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Function fields

Let X be a smooth projective algebraic variety over k, a field of

characteristic zero.

Basic questions:

• Classify K = k(X) up to isomorphism. In particular, when is X

rational, i.e.,

K ' k(Pn) = k(x1, . . . , xn).

• Classify finite groups

G ⊂ Aut(K/k) = BirAut(X),

up to conjugation. In particular, when does a finite group

G ⊂ Crn := BirAut(Pn)

arise from a linear action on Pn?
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Cremona group

Recall that

Cr2 = BirAut(P2)

is generated by elements in PGL3 = Aut(P2)

and the Cremona

involution

(x : y : z) 7→ (
1
x
:
1
y
:
1
z
).

Conjugacy classes of finite G ⊂ PGL3 are known.

Open problem: Classify G ⊂ PGL3 up to conjugation in Cr2.

The classification of abelian G ⊂ Cr2 has been completed in 2006

(Blanc). Even the classification of involutions in Cr3 is still open.
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Flavors of birationality

Birationality:

• varieties

• varieties with additional structures, e.g.,

• G-varieties
• varieties with logarithmic volume forms
• varieties with Azumaya algebras ...
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Flavors of rationality

• X ∼ Pn – rationality

• X× Pn ∼ Pm – stable rationality

• X ∼G Pn – G finite group, X a G-variety, action Pn is linear

• X× Pm ∼G Pn – the action Pn is linear and on Pm is trivial

• (X, ωX) ∼ (Pn, ωn), where

ωn =
dx1
x1

∧ · · · ∧ dxn
xn

is the standard volume form with logarithmic poles on Pn.
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Burnside groups

• Burnn(k) – free abelian group on isomorphism classes of finitely

generated extensions of k of transcendence degree n, i.e., birational

equivalence classes of n-dimensional algebraic varieties over k

• Burnn(G, k) – free abelian group on birational equivalence classes

of n-dimensional algebraic G-varieties over k

• Burnn(k) – free abelian group on birational equivalence classes of

n-dimensional algebraic varieties over k equipped with a volume

form with logarithmic poles

• ...
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Burnside groups

Why are these interesting?

There is a ring structure on (all variants of)

Burn(k) := ⊕n≥0 Burnn(k).

These rings have an intricate internal structure, reflecting, e.g., nontrivial

stable birationalities.
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Burnn(k) (with Chambert-Loir and Kontsevich, 2023)

Let

[X, ωX] ∈ Burn(k)

be the class of the pair (X, ωX) in this ring.

Example

In dimension 0, we have

ε = [Spec(k),−1] ∈ Burn0(k).

In dimension 1,

T := [P1, dt/t] ∈ Burn1(k).
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Burnn(k)

Let X be a model of a function field K = k(X) such that the polar divisor

of ωX is

D = ∪α∈ADα,

a divisor with normal crossings.

For each A ⊆ A, let DA := ∩α∈ADα

and ωA be the iterated residue of ωX along DA.
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Burnn(k)

There is a (well-defined) derivation:

∂ : Burnn(k) → Burnn−1(k),

given by

∂([X, ω]) =
∑

∅̸=A⊂A

(−1)Card(A)−1[DA, ωA] · TCard(A)−1,

which satisfies

∂ ◦ ∂ = 0.

This was inspired by polar homology of Khesin-Rosly (2003), except that

• we record contributions from strata of all codimensions, rather than

only from those of codimension one,

• we record birational types of strata, rather than the strata themselves.
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Burnn(k)

Moreover,

∂(a · b) = εn · ∂(a) · b+ a · ∂(b)− T · ∂(a) · ∂(b),

when a ∈ Burnm(k) and b ∈ Burnn(k).
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Applications: invariants of birational maps

Now consider Burn(k) – free abelian group on birational equivalence

classes of algebraic varieties over k.

