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it

Definition

A Lie Algebra L is a vector space over the field C together with
an operation (called the bracket), [, | : L x L — L such that for
all x,y,z€ Land a,b € C,

Q [ax +by,z] = a[x,z] + b[y,z] and
[x,ay + bz] = alx,y] + bx, 2],
Q@ [x,x] =0,
Q [x [v,z]] + [y, [z x]] + [z, [x,y]] = 0 (Jacobi identity).
Definition

o A Lie algebra L is simple if [L,L] # {0}, and its only ideals
are {0} and itself.

@ A Lie algebra L is semisimple if it is a direct sum of simple
Lie algebras.

v
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Generalized Cartan matrix (GCM)

Definition
An n X n integral matrix A = (a;;) is a GCM if a;; = 2,a;; < 0 if
i # j,and a;; = 0 if and only if a;; = 0.

Definition
Q@ A GCM A is indecomposable if it is not equivalent to a
matrix in block form.

@ A GCM A is symmetrizable if there exists a nonsingular
diagonal matrix D such that DA is symmetric.

An indecomposable symmetrizable GCM A is of affine type if
there exists u > 0 such that Au = 0.
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Definition

The Cartan datum associated with the symmetrizable GCM

A= (aij)i,jel is a quintuple (A, IL1II, P, P) where
P =span, {{&;,..., &} U{ds|s =1,...,|I| —rank A}}
is a free abelian group of rank 2|I| — rank A called the
coweight lattice,
Define t = C ®z P to be the complex extension of P called
the Cartan subalgebra,
P = {A € t*|]A(P) C Z} is called the weight lattice,
IT= {&,...,&,} C tis called the set of simple coroots,
IT={ay,...,a,} Ct"is called the set of simple roots
which satisfy a;(&;) = a;; and a;(ds) = Js;.
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Definition

The Kac-Moody algebra g = g(A) associated with the Cartan
datum (A,IT,IL P, P) is a Lie algebra with generators
e, ﬁ (i € I) and h € P satisfying the following relations.

@ (K] =0forhh' €D,

lei, fi] = 51]0‘11

[h,e;] = aj(h)e; for h € P,
[, fil = —ai(h)fi for h € P,

© 00000

(ad el) (ej) =0 fori #j,
(adfl) (f])—Oforz;zé]

An affine Lie algebra is a Kac-Moody algebra for which the
GCM A is of affine type.
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Definition
The quantum group U, (g) associated with (A, ILIL, P, P) is the
associative algebra over C(gq) with 1 generated by ¢;, f; (i € I)
and g" (h € P) satisfying the following relations.

Q =1, 4" = qh+h/ for b,/ € P,

Q eifj— fiei = 51]% fori,jel,

Qg eiq_ = g% ()ei forheP, icl,

Q ¢ fig =g %Wf forheP icl,

o Zl BUEIL {1 _kaij] e}faijfkejef =0 fori#j,

i

O (- |1 A g =0 fori £
qi
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The quantum group associated with the affine Cartan datum
(A,I1,11,P, D) is called a quantum affine algebra, also denoted

by Uq(g).

Let A € Pt ={pu e P|u(k;) € Zsoforalli € I} of alevel
I = A(c) (c = the canonical central element) and

VAI(A) be the irreducible integrable highest weight

U, (g)-module.

Note: As g — 1, V1(A) is an irreducible integrable highest
weight g-module.
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Definition
[K,1990] A crystal base of V is a pair (L, B) such that
Q L is a crystal lattice for V,

@ Bisa C-basis of L/gL = C ®a, L where A is the ring of
rational functions regular at g = 0,

@ B = U,cpB) where By = BN (Ly/qL,),
Q@ &BCBU{0},fiBC BU{0}forallicl,
@ fib ="V ifand only if b = &b’ for any b,b’ € Band i € I.

v
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A perfect crystal is indeed a crystal for certain finite
dimensional module called Kirillov-Reshetikhin module
(KR-module for short) of the quantum affine algebra U, (g).

The KR-modules are parametrized by two integers (i,1)
where i € I\ {0} and I any positive integer.

