatsu, Offertaler.

Operators with spin; connection to large-spin results

Cuomo, de la Fuente, Monin, Pirtskhalava, Rattazzi; Cuomo

Understanding dualities semi-classically at large charge

Use/check large-charge results in conformal bootstrap

Jafferis and Zhiboedov

Further lattice simulations: inhomogeneous sector,
general O(N) Chandrasekharan et al.

1 1 1 Komargodski, Mezei, Pal, Raviv-Moshe;
C FTS I n Oth e r d I m e n S I O n S (2’ 5 ’ 6) Araujo, Celikbas, Reffert, Orlando;

Moser, Orlando, Reffert
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Further directions

Chern-Simons matter theories @large charge "

Arias-Tamargo, Rodriguez-Gomez, Russo;
Badel, Cuomo, Monin, Rattazzi; Watanabe;

4-g expansion @large charge ipnaa

Orlando, Reffert, Sannino;

going away from the conformal point  onado. petizzani, Reffer

Favrod, Orlando, Reffert; Kravec, Pal;

non-re | ativi sti C C FT S Orlando, Pellizzani, Reffert;

Hellerman, Swanson; Pellizzani

BO un d ad ry C FTS at Ia rge Q Cuomo, Mezei, Raviv-Moshe
Wea_ I( g rav ity CO nj o Ct ure Aharony, Palti; Antipin et al.

Study fermionic theories. Can large-charge approach
be used for QCD (e.g. large baryon number)?

omargodski, Mezef, Pal, Raviv-Moshe;
Antipin, Bersini, Panopoulos;

G a, uge th eo ri e S @ I a_ rge C h a rg e Dondi, Hellerman, Kalogerakis, Moser, Orlando, Reffert;

Antipin et al.
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Thank you for your
attention!