Let

φ : X 99K Y

be a birational map between smooth projective varieties over k. Let

Ex(φ) and Ex(φ−1) be the sets of divisorial components of the

exceptional locus of φ, respectively φ−1. Put

c(φ) :=
∑

E∈Ex(ϕ−1)

[k(E)]−
∑

D∈Ex(ϕ)
[k(D)].

11
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Applications: invariants of birational maps

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of

n-dimensional varieties over k,

c(φ ◦ ψ) := c(φ) + c(ψ) ∈ Burnn−1(k).

This yields a homomorphism:

c : BirAut(X) → Burnn−1(k).

Corollary: Crn is not generated by regularizable maps, for n ≥ 4,

(disproving a conjecture from 2004). A map φ ∈ Crn is regularizable if

there exists a birational α : Pn 99K X such that α ◦ φ ◦ α−1 ∈ Aut(X).
Proof: It suffices to present one nonregularizable map; done by

Hassett-Lai (2018).
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Applications: invariants of birational maps

This formalism extends to the equivariant, orbifold, and logarithmic

volume forms context (Kresch-T. 2022, Chambert-Loir–Kontsevich-T.

2023).

This yields new structural information about the Cremona group

Crn(k).
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Applications: Failure of (stable) rationality via specialization

• Voisin (2013): integral decomposition of ∆ (Bloch-Srinivas)

• Colliot-Thélène–Pirutka (2015): universal CH0-triviality

• Nicaise–Shinder (2017): K0(Vark)/L, char(k) = 0

• Kontsevich–T. (2017): Burn(k), char(k) = 0

These developments led to a wealth of new results in birational geometry,

for the following reasons:

• new, computable, obstructions to (stable) rationality arise in singular

fibers,

• one can use general position arguments to establish rationality.
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Specialization

Let o be a DVR, k its residue field and K the function field. Let X be a

smooth projective variety over K of relative dimension n and X a proper

model over o, with special fiber ∪α∈ADα.

(For some of the

constructions, one may ignore multiplicities.)

Put

ρ(XK) :=
∑
A⊆A

(−1)Card(A)−1[k(DA)]L
Card(A)−1.

Theorem (Kontsevich-T.)

This gives a well-defined homomorphism of abelian groups

ρ : Burnn(K) → Burnn(k).

This is essentially the same formula as the one for

∂ : Burnn(k) → Burnn−1(k).
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Specialization

Theorem (Kontsevich-T.)

Rationality specializes in smooth families.

Similar specialization results hold for

• equivariant birational types (Kresch-T. 2022)

• birational types of varieties with logarithmic volume forms

(Chambert-Loir, Kontsevich, T. 2023)

• birational types of orbifolds (Kresch-T. 2023)
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Equivariant Burnside groups (Kresch-T. 2020)

Let G be a finite group. We had introduced

Burnn(G, k)

as the free abelian group on birational equivalence classes of algebraic

G-varieties over k.

To distinguish such classes, we would like to have an analog of ∂,

extracting invariants from information about subvarieties.

17
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Basics

Problem: How to distinguish equivariant birational types of linear

actions?

How to distinguish linear actions from nonlinear actions?

Basic facts:

• If X is rational and G is cyclic, then XG 6= ∅.
• If Y 99K X is a G-birational map between smooth projective

G-varieties, and G is abelian, then

YG 6= ∅ ⇔ XG 6= ∅.
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Basic facts

More precisely, let X be smooth projective of dimension n, G abelian,

and let p ∈ XG. Let {a1, . . . , an} be the characters (weights) of G in the

tangent space to X at p.

Let

det(a1, . . . , an) = a1 ∧ . . . ∧ an ∈ ∧n(G∨)

be the determinant.

Reichstein-Youssin (2002)

Let Y → X be a G-equivariant blowup. Then Y contains a point q ∈ YG

(in the preimage of p) with weights {b1, . . . , bn} in the tangent space,

and such that

det(b1, . . . , bn) = ± det(a1, . . . , an),

i.e., this is a equivariant birational invariant.
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Reichstein–Youssin (2002)

Let V and W be n-dimensional faithful representations of an abelian

group G of rank r ≤ n, and

a1, . . . , an, respectively b1, . . . , bn,

the characters of G appearing in V, respectively W. Then V and W are

G-equivariantly birational if and only if

a1 ∧ · · · ∧ an = ± b1 ∧ · · · ∧ bn.

