Probing the Nature of Neutrino Mass

Karsten Heeger Yale University

August 9, 2023

Neutrinos in the Universe

nuclear decays~ MeV energies

Early Days of Neutrinos

1930, Pauli

FIG. 5. Energy distribution curve of the beta-rays.

1935, Goeppert Mayer

1937, Majorana

-	-	-	-	•		
2						

From Anomalies to Precision Oscillation Physics 1990 - 2000 1960 - 1990 solar neutrino problem oscillation searches

25 Years Ago - Discovery of Atmospheric Neutrino Oscillations

V98, @Takayam June 1998

Atmospheric neutrino results from Super-Kamiokande & Kamiokando - Evidence for Yu oscillations -T. Kajita Kamioka observatory, Univ. of Tokyo for the {Kamiokande Super-Kamiokande} Collaborations

Neutrino 98

Discovery of Neutrino Flavor Change and Oscillation

Solar v_e

Neutrino oscillations imply that neutrinos have mass and mix.

Reactor \overline{v}_e

L/E

Neutrino Mixing

evidence for neutrino oscillations in many sources

reactor solar long baseline atmospheric

3 flavor picture fits data well

Open Questions

Where do neutrino masses come from?

What is the origin of leptonic mixing?

Are neutrinos their own antiparticles?

Major discoveries ahead

 m_{3}^{2}

 m_2^2 .

 $m_1^2_{-}$

0

What is the nature of neutrino mass?

Understanding Neutrino Mass from Beta Decay

Single Beta Decay

Karsten Heeger, Yale University

Understanding Neutrino Mass from Beta Decay

Single Beta Decay

Karsten Heeger, Yale University

Double Beta Decay

11

Understanding Neutrino Mass from Double Beta Decay

Nuclei as a laboratory to study lepton number violation at low energies

2νββ

Ονββ

Proposed in 1935 by Maria Goeppert-Mayer **Observed in several nuclei** $T_{1/2} \sim 10^{19} - 10^{21}$ yrs $\Gamma_{2v} = G_{2v} |M_{2v}|^2$

Proposed in 1937 by Ettore Majorana Not observed yet

 $T_{1/2} \ge 10^{25} y$

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2$$

Understanding Neutrino Mass from Double Beta Decay

Nuclei as a laboratory to study lepton number violation at low energies

2νββ

Proposed in 1935 by Maria Goeppert-Mayer **Observed in several nuclei**

 $T_{1/2} \sim 10^{19} - 10^{21} \text{ yrs}$

$$\Gamma_{2\nu} = G_{2\nu} \mid M_{2\nu} \mid^2$$

Karsten Heeger, Yale University

Ονββ

Proposed in 1937 by Ettore Majorana Not observed yet

 $T_{1/2} \ge 10^{25} y$

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2$$

 $0\nu\beta\beta$ would imply - lepton number non-conservation - Majorana nature of neutrinos

Understanding Neutrino Mass from Double Beta Decay

Nuclei as a laboratory to study lepton number violation at low energies

2νββ

Proposed in 1935 by Maria Goeppert-Mayer **Observed in several nuclei**

 $T_{1/2} \sim 10^{19} - 10^{21} \text{ yrs}$

$$\Gamma_{2\nu} = G_{2\nu} \mid M_{2\nu} \mid^2$$

Karsten Heeger, Yale University

Ονββ

Proposed in 1937 by Ettore Majorana Not observed yet $T_{1/2} \ge 10^{25} y$

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2$$

 $0\nu\beta\beta$ may allow us to determine - effective neutrino mass

Neutrinoless Double Beta Decay (0vßß)

Search for peak search at the Q value of the decay

Energy peak is necessary and sufficient signature to claim a discovery. Additional signatures from signal topology etc

Annual Reviews: 52:115-151

Neutrinoless Double Beta Decay (0vßß)

Energy peak is necessary and sufficient signature to claim a discovery. Additional signatures from signal topology etc

Isotope Choice

Desired Characteristics

- High isotopic abundance
- Enrichment possible
- Qββ above end point of β or γ radiation
- Large scale production possible

Karsten Heeger, Yale University

17

Οvββ Half Life

Phase space factor $m_{\beta\beta}^{2} = |\sum_{i} U_{ei}^{2} m_{\nu_{i}}|^{2} \qquad \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{-} \end{pmatrix} = \begin{pmatrix} \mathsf{PMNS} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{0} \end{pmatrix}$

Karsten Heeger, Yale University

Isotope Choice

From: Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 Nuclear Science Advisory Committee Long Range Plan: arXiv:2304.03451iv:2304.03451

