New invariants in birational geometry

with Chambert-Loir, Cheltsov, Hassett, Kontsevich, Kresch, K. Yang, Zh. Zhang

Function fields

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Function fields

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

- Classify $K=k(X)$ up to isomorphism.

Function fields

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

- Classify $K=k(X)$ up to isomorphism. In particular, when is X rational, i.e.,

$$
K \simeq k\left(\mathbb{P}^{n}\right)=k\left(x_{1}, \ldots, x_{n}\right)
$$

Function fields

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

- Classify $K=k(X)$ up to isomorphism. In particular, when is X rational, i.e.,

$$
K \simeq k\left(\mathbb{P}^{n}\right)=k\left(x_{1}, \ldots, x_{n}\right)
$$

- Classify finite groups

$$
G \subset \operatorname{Aut}(K / k)=\operatorname{Bir} \operatorname{Aut}(X)
$$

up to conjugation.

Function fields

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

- Classify $K=k(X)$ up to isomorphism. In particular, when is X rational, i.e.,

$$
K \simeq k\left(\mathbb{P}^{n}\right)=k\left(x_{1}, \ldots, x_{n}\right)
$$

- Classify finite groups

$$
G \subset \operatorname{Aut}(K / k)=\operatorname{Bir} \operatorname{Aut}(X)
$$

up to conjugation. In particular, when does a finite group

$$
\mathrm{G} \subset \mathrm{Cr}_{n}:=\operatorname{BirAut}\left(\mathbb{P}^{n}\right)
$$

arise from a linear action on \mathbb{P}^{n} ?

Cremona group

Recall that

$$
\mathrm{Cr}_{2}=\operatorname{BirAut}\left(\mathbb{P}^{2}\right)
$$

is generated by elements in $\mathrm{PGL}_{3}=\operatorname{Aut}\left(\mathbb{P}^{2}\right)$

Cremona group

Recall that

$$
\mathrm{Cr}_{2}=\operatorname{BirAut}\left(\mathbb{P}^{2}\right)
$$

is generated by elements in $\mathrm{PGL}_{3}=\operatorname{Aut}\left(\mathbb{P}^{2}\right)$ and the Cremona involution

$$
(x: y: z) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)
$$

Cremona group

Recall that

$$
\mathrm{Cr}_{2}=\operatorname{BirAut}\left(\mathbb{P}^{2}\right)
$$

is generated by elements in $\mathrm{PGL}_{3}=\operatorname{Aut}\left(\mathbb{P}^{2}\right)$ and the Cremona involution

$$
(x: y: z) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)
$$

Conjugacy classes of finite $\mathrm{G} \subset \mathrm{PGL}_{3}$ are known.

Cremona group

Recall that

$$
\mathrm{Cr}_{2}=\operatorname{BirAut}\left(\mathbb{P}^{2}\right)
$$

is generated by elements in $\mathrm{PGL}_{3}=\operatorname{Aut}\left(\mathbb{P}^{2}\right)$ and the Cremona involution

$$
(x: y: z) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)
$$

Conjugacy classes of finite $\mathrm{G} \subset \mathrm{PGL}_{3}$ are known.

Open problem: Classify $G \subset \mathrm{PGL}_{3}$ up to conjugation in Cr_{2}.

Cremona group

Recall that

$$
\mathrm{Cr}_{2}=\operatorname{BirAut}\left(\mathbb{P}^{2}\right)
$$

is generated by elements in $\mathrm{PGL}_{3}=\operatorname{Aut}\left(\mathbb{P}^{2}\right)$ and the Cremona involution

$$
(x: y: z) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)
$$

Conjugacy classes of finite $\mathrm{G} \subset \mathrm{PGL}_{3}$ are known.

Open problem: Classify $\mathrm{G} \subset \mathrm{PGL}_{3}$ up to conjugation in Cr_{2}.
The classification of abelian $\mathrm{G} \subset \mathrm{Cr}_{2}$ has been completed in 2006 (Blanc).

Cremona group

Recall that

$$
\mathrm{Cr}_{2}=\operatorname{BirAut}\left(\mathbb{P}^{2}\right)
$$

is generated by elements in $\mathrm{PGL}_{3}=\operatorname{Aut}\left(\mathbb{P}^{2}\right)$ and the Cremona involution

$$
(x: y: z) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)
$$

Conjugacy classes of finite $\mathrm{G} \subset \mathrm{PGL}_{3}$ are known.