(This condition is meaningful only when r = n.)

20



Reichstein–Youssin (2002)

• Thus, cyclic linear actions on Pn, with n ≥ 2, of the same order, are

equivariantly birational.

• Note that any two faithful representations of G are equivariantly

stably birational.
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First examples: P2

Consider an action of Z/pZ on X = P2 given by

(x : y : z) 7→ (ζax : ζby : z),

ζ = ζp, a, b ∈ Z/pZ, gcd(a, b, p) = 1, a 6= b.

Fixed points are

(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0).

Record the weights in the tangent space at these points as a formal sum:

β(X) = [a, b] + [a− b,−b] + [b− a,−a].
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First examples: P2

All such actions are equivalent. Declare β(X) = 0, i.e.,

[a, b] = −[b− a,−a]− [a− b,−b]

Allowing

[a, b] = −[a,−b]

we find

[a, b] = [a, b− a] + [a− b, b].

23



Birational types B2(Z/pZ)

Generators: [a, b], a, b ∈ Z/pZ, gcd(a, b, p) = 1

Relations:

• [a, b] = [b, a]

• [a, b] = [a, b− a] + [a− b, b] if a 6= b

• [a, a] = [a, 0]

For p ≥ 5, the Q-rank of B2(Z/pZ) equals

p2 − 1
24

+ 1 = dim(H1(X1(p),Q))
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Birational types

Let G be a finite abelian group, and A = G∨ its group of characters.

Let X be smooth projective, of dimension n, with regular G-action.

Consider XG = t Fα and record eigenvalues of G

[a1,α, . . . , an,α]

in the tangent space TxαX, at some xα ∈ Fα. Put

β(X) :=
∑
α

[a1,α, . . . , an,α]

Here, we keep no information about Fα.
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Birational types

Consider the free abelian group

Sn(G)

spanned by unordered tupels

[a1, . . . , an], ai ∈ A,

subject to condition:

(G)
∑

i Zai = A,

We get a map
{ G-varieties } → Sn(G)

X 7→ β(X)

26
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Birational types Bn(G)

Let Y → X be a G-equivariant blowup and impose relations:

β(Y)− β(X) = 0.

All such relations can be encoded in a compact form: Consider the

quotient

Sn(G) → Bn(G),

by relations

(B) for all a1, a2, b3, . . . , bn ∈ A we have

[a1, a2, b3, . . . bn] =

[a1 − a2, a2, b3, . . . , bn] + [a1, a2 − a1, b3, . . . , bn] if a1 6= a2,

[a1, 0, b3, . . . , bn] if a1 = a2.

27
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Birational types

Kontsevich-T. 2019

The class

β(X) ∈ Bn(G)

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization (Abramovich, Karu, Matsuki,

Włodarczyk)

28
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Birational types

For G = Z/pZ and n = 2, we get
(p
2

)
linear equations in the same

number of variables.

rkQ(B2(G)) =
p2 − 1
24

+ 1

For n ≥ 3 the systems of equations are highly overdetermined.

rkQ(B3(G))
?
=

(p− 5)(p− 7)
24

=
p2 − 1
24

+ 1− p− 1
2

Jumps at

p = 43, 59, 67, 83, ...

These are interesting groups!
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Birational types

Variant: introduce the quotient

µ− : Bn(G) → B−
n (G)

by an additional relation

[a1, a2, . . . , an] = −[−a1, a2, . . . , an].

The class of Pn, n ≥ 2, with linear action of G := Z/NZ is

• torsion in Bn(G) and

• trivial in B−
n (G).