Let {B"'},>1 be a family of perfect crystals. If it satisfies certain
conditions, there exists a limit B"® of {B"'};~;. In such a case
the family {B'},>1 is called a coherent family of perfect
crystals.
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Definition

affine Lie algebra g is a quadruple

where X is a variety, e; : C* x X — X ((¢,x) — €f(x)) are

[BK,2000] The geometric crystal V(g) for the simply laced

(X, {ei}tier {7itier {€iticr)

rational C*-actions and 7;,¢; : X — C (i € I) are rational
functions satisfying the following:

Q {1} x X Cdom(e;) forany i € I

Q 7j(ef(x)) = c";j(x)

@ {e;}ie; satisfy the following relations

1,62 __ 02,01 1 e — (] —
e;jle” = ej’e; ifa;; =a; =0,
€1 ,61C2 €2 __ C2 ,C1C2 C1 1 e — (e — —
ejlej et =ee e ifa;;=a; =-1,

e ei(x) and (e (x) = e(x) if oy = aj = 0.

m
=
—~

%
—
=
~—
~—
I
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Remarkable relation between positive geometric crystal and
algebraic crystal:

ultra-discretization functor UD

Applying this functor, positive rational functions are
transferred to piecewise linear functions by the simple
correspondence:

XX Y x+y, ;|—>x—y, x 4y — max{x,y}.
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Conjecture

It is conjectured in [KNO, 2008] that for each k € I\ {0}, the
affine Lie algebra g has a positive geometric crystal whose
ultra-discretization is isomorphic to the limit of certain coherent
family of perfect crystals for the Langlands dual g of g.

4

It has been shown that this conjecture is true for
o k=1andg=B{",c", DV, A2 A% D? DY GV
° 1§k§nandg:A,(11)

ok:5andg:Dél),k:6andg:Dél)
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Outline

@ Section V : Affine Geometric Crystal V(Dél))
@ Section VI : Ultra-discretization of V(Dél))
@ Section VII : Affine Geometric Crystal V(Dél))

@ Section VIII : Ultra-discretization of V(Dél))
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g = DIV with index set I = {0,1,2,3,4,5}

2 0 -1 0 0 0
0 2 -1 0 0 0
A=[ho0 oz g
0 0 0 -1 2 0
0 0 0 -1 0 2
Dynkin diagram
0 4 5 0
g
3 E— 3
1 5 4 1

c:0—~51—42—3,3—~2,4+—0,5—1
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Let Iy = {1,2,3,4,5} and I; = {0,2,3,4,5}.

Let g; (resp. 0(g);)) be the subalgebra of g (resp. c(g)) with
index set [;.

Then go as well as 0(g); are isomorphic to Ds.
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{ap, a1, ..., a5} is the set of simple roots,
{do, a1, ...,a5} is the set of simple coroots,
{Ag, A1,...,As} is the set of fundamental weights.
@ The canonical central element is
¢ = ap + a1 + 2a) + 243 + Ay + a.
@ The null root is
0 = wog+ g + 2000 + 203 + oy + as.
@ The classical weight lattice is
Py = ®7_ZA,.
@ The weight lattice is P = P, © ZJ.
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Let W(ws) be the level 0 fundamental Uj(g)-module associated
with the level 0 weight @5 = As — Ao.

The fundamental g-module W(@s) is a 16-dimensional module
with the basis

The actions of fx on these basis vectors is given by

(+,+,13,14,15) ifk=0, (i;,i2) = (—,—)
(il,i2, i3, —,—) ifk=25, (i4,i5) = (+, +)
fk(il,iz,i3,i4,i5): (il,...,—,+,...,i5) ifk?éO, k;é5,
k k+1 (ix,ix1) = (+,—)
0 otherwise.
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(4, +,+,+,+) is a go highest weight vector with weight @5 = A5 — Ay,
(=, +,+,+,—) is a 0(g); highest weight vector with weight @5 := Ay — A;.
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Denote t5; = t*/Cd, ()0 ={A €t} | (c,A) =0}.
For ¢ € (t})o, let t(¢) be the translation as in [K, 2002].