Open problem: Classify $\mathrm{G} \subset \mathrm{PGL}_{3}$ up to conjugation in Cr_{2}.
The classification of abelian $\mathrm{G} \subset \mathrm{Cr}_{2}$ has been completed in 2006 (Blanc). Even the classification of involutions in Cr_{3} is still open.

Flavors of birationality

Birationality:

- varieties
- varieties with additional structures, e.g.,
- G-varieties
- varieties with logarithmic volume forms
- varieties with Azumaya algebras ...

Flavors of rationality

- $X \sim \mathbb{P}^{n}$ - rationality

Flavors of rationality

- $X \sim \mathbb{P}^{n}$ - rationality
- $X \times \mathbb{P}^{n} \sim \mathbb{P}^{m}$ - stable rationality

Flavors of rationality

- $X \sim \mathbb{P}^{n}$ - rationality
- $X \times \mathbb{P}^{n} \sim \mathbb{P}^{m}$ - stable rationality
- $X \sim_{G} \mathbb{P}^{n}-G$ finite group, X a G-variety, action \mathbb{P}^{n} is linear

Flavors of rationality

- $X \sim \mathbb{P}^{n}$ - rationality
- $X \times \mathbb{P}^{n} \sim \mathbb{P}^{m}$ - stable rationality
- $X \sim_{G} \mathbb{P}^{n}$ - G finite group, X a G-variety, action \mathbb{P}^{n} is linear
- $X \times \mathbb{P}^{m} \sim_{G} \mathbb{P}^{n}$ - the action \mathbb{P}^{n} is linear and on \mathbb{P}^{m} is trivial

Flavors of rationality

- $X \sim \mathbb{P}^{n}$ - rationality
- $X \times \mathbb{P}^{n} \sim \mathbb{P}^{m}$ - stable rationality
- $X \sim_{G} \mathbb{P}^{n}$ - G finite group, X a G-variety, action \mathbb{P}^{n} is linear
- $X \times \mathbb{P}^{m} \sim_{G} \mathbb{P}^{n}$ - the action \mathbb{P}^{n} is linear and on \mathbb{P}^{m} is trivial
- $\left(X, \omega_{X}\right) \sim\left(\mathbb{P}^{n}, \omega_{n}\right)$, where

$$
\omega_{n}=\frac{d x_{1}}{x_{1}} \wedge \cdots \wedge \frac{d x_{n}}{x_{n}}
$$

is the standard volume form with logarithmic poles on \mathbb{P}^{n}.

- $\operatorname{Burn}_{n}(k)$ - free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k
- $\operatorname{Burn}_{n}(k)$ - free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k
- $\operatorname{Burn}_{n}(G, k)$ - free abelian group on birational equivalence classes of n-dimensional algebraic G-varieties over k

Burnside groups

- $\operatorname{Burn}_{n}(k)$ - free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k
- $\operatorname{Burn}_{n}(G, k)$ - free abelian group on birational equivalence classes of n-dimensional algebraic G-varieties over k
- $\operatorname{Burn}_{n}(k)$ - free abelian group on birational equivalence classes of n-dimensional algebraic varieties over k equipped with a volume form with logarithmic poles

Burnside groups

- $\operatorname{Burn}_{n}(k)$ - free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k
- $\operatorname{Burn}_{n}(G, k)$ - free abelian group on birational equivalence classes of n-dimensional algebraic G-varieties over k
- $\operatorname{Burn}_{n}(k)$ - free abelian group on birational equivalence classes of n-dimensional algebraic varieties over k equipped with a volume form with logarithmic poles
- ...

Why are these interesting?

Why are these interesting?

There is a ring structure on (all variants of)

$$
\operatorname{Burn}(k):=\oplus_{n \geq 0} \operatorname{Burn}_{n}(k) .
$$

Why are these interesting?

There is a ring structure on (all variants of)

$$
\operatorname{Burn}(k):=\oplus_{n \geq 0} \operatorname{Burn}_{n}(k) .
$$

These rings have an intricate internal structure, reflecting, e.g., nontrivial stable birationalities.

Let

$$
\left[X, \omega_{X}\right] \in \operatorname{Burn}(k)
$$

be the class of the pair $\left(X, \omega_{X}\right)$ in this ring.

Let

$$
\left[X, \omega_{X}\right] \in \operatorname{Burn}(k)
$$

be the class of the pair $\left(X, \omega_{X}\right)$ in this ring.