30
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Cyclic action on Pn, n ≥ 2

Since all such actions are birationally equivalent, it suffices to consider

one, with G = Z/NZ acting by

(x0, . . . , xn) 7→ (ζNx0, x1, . . . , xn).

This action fixes the point (1, 0, . . . , 0) and the hyperplane x0 = 0. We

have

β(Pn) = [1, 0, . . . , 0] + [0,−1, . . . ,−1] = [1, 0, . . .] + [−1, 0, . . .].
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[1, 0] + [−1, 0] ∈ B2(Z/pZ)

For a, b 6= 0, we have

[a, b] = [a− b, b] + [a, b− a]

[a− b, a] = [−b, a] + [a− b, b].

Taking the difference,

[a, b] + [−b, a] = [a, b− a] + [a, a− b].

If b− a = a, we stop and record:

[a, b] + [−b, a] = [a, a] + [a,−a] = [a, a] = [a, 0].

If b− a 6= a, we iterate until a = b−ma, i.e., b = (m+ 1)a, where it

stops. This is solvable mod p.

32
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[1, 0] + [−1, 0] ∈ B2(Z/pZ)

We record:

[a, b] + [−b, a] = [a, a] + [a,−a] = [a, 0]

Replacing a by −a, and requiring that b 6= ±a,

[−a, b] + [−b,−a] = [−a, 0],

adding these:

[a, b] + [−b, a] + [−a, b] + [−b,−a] = [a, 0] + [−a, 0].

These are symmetric in a and b, thus

[a, b] + [−b, a] + [−a, b] + [−b,−a] = [b, 0] + [−b, 0].

In particular,

[a, 0] + [−a, 0] = [b, 0] + [−b, 0] =: δ.
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[1, 0] + [−1, 0] ∈ B2(Z/pZ)

Consider the sum

S :=
∑

a,b, ̸=0,a̸=±b

[a, b],

We have

2S :=
∑
b

∑
a ̸=±b

[a, b]+[−a, b] = (p−3)·
∑
b

[b, 0] =
(p− 3) · (p− 1)

2
·δ,

Apply the blowup relation to each term in S:

S =
∑
b

∑
a ̸=±b

[a− b, b] + [a, b− a].

34



[1, 0] + [−1, 0] ∈ B2(Z/pZ)

Consider the sum

S :=
∑

a,b, ̸=0,a̸=±b

[a, b],

We have

2S :=
∑
b

∑
a ̸=±b

[a, b]+[−a, b] = (p−3)·
∑
b

[b, 0] =
(p− 3) · (p− 1)

2
·δ,

Apply the blowup relation to each term in S:

S =
∑
b

∑
a ̸=±b

[a− b, b] + [a, b− a].

34



[1, 0] + [−1, 0] ∈ B2(Z/pZ)

Relate the two sums to S:

∑
b,a̸=±b [a− b, b] = S+

∑
b ([b, b]− [−2b, b])

∑
b,a̸=±b [a, b− a] = S+

∑
a ([a, a]− [−2a, a]).

The second sum equals the first, with a and b switched. Thus

S = 2S+ 2
∑
b

[b, b]−
∑
b

([−2b, b] + [2b,−b]).
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[1, 0] + [−1, 0] ∈ B2(Z/pZ)

Note that

0 = [−b, b] = [−2b, b] + [−b, 2b]

so that the last sum vanishes.

As before,∑
b

[b, b] =
∑
b

[b, 0] =
(p− 1)

2
· δ.

We find that

0 = S+ (p− 1)δ =
(p− 3)(p− 1)

4
· δ + (p− 1) · δ.

It follows that

0 =
(p− 1)(p+ 1)

4
· δ,

thus δ is torsion.
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Birational types and arithmetic groups

B−
n (G)⊗Q ' H

n(n−1)
2 (Γ(G, n), or⊗n

n ) = H0(Γ(G, n), Stn ⊗ orn)

where

•

Γ(G, n) ⊂ GLn(Z)

is a congruence subgroup,

• or is the orientation (the sign of the determinant), and

• Stn is the Steinberg representation.