Define simple reflections s;(A) := A — A(&;)a, k € I and let
W = (sx | k € I) be the Weyl group for Dél).

Proposition

t((@5) = 054535255535451525355 = OW1,
t(Ws5) = 055535254535550525354 = TWy.
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Associated with Weyl group elements wy, wy € W, we define
algebraic varieties V1, V, C W(w@s) as follows.

= (V1(x) = Va5 ¥ (4 )y (47 va () ()
Y2(x£1))Y3(x§1))Y5(xé1))(+ +,+,+,+)|xm’ € C*}

V2 = {Va(y) = Y5y a8 e (5 Va(y ) s (8 Y (0 ) Yo (v)
L)) Ya) (- + + + ) e €},

where

Y (2, ), ) D) 2 ) )0 ) (1)

T R S S Y SO ST S S S
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From the explicit actions of f;’s on W(ws), we have fZ = 0, for
all k € I, hence

Yi(0) = 1+ 2)ay0) = (14 By forall ke 1
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(3),.(2) (1)

Vi(x) = x 22 (+, 4+, 4+, 4+, +) + P + B (= ) +
5

@)1 R M R MR u - e o (1)
((2) (1) (2) (1)22) (2)+(1) (1;C§3) (2)+(1) ng)xg) )(+’ e )+ (J(CZ (1—:_ (1)
X3 x X, x Xy XX Xy X (2) .( Xy X, X
e e e (SR R R G i Tt
(2) (1) (1) (1) (1) 1,1 (3),.(1)
x, 7 x,  x (1) X, X X, x X3 X
W)(_’_r_r—i'_/—}_/_)—’—(xé + 4xg2)2 + 4xg2)1 + SXA(IZ)Z +

(3),.(2) (1) (2),.(1) (2),.(1)
X3 Xy X (1) Xy X xXs X
W)(‘l_r — +r — +) + (xz + 3x£2)1 + W) (+/ V] +/ +) +
(== ) P () (1))

(3),(2) 2),2)
X3 X 2) | Xy X

e ) (= =) + (x5 + ) (o )
xéz (_r — +r +1 +) + ng)(—, +/ A _) + x§3)(_1 — +/ — _) +

2
xz(l )(_/ A +/_) + (_/ YA A +)
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(3),(2). (1)
Va(y) =y (4 ) + (y§3)yi)+%)(—,+,+,—,+)+

4
@, () (1) @, (1) @, 1) 1)

(), (1) | ¥s y3y Ys Yo Y Ys Yy Y5y 1)

(VS Yy > y?z) -4 =2 y%s) S y%s)y%z) 2 )(_/"‘/ — 4, +) + (]/4 +
4 3 3 3

@ (1) @, (1) @, (1) (1) @) (1) @, 1), 1)
¥3'Y3 Ys Y3 Y2 Y5 Yo Y2y (2). (1) | Y5 Y5V

gt et e T ) (o ) (0 Ty e
Yy Y3 Y3 Y3 Y Y3

5
@), 1. (1) (1) ), (1) @)1
Ys Y5y 1) , y3y v y
M) (_/ — +/ +/ +) + (y3 + 5 (2)2 + Sy(z) + 3]/(2) +
2 5
) )
(

()

© <> 4 .

ysyéT)(—/—,—f—,—,—)-i-(yg)-i—%T
3) (2)

) (== = =) Y (4 )+ (yf-,)+y3 LY(4 44— =)+

5

2) (2)
(y§)+y2 WY (44— =) A0 (= =) F 0D (4 — = ) +
3

yé3)(+ - + - +)+]/(2)( / /_/+/+)+(+/_1_1_1_)~
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Now for a given x we solve the equation
Va(y) = a(x)o (V3 ()
where a(x) is a rational function in x and the action of ¢ on
V1(x) is induced by its action on W (@s).
We define the map
oV —> WV
Vl(x) — Vz(]/).

Proposition

The map 7 : V; — V), is a bi-positive birational isomorphism
with the inverse positive rational map

o1 Vo — Vg
Vz(y) —> Vl(x).
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It is known that V; = {V;(x),e{, vx ex | k € Iy ={1,2,...,5}}

(resp. Vo ={Va(y), & Y& | ke, = {0,2,...,5}}) has the
structure of a go (resp. o(g)1) positive geometric crystal.