Example

In dimension 0, we have

$$
\epsilon=[\operatorname{Spec}(k),-1] \in \operatorname{Burn}_{0}(k) .
$$

Let

$$
\left[X, \omega_{X}\right] \in \operatorname{Burn}(k)
$$

be the class of the pair $\left(X, \omega_{X}\right)$ in this ring.

Example

In dimension 0, we have

$$
\epsilon=[\operatorname{Spec}(k),-1] \in \operatorname{Burn}_{0}(k) .
$$

In dimension 1,

$$
\mathbf{T}:=\left[\mathbb{P}^{1}, \mathrm{~d} t / t\right] \in \operatorname{Burn}_{1}(k) .
$$

Let X be a model of a function field $K=k(X)$ such that the polar divisor of ω_{X} is

$$
D=\cup_{\alpha \in \mathcal{A}} D_{\alpha}
$$

a divisor with normal crossings.

Let X be a model of a function field $K=k(X)$ such that the polar divisor of ω_{X} is

$$
D=\cup_{\alpha \in \mathcal{A}} D_{\alpha}
$$

a divisor with normal crossings. For each $A \subseteq \mathcal{A}$, let $D_{A}:=\cap_{\alpha \in A} D_{\alpha}$ and ω_{A} be the iterated residue of ω_{X} along D_{A}.

There is a (well-defined) derivation:

$$
\partial: \operatorname{Burn}_{n}(k) \rightarrow \operatorname{Burn}_{n-1}(k),
$$

given by

$$
\partial([X, \omega])=\sum_{\emptyset \neq A \subset \mathscr{A}}(-1)^{\operatorname{Card}(A)-1}\left[D_{A}, \omega_{A}\right] \cdot \mathbf{T}^{\operatorname{Card}(A)-1}
$$

There is a (well-defined) derivation:

$$
\partial: \operatorname{Burn}_{n}(k) \rightarrow \operatorname{Burn}_{n-1}(k),
$$

given by

$$
\partial([X, \omega])=\sum_{\emptyset \neq A \subset \mathscr{A}}(-1)^{\operatorname{Card}(A)-1}\left[D_{A}, \omega_{A}\right] \cdot \mathbf{T}^{\operatorname{Card}(A)-1}
$$

which satisfies

$$
\partial \circ \partial=0 .
$$

$\operatorname{Burn}_{n}(k)$

There is a (well-defined) derivation:

$$
\partial: \operatorname{Burn}_{n}(k) \rightarrow \operatorname{Burn}_{n-1}(k),
$$

given by

$$
\partial([X, \omega])=\sum_{\emptyset \neq A \subset \mathscr{A}}(-1)^{\operatorname{Card}(A)-1}\left[D_{A}, \omega_{A}\right] \cdot \mathbf{T}^{\operatorname{Card}(A)-1}
$$

which satisfies

$$
\partial \circ \partial=0 .
$$

This was inspired by polar homology of Khesin-Rosly (2003), except that

- we record contributions from strata of all codimensions, rather than only from those of codimension one,

$\operatorname{Burn}_{n}(k)$

There is a (well-defined) derivation:

$$
\partial: \operatorname{Burn}_{n}(k) \rightarrow \operatorname{Burn}_{n-1}(k),
$$

given by

$$
\partial([X, \omega])=\sum_{\emptyset \neq A \subset \mathscr{A}}(-1)^{\operatorname{Card}(A)-1}\left[D_{A}, \omega_{A}\right] \cdot \mathbf{T}^{\operatorname{Card}(A)-1},
$$

which satisfies

$$
\partial \circ \partial=0 .
$$

This was inspired by polar homology of Khesin-Rosly (2003), except that

- we record contributions from strata of all codimensions, rather than only from those of codimension one,
- we record birational types of strata, rather than the strata themselves.

Moreover,

$$
\partial(a \cdot b)=\epsilon^{n} \cdot \partial(a) \cdot b+a \cdot \partial(b)-\mathbf{T} \cdot \partial(a) \cdot \partial(b)
$$

when $a \in \operatorname{Burn}_{m}(k)$ and $b \in \operatorname{Burn}_{n}(k)$.

Applications: invariants of birational maps

Now consider Burn (k) - free abelian group on birational equivalence classes of algebraic varieties over k.