37



Structure

Let G be a nontrivial abelian group. We work ⊗Q and consider

Bn(G)⊗Q in both variables, n and G.

Consider short exact sequences of finite abelian groups

0 → G′ → G → G′′ → 0

and the corresponding short exact sequences of character groups

0 → A′′ → A → A′ → 0.

Let

n = n′ + n′′, n′, n′′ ≥ 1.
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Multiplication and co-multiplication

We define a Q-bilinear multiplication map

∇ : Bn′(G
′)⊗ Bn′′(G

′′) → Bn′+n′′(G),

given by

[a′1, . . . , a
′
n′ ]⊗ [a′′1 , . . . , a

′′
n′′ ] 7→

∑
[a1, . . . , an′ , a

′′
1 , . . . , a

′′
n′′ ]

the sum over all lifts ai ∈ A of a′i ∈ A′, and a′′i are understood as

elements of A, via the embedding A′′ ↪→ A.

We also have

∇− : B−
n′(G

′)⊗ B−
n′′(G

′′) → B−
n′+n′′(G).
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Multiplication and co-multiplication

There are also co-multiplication maps

∆ : Bn′+n′′(G) → Bn′(G
′)⊗ B−

n′′(G
′′),

∆− : B−
n′+n′′(G) → B−

n′(G
′)⊗ B−

n′′(G
′′).

where G′′ is nontrivial.
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Modular types: structure

B−
n,prim(G) = Ker

B−
n (G) →

⊕
n′+n′′=n
n′,n′′≥1
0⊆G′⊊G

B−
n′(G

′)⊗ B−
n′′(G/G

′)

 ,

We have

B1(G) = B1,prim(G)

for all G; when G = 1 = Z/1Z we have

B1(1) = Q, Bn(1) = Bn,prim(1) = 0, for n ≥ 2.
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Modular types: structure

Let G be a cyclic group. Then Bn(G)⊗Q is isomorphic to⊕
r

⊕
n1+···+nr=n
G• of lengths r

Bn1,prim(gr1(G•))⊗ · · · ⊗ B−
nr,prim(grr(G•))⊗Q,

where G• is a flag of subgroups of type

0 = G≤0 ⊆ G≤1 ⊊ . . . ⊊ G≤r = G, r ≥ 1,

with strict inclusions, except in the first step.
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Modular types: structure

•

dimB2,prim(Z/NZ)⊗Q = dimB−
2,prim(Z/NZ)⊗Q

and is equal to the dimension of the space of cusp forms of weight 2

for Γ1(N),

•

dimB3,prim(Z/NZ)⊗Q = dimB−
3,prim(Z/NZ)⊗Q

and is equal to the number of certain cuspidal automorphic

representations for a congruence subgroup of GL3(Z),

Computer experiments suggest that, for all N ≥ 1:

•

Bn,prim(Z/NZ)⊗Q = B−
n,prim(Z/NZ)⊗Q = 0, n ≥ 4,
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Modular types: structure

Thus we can compute the Q-ranks of Bn(Z/NZ) using:

• n = 1: Euler function φ(N)/2

• n = 2: g(X1(N))

• n = 3: mysterious dimensions

N 43 51 52 59 63 . . . 208 211 239

dim 1 1 1 1 2 . . . 54 7 3

• n = 4: no primitives, with N ≤ 242
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Modular types

• G a finite abelian group, A = G∨

• L ' Zn,

• χ ∈ L⊗ A such that the induced homomorphism

L∨ → A

is a surjection,

• a basic simplicial cone, i.e., a strictly convex cone

Λ ∈ LR

spanned by a basis of L; Λ ' Rn
≥0, for L = Zn ⊂ Rn.
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Modular types

For every equivalence class of triples

(L, χ,Λ),

define

ψ(L, χ,Λ)

as follows: choose a basis e1, . . . , en of L, spanning Λ, express

χ =
n∑

i=1

ei ⊗ ai, (1)

and put

ψ(L, χ,Λ) = [a1, . . . , an] ∈ Bn(G).