In order to give V; a g = Dél) -geometric crystal structure, we
need to define the actions of ef, g, and g9 on V;(x) and prove
that they satisty the following relations:

© 10(&(Vi(x))) = chro(Vi (x) forall k € 1
Q 7i(ef(Vi(x))) = c®k vy (Vi(x)) forall k € I
@ o(e5(Vi(x))) = ¢ Teo(Va(x))

Q ¢jle? = e?ey! forall k € {1,3,4,5}

C1,61C2 €2 __ €2 C1C2 C1
Q ¢ye) Yoy = eyey e
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We use the o(g)1-geometric crystal structure on V, to define the

action of ej, 7o, and gy on V;(x) as follows.
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(2) (1) (2) (1) (2)..(1) (2) (1) (1)
_ X X3 X3 X3 _ %% X X4 % _
Set B = §g + RO C= §g + NONG and A =B +C.

Theorem

The algebraic variety V(Dél)) = {Vi(x), e}, v ex | k€ 1}isa
positive geometric crystal for the affine Lie algebra g = Dél) with the
e, vo, and g actions on Vi (x) given by:

1
W) = g (i) =4V +4,
Xy "X

eg(Vi(x)) = Vi(x) = Vl(xf)l,xf)/,...,xél),) where
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@ _ @, o8 tA ay_ MO x5 +4

Xg ' =g o ——m———, X5 =Xg +—m——,
c(xél) +A) cxé1> +A
V) + B+ M) L
@ _ @ '+ )
X4 = X4 ( ) y
c(xs’ +A)
1
' _ () W+ 4
Xy =X [ENOND] [BROK
(1) Xy Xy Xy Xy X

P LS B GRE I- 2
(x5 +B+ NONE) + e

(2),.(1) (2) (1)
C(xél) + 3 (2)3 )+ 2 (;3 +C
3) (3) x5 3
Xy = Xy @ ,
c(xg’ +A)
x(z)f _ x(z) . C(xél) +B)+C
3 773 (2) (1) (2) (1) ’

1
ele(x” +555) + 25 4 0)
5 3

1 2 1 1

' _ . W+ <z>'_£ ay _ o) (1)’_£

BT (1) R e
c(xs’ +B)+C
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Parameterizing the Dél)-perfect crystals {B%},>1 of level |

given in [(KMN)?,1992], we obtained that the set

( 1+4 )
bijEZZO/ Zbij:l/ 1<i <5,
]J=1
5—t 4+t
B ={b= (b,-]-) i<j<i+4, Zbij - Z bi+tj' 1<it<4,
1<i<5 j=i j=itt
t t+1
Y bii> Y by, 1<i<t<4
L j=i j=i+1 )

equipped with suitable maps é, f : B> — B> U {0},
€k Pk B> — 7,0 <k <5and wt : B3 — P is a coherent
family of perfect crystals with limit B>® given as:
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) i+4 )
B>® =S b = (b;) i<j<i+4 |5, ]Zf 5
1<i<5 Zbij: Zbi+t’j,1§i,t§4
\ j=i j=i+t )

containing the special vector b* = 0 (i.e. (b*);; = 0 for
i<j<i+4,1<i<5H).
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Apply the ultra- discretization functor UD to the positive

geometric crystal V( ) = {Vi(x), e}, vk e | k € I}
constructed in Section V

X = L{D(V(Dél))) with maps
ék,kaX—>XU{O}, Ek,(kaX—>Z, 0§k§5

and wt: X — P, is a Kashiwara’s crystal where for x € X,
& (x) = Zﬂ?(ei)( Me=t, fie(x) = UD(ef) (x)]e=-1,

Zwtk x)Ax where wt(x) = UD(y;)(x),

ex(x) = UD(Sk)( ) @r(x) = wir(x) + ex(x).
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Theorem
The map

oF B> — X,

b= (bij)iSjSi+4, 1<i<5 = X = (x4(12)1x§3)/ x§2)/ xéZ)/ x§2)/

MORMORNORNORNO)

defined by
0 Z}'ﬂ:m_l_u bm—l+1,j/ for m=1,2,3
l —

Xy = }"m 2041 bm o141, for m =4
Z] m—21+1 m 2141,j, fOT m =>.