Applications: invariants of birational maps

Now consider Burn (k) - free abelian group on birational equivalence classes of algebraic varieties over k.

Let

$$
\phi: X \rightarrow Y
$$

be a birational map between smooth projective varieties over k.

Applications: invariants of birational maps

Now consider Burn (k) - free abelian group on birational equivalence classes of algebraic varieties over k.

Let

$$
\phi: X \rightarrow Y
$$

be a birational map between smooth projective varieties over k. Let $\operatorname{Ex}(\phi)$ and $\operatorname{Ex}\left(\phi^{-1}\right)$ be the sets of divisorial components of the exceptional locus of ϕ, respectively ϕ^{-1}.

Applications: invariants of birational maps

Now consider Burn (k) - free abelian group on birational equivalence classes of algebraic varieties over k.

Let

$$
\phi: X \rightarrow Y
$$

be a birational map between smooth projective varieties over k. Let $\operatorname{Ex}(\phi)$ and $\operatorname{Ex}\left(\phi^{-1}\right)$ be the sets of divisorial components of the exceptional locus of ϕ, respectively ϕ^{-1}. Put

$$
c(\phi):=\sum_{E \in \operatorname{Ex}\left(\phi^{-1}\right)}[k(E)]-\sum_{D \in \operatorname{Ex}(\phi)}[k(D)] .
$$

Applications: invariants of birational maps

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of n-dimensional varieties over k,

$$
c(\phi \circ \psi):=c(\phi)+c(\psi) \in \operatorname{Burn}_{n-1}(k) .
$$

Applications: invariants of birational maps

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of n-dimensional varieties over k,

$$
c(\phi \circ \psi):=c(\phi)+c(\psi) \in \operatorname{Burn}_{n-1}(k) .
$$

This yields a homomorphism:

$$
c: \operatorname{BirAut}(X) \rightarrow \operatorname{Burn}_{n-1}(k)
$$

Applications: invariants of birational maps

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of n-dimensional varieties over k,

$$
c(\phi \circ \psi):=c(\phi)+c(\psi) \in \operatorname{Burn}_{n-1}(k)
$$

This yields a homomorphism:

$$
c: \operatorname{BirAut}(X) \rightarrow \operatorname{Burn}_{n-1}(k)
$$

Corollary: Cr_{n} is not generated by regularizable maps, for $n \geq 4$, (disproving a conjecture from 2004). A map $\phi \in \mathrm{Cr}_{n}$ is regularizable if there exists a birational $\alpha: \mathbb{P}^{n} \rightarrow X$ such that $\alpha \circ \phi \circ \alpha^{-1} \in \operatorname{Aut}(X)$.

Applications: invariants of birational maps

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of n-dimensional varieties over k,

$$
c(\phi \circ \psi):=c(\phi)+c(\psi) \in \operatorname{Burn}_{n-1}(k) .
$$

This yields a homomorphism:

$$
c: \operatorname{BirAut}(X) \rightarrow \operatorname{Burn}_{n-1}(k)
$$

Corollary: Cr_{n} is not generated by regularizable maps, for $n \geq 4$, (disproving a conjecture from 2004). A map $\phi \in \mathrm{Cr}_{n}$ is regularizable if there exists a birational $\alpha: \mathbb{P}^{n} \rightarrow X$ such that $\alpha \circ \phi \circ \alpha^{-1} \in \operatorname{Aut}(X)$.
Proof: It suffices to present one nonregularizable map; done by Hassett-Lai (2018).

Applications: invariants of birational maps

This formalism extends to the equivariant, orbifold, and logarithmic volume forms context (Kresch-T. 2022, Chambert-Loir-Kontsevich-T. 2023).

Applications: invariants of birational maps

This formalism extends to the equivariant, orbifold, and logarithmic volume forms context (Kresch-T. 2022, Chambert-Loir-Kontsevich-T. 2023).