Οvββ Searches

LNGS: Laboratori Nazionali del Gran Sasso

ITAL 3600 meter water equivalent overburden -----**CUORE** PALER 10 Rome Adriatic coast

Karsten Heeger, Yale University

- Natural shielding from cosmic rays by the mountain of Gran Sasso
- Well-established support for experiments and user access

History of Bolometer Experiments 30 years of experience in searching for $0v\beta\beta$ with cryogenic bolometers CUORE is in a long series of experiments, from few grams to 742 kg of detector material First tonne-scale bolometric experiment in the world

Brofferio, C. and Dell'Oro, S., Rev. Sci. Inst. 89, 121501 (2018)

Karsten Heeger, Yale University

Karsten Heeger, Yale University

Screwjacks Rubber damper

Concrete beam

Sand-filled coulmn

Y-beam

Steel rope

Minus K

Concrete wall

Unique cryogenic infrastructure.

CUORE - Coldest Cubic Meter in the Known Univers

CUORE cryostat

- Multistage cryogen-free
- cryostat
- Cooling systems: fast cooling
- system, Pulse Tubes (PTs), and
- Dilution Unit (DU) ullet
- $\sim 15 \text{ tons } @ < 4 \text{ K}$
- ~ 3 tons @ < 50 mK
- Mechanical vibration isolation
- Active noise cancelling

CUORE (passive) shielding

- Roman Pb shielding in cryostat
- External Pb shielding ullet
- H₃BO₃ panels + polyethylene lacksquare

Karsten Heeger, Yale University

Bolometric Search for 0vßß

$^{130}\text{Te} \rightarrow ^{130}\text{Xe} + 2\text{e}^{-1}$

Q = (2527.518 +/- 0.013) keV

Karsten Heeger, Yale University

single hit, monochromatic event

CUORE Detector

0

0

An

Bolometer Event

Cooldown: Started in Dec 2016

1 month cool down

First data in Jan 2017

Karsten Heeger, Yale University

CUORE Data Taking

28

CUORE 1-tonne Year Spectrum

Collaboration), *Nature* **604**, 53-58 (2022)

CUORE 1-tonne Year Spectrum

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)

Background in Region of Interest (ROI)

α region

fit flat background in [2650,3100] keV 1.40(2) 10⁻² counts/(keV kg yr)

$Q_{\beta\beta}$ region

fit background + 60 Co peak in [2490,2575] keV 1.49(4) 10⁻² counts/(keV kg yr)

source

~90% of the background in the ROI is given by degraded alpha interactions 10^{-2}

Muons are the next dominant background source

CUORE uses ¹³⁰Te with 34% natural isotopic abundance, $Q_{\beta\beta}$ (2528 keV)

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)

CUORE Fit

No evidence of 0vββ

Best fit rate: (0.9 ± 1.4)x10⁻²⁶ yr Background index = $1.49(4)x10^{-2}$ cts/keV/kg/yr $T^{0v_{1/2}} > 2.2 \times 10^{25}$ yr at 90% C.L.

Karsten Heeger, Yale University

Counts / (2.5 keV)

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)

CUORE 0vßß Limit and Sensitivity

10

10²

10

10-1

m_{ββ} (mev)

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) \left| |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2} \right|^2$$

- Phase Space Factor
- Nuclear Matrix element
- Effective Majorona mass: a weighted sum of different v flavors masses

CUORE 1 Tonne Limit: m_{ββ}< 90-305 meV

CUORE Sensitivity (5 yrs) m_{ββ} < 50 - 130 meV

Karsten Heeger, Yale University

CUPID Detector

Single Detector Li₂¹⁰⁰MoO4, 45x45x45 mm, 280 g Ge light detector as in CUPID-Mo, CUPID-0

Detector Array

~240 kg of ¹⁰⁰Mo with >95% enrichment

~1.6.10²⁷¹⁰⁰Mo atoms

57 towers of 14 floors with 2 crystals each, 1596 crystals

Opportunity to deploy multiple isotopes, phased deployment

Gravity stacked structure Crystals thermally interconnected

CUORE ¹³⁰Te (bolometer)

No PID Q = 2527 keV < 2615 keV

Karsten Heeger, Yale University

¹⁰⁰Mo **Q-value: 3034 keV**: β/γ background significantly reduced

Measure heat and light from energy deposition

Heat is particle independent, but light yield depends on particle type

Actively discriminate α using measured light yield

Karsten Heeger, Yale University

Isotope choice

Balance between **performance** (background reduction, NME, detector performance) and **cost** (isotope enrichment, crystal growth). Higher Q-value translates into smaller background

- Q-value above most of natural radioactivity
- good quality scintillating crystals for α - β discrimination
- existing enrichment technology and interest for medical applications
- CUPID requires producing ~280 kg of ¹⁰⁰**Mo**