is an isomorphism of crystals.
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g = DY with index set T = {0,1,2,3,4,5,6}

GCM
2 (U | 0 0 0 0
0 2 -1 0 0 0 0
-1 -1 2 -1 0 0 0
A =] 0 (U | 2 -1 0 0
0 0 0 -1 2 -1 -1
0 0 0 0 -1 2 0
0 0 0 0 -1 0 2
Dynkin diagram
0 5 6 1
_7,
2 3 4 4 3 2
1 6 5 0

c:0—46,1—52—43—3,4—2,5+—1,6—0
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Let Ip = {1,2,3,4,5,6} and I; = {0,2,3,4,5,6}.

Then gg as well as ¢(g); are isomorphic to Ds.
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(+,+,+,+,+,+) is a go highest weight vector with weight @ = Ag — Ay,
(=, +,+,+,+,—) is a ¢(g)1 highest weight vector with weight &g := As — A;.
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Associated with Weyl group elements wy, wy € W, we define
algebraic varieties V;,V, C W(@g) as follows.

= {Vi(x) = Yo (x) Ya(x ) V3 (57 Ya (x <2>>Y5<xé D ASRIAE
Yo (x &) Y5 () Y (1) Vo (5 Y3 (25 Ya ()
Yo(xi) (4, +, +, +, + +)|x) € €¥1,
V2 = (Vo) = Y505 ) e ) Va5 () Ve () Ya ) V3 (45)
Y)Y Ye e ) Yo rs ) va s ) v (v§ ) va )
Ys(y$) (=, +, +,++ -yl € €<},
where
x = (xé3),x£4),x§3),x£ ),xéz),xf1 ),xgz),xéZ),xf),xél),xgl),xz ,xgl),xi ),xé )),
6 @ 2 6 2 (2 @2 @@ 1) (1 1) (1) ()).

YY) VLV ) Y ST SOV S AT
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We use the o(g)1-geometric crystal structure on V, to define the
action of efj, o, and g on V;(x) as follows.

e§(Vi(x)) == o0 00 (Vi(x)) =7 08 (Valy)), (4
Y (Vi(x)) =07 o7y 00(Vi(x)) =7 oT5(Va(y),  (5)
eo(Vi(x)) =0 ogsg 0a(Vi(x)) = ' og(Va(y)) (6)

Theorem

Together with the actions of ef, yo and ey on Vy(x) given in (4), (5),
(6), we obtain a positive affine geometric crystal

V(DL)) = (Vi) e, v | K € 1)
for the affine Lie algebra g = Dél).

37/ 40




@N_ llllllllllllll DY and D{"-Geometric Crystals

© 2023 by Suchada Pongpra

For a positive integer [,

( i+5 \
bijEZZO/ Zbij:l,1§i§6,
]:l
5+t
B = b= (by) i<jcirs |2 b= ) bipy 1<it <5,
1<i<6 j=i j=itt
t+1
Zbl]> Y by, 1<i<t<5
\ j=i j=it+l J
( i+5 )
b,’jEZ, Zbij:0,1§i§6,
Bo* = b:(bij)iSjSiJrS, JSZH
t=i=o Zbl] Y by, 1<it <5
( j=itt J
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Theorem
The map

Q : B6,00 N

b= (bij)i§j§i+5, 1<i<6 7 X = (x6

defined by

m
0 Ej:m—l—i—l bm—l+1,j,

Xy =

(3)
)

(1)

Xq

for m =

s Xy

s Xy

X,

(4) .8) (2) .(2)

/x2 /x5 7
(2) (1)

),x4 X5,

(1) (1))

Ix4 /x6

x(3
73

x<§12>) ' x<é12>
’ x3

1,2,3,4

m
= m-— 2041 bm _2141,j, for m=5

Z:] m—oi41 bm—21y1,j, for m=6.

is an isomorphism of crystals.
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Thank you!

VOUAMAL
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