The ambiguity in the choices corresponds to the Sn-action on the basis

elements. The blowup relation corresponds to scissors relations on

cones. This yields multiplication, co-multiplication, Hecke operators, etc.
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Equivariant Burnside group (Kresch-T. 2020)

We work over a field k of characteristic zero (with enough roots of 1). Let

Burnn(G) = Burnn,k(G)

be the Z-module, generated by symbols

(H, Y ýK, β),

where

• H ⊆ G is an abelian subgroup, Y ⊆ ZG(H)/H,

• K = k(F), with generically free Y-action, trdegk(K) = d ≤ n,

• β = (b1, . . . , bn−d), a sequence, up to order, of nonzero elements

of H∨, that generate H∨.
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Equivariant Burnside group: relations

The symbols are subject to conjugation and blowup relations:

(C): (H, Y ýK, β) = (H′, Y′ ýK, β′), when

H′ = gHg−1, Y′ = · · · , with g ∈ G,

and β and β′ are related by conjugation by g.

(B1): (H, Y ýK, β) = 0 when b1 + b2 = 0.
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Equivariant Burnside group: relations

(B2): (H, Y ýK, β) = Θ1 +Θ2, where

Θ1 =

0, if b1 = b2,

(H, Y ýK, β1) + (H, Y ýK, β2), otherwise,

with

β1 := (b1, b2 − b1, b3, . . . , bn−d), β2 := (b1 − b2, b2, b3, . . . , bn−d),

and

Θ2 =

0, if bi ∈ 〈b1 − b2〉 for some i,

(H, Y ýK(t), β̄), otherwise,

with

H∨
:= H∨/〈b1 − b2〉, β̄ := (b̄2, b̄3, . . . , b̄n−d), b̄i ∈ H∨

.
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Equivariant Burnside group: relations

Model case: Blowing up an isolated point (with abelian stabilizer) on a

surface.

It will explain the action of Y on K = K(t).
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Equivariant Burnside group

The class

[X ý G] ∈ Burnn(G)

of a G-variety is computed on a standard model (X,D):

• X is smooth projective, D a normal crossings divisor,

• G acts freely on U := X \ D,

• for every g ∈ G and every irreducible component D, either

g(D) = D or g(D) ∩ D = ∅.
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Equivariant Burnside group

Passing to a standard model X, define:

[X ý G] :=
∑
H

∑
F

(H, Y ýk(F), βF(X)) ∈ Burnn(G),

where the sum is over (conjugacy classes of) abelian subgroups H ⊆ G,

and all F ⊂ X with generic stabilizer H.

The symbols record

• the generic stabilizer H,

• the induced Y ⊆ ZG(H)/H-action on the function field of the

subvariety F ⊂ X, with generic stabilizer H,

• the (generic) eigenvalues of H in the normal bundle along F.
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Equivariant Burnside group

Kresch–T. (2020)

The class

[X ý G] ∈ Burnn(G)

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization.
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Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the

function fields of strata

; there is a distinguished subgroup

Burninc
n (G) ⊂ Burnn(G),

generated by incompressible divisor symbols, i.e.,

s = (H, Y ýK, β), trdegk(K) = n− 1,

H is a nontrivial cyclic group and β = (b), a single character, generating

H∨, and such that s cannot arise from Θ2 in relation (B2).
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Burnside groups: incompressibles

The subgroup

Burninc
n (G) ⊆ Burnn(G),

is a direct summand, freely generated by incompressible divisor symbols

(modulo conjugation).

n = 1 Every divisor symbol in incompressible.

n = 2 A divisor symbol

(H, Y ýK, β), β = (b),

is compressible if and only if Y is cyclic and K = k(t).
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Applications: Birationality of linear actions on P2

Let G = Cn ×S3, and χ be a primitive character of Cn. We have a

G-action on

P2 = P(I ⊕ V⊗ χ),

where V is the standard 2-dimensional representation of S3 and I is the
trivial representation of G.