Background from ¹⁰⁰Mo 2vßß Pileup

¹⁰⁰Mo $2\nu\beta\beta$ half-life ~ 7 x 10¹⁸ yr

rate ~ 3 mHz/crystal pile-up events may populate the $0\nu\beta\beta$ ROI

Pile-up discrimination depends

LMO and light detector risetime and S/N read-out & DAQ band-width noise (vibration reduction) analysis algorithms

demonstrated

goal (test on-going)

< 1x10⁻⁴ counts/(keV·kg·yr) $< 0.5 \times 10^{-4}$ counts/(keV·kg·yr)

CUPID Sensitivity to 0vßß

Baseline

- Mass: 450 kg (240 Kg) of Li₂¹⁰⁰MoO₄(¹⁰⁰Mo) for 10 yrs
- Energy resolution: 5 keV FWHM
- Background: 10-4 cts/keV.kg.yr
- Discovery sensitivity $T_{1/2} > 1.1 \times 10^{27}$ yr (3 σ)
- Conservative, limited R&D

Reach

- R&D for further background reduction by radio purity and reduce pileup background
- Discovery sensitivity $T_{1/2} > 2 \times 10^{27}$ yr (3 σ)

1-Ton

- 1000 kg of ¹⁰⁰Mo
- Discovery sensitivity $T_{1/2} > 8 \times 10^{27}$ yr (3 σ)

CUPID-1T is within technical reach, limited by timeline and cost

CUPID Signal: Preparing for Discovery

Example of toy experiments simulated for 10-year exposure and $T_{1/2}(^{100}Mo)=10^{27}$ years.

If signal is seen, modular detector allows data taking with different isotopes.

Envision CUPID to be part of a world-wide suite of experiments to discover $0\nu\beta\beta$.

Multiple experiments will be needed to establish discovery.

40

CUPID Sensitivity to 0vββ

CUPID Baseline

- Mass: 472 kg (240 Kg) of $Li_{2}^{100}MoO_{4}(^{100}Mo)$
- **10** yr runtime
- Energy resolution: 5 keV FWHM
- Background: **10**-4 cts/keV.kg.yr

CUPID Baseline Discovery Sensitivity $T_{1/2} > 1.1 \times 10^{27} \text{ yrs} (3\sigma)$ m_{ββ} ~ 12-20 meV

CUPID aims to cover the inverted hierarchy and a fraction of normal ordering

 10^{3}

10²

10

10⁻¹

 10^{-1}

 $m_{
m Beta}$ (meV)

Sensitivity of Future 0vßß Searches

What is the mass scale?

Paths to the Neutrino Mass Scale

	Cosmology	Search for 0vßß	β-decay & electron capture
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$	$m_{\beta}^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	~0.1 – 0.6 eV	~0.1 – 0.4 eV	2 eV 0.8 eV
Potential: near-term (long-term)	60 meV (15 meV)	50 – 200 meV (20 – 40 meV)	200 meV (40 – 100 meV)
Model dependence	Multi-parameter cosmological model	 Majorana nature of v, lepton number violation BSM contributions other than m(v)? Nuclear matrix elements 	Direct , only kinematics; no cancellations in incoherent sum

K. Valerius

Neutrino Mass Constraints

Cosmology measures Double beta decay measures Direct searches measure

mv measurable both by laboratory experiments and cosmology a critical test of consistency

Cosmo data already contribute to put IO "under pressure". Major improvements expected in the next decade

Mezetto

Neutrino Mass Constraints

Cosmology measures Double beta decay measures Direct searches measure

m_v measurable both by laboratory experiments and cosmology a critical test of consistency

Major improvements expected in the next decade

Direct Neutrino Mass Measurements

KATRIN

Direct Neutrino Mass Measurements

Experiment	Operations	Final Results
Los Alamos	1980–1987	<i>m</i> _β < 9.3 eV, 1991
Mainz	1997–2001	<i>m</i> _β < 2.3 eV, 2005
Troitsk	1994–2004	<i>m</i> _β < 2.05 eV, 2011
KATRIN	2019–2023*	<i>m</i> _β < 0.8 eV, 2022*

[1] Robertson *et al.*, Phys. Rev. Lett. **67** 957, 1991
[2] Kraus *et al.*, Eur. Phys. J C **40** 447, 2005.
[3] Aseev *et al.*, Phys. Rev. D **84** 112003, 2011.
[4] Aker *et al.*, Nature Physics **18** 160, 2022.
* KATRIN is not yet complete

Formaggio, de Gouvea, Robertson, Physics Reports **914** 1, 2021.