This yields new structural information about the Cremona group

$$
\mathrm{Cr}_{n}(k)
$$

Applications: Failure of (stable) rationality via specialization

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène-Pirutka (2015): universal CH_{0}-triviality
- Nicaise-Shinder (2017): $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) / \mathbb{L}$, $\operatorname{char}(k)=0$
- Kontsevich-T. (2017): $\operatorname{Burn}(k), \operatorname{char}(k)=0$

Applications: Failure of (stable) rationality via specialization

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène-Pirutka (2015): universal CH_{0}-triviality
- Nicaise-Shinder (2017): $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) / \mathbb{L}$, $\operatorname{char}(k)=0$
- Kontsevich-T. (2017): $\operatorname{Burn}(k), \operatorname{char}(k)=0$

These developments led to a wealth of new results in birational geometry,

Applications: Failure of (stable) rationality via specialization

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène-Pirutka (2015): universal CH_{0}-triviality
- Nicaise-Shinder (2017): $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) / \mathbb{L}, \operatorname{char}(k)=0$
- Kontsevich-T. (2017): $\operatorname{Burn}(k), \operatorname{char}(k)=0$

These developments led to a wealth of new results in birational geometry, for the following reasons:

- new, computable, obstructions to (stable) rationality arise in singular fibers,

Applications: Failure of (stable) rationality via specialization

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène-Pirutka (2015): universal CH_{0}-triviality
- Nicaise-Shinder (2017): $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) / \mathbb{L}, \operatorname{char}(k)=0$
- Kontsevich-T. (2017): $\operatorname{Burn}(k), \operatorname{char}(k)=0$

These developments led to a wealth of new results in birational geometry, for the following reasons:

- new, computable, obstructions to (stable) rationality arise in singular fibers,
- one can use general position arguments to establish rationality.

Specialization

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o}, with special fiber $\cup_{\alpha \in \mathcal{A}} D_{\alpha}$.

Specialization

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o}, with special fiber $\cup_{\alpha \in \mathcal{A}} D_{\alpha}$. (For some of the constructions, one may ignore multiplicities.)

Specialization

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o}, with special fiber $\cup_{\alpha \in \mathcal{A}} D_{\alpha}$. (For some of the constructions, one may ignore multiplicities.)

Put

$$
\rho\left(\mathcal{X}_{K}\right):=\sum_{A \subseteq \mathcal{A}}(-1)^{\operatorname{Card}(A)-1}\left[k\left(D_{A}\right)\right] \mathbf{L}^{\operatorname{Card}(A)-1} .
$$

Theorem (Kontsevich-T.)

This gives a well-defined homomorphism of abelian groups

$$
\rho: \operatorname{Burn}_{n}(K) \rightarrow \operatorname{Burn}_{n}(k) .
$$

Specialization

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o}, with special fiber $\cup_{\alpha \in \mathcal{A}} D_{\alpha}$. (For some of the constructions, one may ignore multiplicities.)

Put

$$
\rho\left(\mathcal{X}_{K}\right):=\sum_{A \subseteq \mathcal{A}}(-1)^{\operatorname{Card}(A)-1}\left[k\left(D_{A}\right)\right] \mathbf{L}^{\operatorname{Card}(A)-1}
$$

Theorem (Kontsevich-T.)

This gives a well-defined homomorphism of abelian groups

$$
\rho: \operatorname{Burn}_{n}(K) \rightarrow \operatorname{Burn}_{n}(k) .
$$

This is essentially the same formula as the one for

$$
\partial: \operatorname{Burn}_{n}(k) \rightarrow \operatorname{Burn}_{n-1}(k) .
$$

Theorem (Kontsevich-T.)
Rationality specializes in smooth families.

Theorem (Kontsevich-T.)
Rationality specializes in smooth families.

Similar specialization results hold for

- equivariant birational types (Kresch-T. 2022)

Theorem (Kontsevich-T.)

Rationality specializes in smooth families.

Similar specialization results hold for

- equivariant birational types (Kresch-T. 2022)
- birational types of varieties with logarithmic volume forms (Chambert-Loir, Kontsevich, T. 2023)

Specialization

Theorem (Kontsevich-T.)
 Rationality specializes in smooth families.

Similar specialization results hold for

- equivariant birational types (Kresch-T. 2022)
- birational types of varieties with logarithmic volume forms (Chambert-Loir, Kontsevich, T. 2023)
- birational types of orbifolds (Kresch-T. 2023)

Equivariant Burnside groups (Kresch-T. 2020)

Let G be a finite group. We had introduced

$$
\operatorname{Burn}_{n}(G, k)
$$

as the free abelian group on birational equivalence classes of algebraic G-varieties over k.

Equivariant Burnside groups (Kresch-T. 2020)

Let G be a finite group. We had introduced

$$
\operatorname{Burn}_{n}(G, k)
$$

as the free abelian group on birational equivalence classes of algebraic G-varieties over k.