Then

[X ý G]inc = (Cn,S3 ýk(P1), (χ)) + (Cn,S3 ýk(P1), (−χ)).

If χ 6= ±χ′ then the corresponding actions are not G-birational.

Birational rigidity techniques do not work well in this case, since XG 6= ∅.
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Applications: quadric threefolds

Consider X ⊂ P4 given by

x21 + · · ·+ x25 = 0,

with an action of G ⊂ W(D5), permuting the variables and changing

signs.

The action is linearizable if XG 6= ∅. Linearizable actions of abelian

groups have fixed points; thus we assume that

• XH 6= ∅, for all abelian H ⊆ G, and

• XG = ∅.

Then G is one of the following...
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Applications: quadric threefolds
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Applications: quadric threefolds

Theorem (Cheltsov-Sarikyan-Zhuang, 2023)

Let X ⊂ P4 be a smooth quadric over k = C:

x21 + · · ·+ x25 = 0,

with the S5-action given by permutations of variables. This action is

not linearizable.
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Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider X4 ⊂ P5 given by

∑
1≤i<j<k<l≤6

xixjxkxl =
6∑

i=1

xi = 0,

it carries an action of S6.

Then the action of any G containing

H := 〈(12)〉

is not linearizable. Indeed, the fixed locus of H is a quartic with 12

singular points, a K3 surface S. The symbol

(H, Y ýk(X), (1))

is incompressible (for any Y). Such symbols do not arise for linear actions.
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Applications: cubic fourfolds

Kresch–Hassett–T. 2020

There exists a rational cubic 4-fold with a nonlinearizable action of

G = C6.

Böhning–von Bothmer–T. 2023

There exists a rational cubic 4-folds with nonlinearizable but stably

linearizable action of F7.
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Applications: Birational characters for (projective) linear actions

Theorem (Kresch-T. 2022)

Explicit algorithm to compute

[P(V) ý G] ∈ Burnn(G)

for (projective) linear actions.

Based on an equivariant version of De-Concini–Procesi compactifications

of subspace arrangements.

This has been implemented in Magma by Kaiqi Yang and Zhijia Zhang.
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Applications: Birational characters for (projective) linear actions

There are two projective linear actions of G = S6 on P3, with classes

[P3 ý G] = (C1,S6 ýk(P3), ())

+ (C2,A4 ýk(P2), (1)) + (C′
2,A4 ýk(P2), (1))

+ (C′′
2 ,C

2
2 ýk(P2), (1)) + (C3,S3 ýk(P2), (1))

+ (C2
3, 1 ýk, ((1, 1), (1, 2), (2, 0))),

respectively,

[P3 ý G] = (C1,S6 ýk(P3), ())

+ (C2,A4 ýk(P2), (1)) + (C′
2,A4 ýk(P2), (1))

+ (C′′
2 ,C

2
2 ýk(P2), (1)) + (C′

3,S3 ýk(P2), (2))

+ (C2
3, 1 ýk, ((0, 2), (2, 0), (2, 2))).

These differ in Burn3(G); thus, the actions are not birational.
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Equivariant Burnside group: structure

Let us examine the crucial relation

(B2): (H, Y ýK, β) =

(H, Y ýK, β1) + (H, Y ýK, β2) + (H, Y ýK(t), β̄).

Observation: This relation preserves various geometric properties of the

function field K, e.g.,

• dimensions of MRC quotients

• unramified cohomology, H1(Y,Pic(D)),
• other stable birational invariants.

This means that the Burnside group admits direct sum decompositions

Burnn(G) = ⊕ . . .

The incompressibles we discussed give just one of the direct summands.
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Summary

• Ideas from motivic integration led to the introduction of new

invariants in birational geometry,

• Burnside groups have a rich algebraic structure, to be investigated,

• There are now many examples of nonbirational actions of finite

groups; and we continue to explore the range of applicability of

these new invariants.
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