Direct Neutrino Mass Measurements

Experiment	Operations	Final Results
Los Alamos	1980–1987	<i>m</i> _β < 9.3 eV, 1991
Mainz	1997–2001	<i>m</i> _β < 2.3 eV, 2005
Troitsk	1994–2004	<i>m</i> _β < 2.05 eV, 2011
KATRIN	2019–2023*	<i>m</i> _β < 0.8 eV, 2022*

[1] Robertson *et al.*, Phys. Rev. Lett. **67** 957, 1991
[2] Kraus *et al.*, Eur. Phys. J C **40** 447, 2005.
[3] Aseev *et al.*, Phys. Rev. D **84** 112003, 2011.
[4] Aker *et al.*, Nature Physics **18** 160, 2022.
* KATRIN is not yet complete

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

B

Cyclotron Radiation Emission Spectroscopy (CRES)

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

Cyclotron Radiation Emission Spectroscopy (CRES)

- Magnetic trap (no energy change)
- Extends observation time of electron (*time)
- Knowledge of B places limit on energy resolution

$$\triangle E = \frac{\triangle B}{B} (m_e c^2 + E_{kin})$$

Axial distance

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

	24.79
cy [GHz]	24.787
Frequenc	24.784
	24.781 Sta
	24.778

Time [s]

- Mass limit: 170 eV (Bayesian) 180 eV (Frequentist)
- Count rate: 3770 events over 82 days. T₂ at 10⁻⁶ mbar
- Resolution: 54.3 eV (FWHM)
- Effective volume: 1.20 ± 0.09 mm³

First measurement of the T₂ endpoint with CRES, Placed limit on the neutrino mass of m_{β} <155 eV Karsten Heeger, Yale University

Cavity CRES in Project 8

The elements of CRES:

- Uniform magnetic field
- Magnetic trap for e-
- Antenna or cavity
- Sensitive receiver
- Tritium
- Atomic source
- Magnetic trap for atoms

e

Why use CRES to measure neutrino mass?

- Source is transparent at radio frequency. Scales with volume instead of area. (10 m³ is roughly comparable to KATRIN's 1200 m³.)
- Whole spectrum is recorded at once, not pointby-point.
- Low backgrounds obtainable.
- Excellent resolution obtainable.
- An atomic source of T (rather than molecular T₂) is compatible. Eliminates the molecular broadening.

Phase III pilot experiment

Why use CRES to measure neutrino mass?

- Source is transparent at radio frequency. Scales with volume instead of area. (10 m³ is roughly comparable to KATRIN's 1200 m³.)
- Whole spectrum is recorded at once, not pointby-point.
- Low backgrounds obtainable.
- Excellent resolution obtainable.
- An atomic source of T (rather than molecular T₂) is compatible. Eliminates the molecular broadening.

Cavity demonstrators

Magnetic beamline and 325-MHz cavity

Sensitivity goal ~ 100 - 70 meV in 1 year

Cavity demonstrators

Phase IV

With 10 of these you get to 40 meV in 3 years

Project 8 Sensitivity

Probing the neutrino mass hierarchy at 40meV

Sensitivity below inverted mass ordering

New technologies required

- atomic tritium
- CRES

Project 8 - Sterile Neutrinos

- Tritium spectrum = sum of individual spectra from each mass state
- With fine enough resolution, Project 8 could potentially resolve the individual mass-state contributions — Phase IV
- In Phase III we could have sensitivity to higher-mass sterile neutrino mass states, if they exist
- An O(eV) sterile neutrino would put a kink in the spectrum

Exploring the Invisible Universe

Advancing frontiers of nuclear, particle, and astrophysics including studies of **neutrinos**; searches for dark matter; understanding matter; exploration of quantum science and observations of the early Universe.

https://wlab.yale.edu

Developing Tools for Discoveries

Training Future Scientists

Exploring the Invisible Universe

Research Worldwide

Gran Sasso National Underground Laboratory L'Aquila, Italy CUORE, CUPID

> Daya Bay Nuclear Power Plant Guangdong, China DayaBay

Yangyang Underground Laboratory Yangyang, South Korea COSINE-100

Karoo Desert South Africa HIRAX

Summary and Outlook

Low-energy v experiments provide key insight into the nature of neutrinos

Beta decay allow direct neutrino mass measurements

Project 8 aima to reach m_v < 0.04 eV

Karsten Heeger, Yale University

Neutrinoless double beta decay

Neutrinoless double beta (0vββ) most powerful and comprehensive probe of lepton number violation ($\Delta L=2$).

Would establish lepton number violation and demonstrate that neutrinos are Majorana.

CUPID reaches half lives of 10²⁷-10²⁸ years with tonne-scale experiments