To distinguish such classes, we would like to have an analog of ∂, extracting invariants from information about subvarieties.

Problem: How to distinguish equivariant birational types of linear actions?

Problem: How to distinguish equivariant birational types of linear
actions? How to distinguish linear actions from nonlinear actions?

Problem: How to distinguish equivariant birational types of linear
actions? How to distinguish linear actions from nonlinear actions?

Basic facts:

- If X is rational and G is cyclic, then $X^{G} \neq \emptyset$.

Basics

Problem: How to distinguish equivariant birational types of linear
actions? How to distinguish linear actions from nonlinear actions?

Basic facts:

- If X is rational and G is cyclic, then $X^{G} \neq \emptyset$.
- If $Y \rightarrow X$ is a G-birational map between smooth projective G-varieties, and G is abelian, then

$$
Y^{\mathrm{G}} \neq \emptyset \Leftrightarrow X^{\mathrm{C}} \neq \emptyset .
$$

Basic facts

More precisely, let X be smooth projective of dimension n, G abelian, and let $\mathfrak{p} \in X^{G}$. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be the characters (weights) of G in the tangent space to X at \mathfrak{p}.

Basic facts

More precisely, let X be smooth projective of dimension n, G abelian, and let $\mathfrak{p} \in X^{G}$. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be the characters (weights) of G in the tangent space to X at \mathfrak{p}. Let

$$
\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)=a_{1} \wedge \ldots \wedge a_{n} \in \wedge^{n}\left(G^{\vee}\right)
$$

be the determinant.

Basic facts

More precisely, let X be smooth projective of dimension n, G abelian, and let $\mathfrak{p} \in X^{G}$. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be the characters (weights) of G in the tangent space to X at \mathfrak{p}. Let

$$
\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)=a_{1} \wedge \ldots \wedge a_{n} \in \wedge^{n}\left(G^{\vee}\right)
$$

be the determinant.

Reichstein-Youssin (2002)

Let $Y \rightarrow X$ be a G-equivariant blowup. Then Y contains a point $\mathfrak{q} \in Y^{G}$ (in the preimage of \mathfrak{p}) with weights $\left\{b_{1}, \ldots, b_{n}\right\}$ in the tangent space, and such that

$$
\operatorname{det}\left(b_{1}, \ldots, b_{n}\right)= \pm \operatorname{det}\left(a_{1}, \ldots, a_{n}\right)
$$

i.e., this is a equivariant birational invariant.

Reichstein-Youssin (2002)

Let V and W be n-dimensional faithful representations of an abelian group G of rank $r \leq n$, and

$$
a_{1}, \ldots, a_{n}, \quad \text { respectively } \quad b_{1}, \ldots, b_{n},
$$

the characters of G appearing in V, respectively W. Then V and W are
G-equivariantly birational if and only if

$$
a_{1} \wedge \cdots \wedge a_{n}= \pm b_{1} \wedge \cdots \wedge b_{n}
$$

(This condition is meaningful only when $r=n$.)

Reichstein-Youssin (2002)

- Thus, cyclic linear actions on \mathbb{P}^{n}, with $n \geq 2$, of the same order, are equivariantly birational.
- Thus, cyclic linear actions on \mathbb{P}^{n}, with $n \geq 2$, of the same order, are equivariantly birational.
- Note that any two faithful representations of G are equivariantly stably birational.

First examples: \mathbb{P}^{2}

Consider an action of $\mathbb{Z} / p \mathbb{Z}$ on $X=\mathbb{P}^{2}$ given by

$$
\begin{aligned}
&(x: y: z) \mapsto\left(\zeta^{a} x: \zeta^{b} y: z\right) \\
& \zeta=\zeta_{p}, \quad a, b \in \mathbb{Z} / p \mathbb{Z}, \quad \operatorname{gcd}(a, b, p)=1, \quad a \neq b
\end{aligned}
$$

Fixed points are

$$
(0: 0: 1), \quad(0: 1: 0), \quad(1: 0: 0)
$$

First examples: \mathbb{P}^{2}

Consider an action of $\mathbb{Z} / p \mathbb{Z}$ on $X=\mathbb{P}^{2}$ given by

$$
\begin{aligned}
&(x: y: z) \mapsto\left(\zeta^{a} x: \zeta^{b} y: z\right) \\
& \zeta=\zeta_{p}, \quad a, b \in \mathbb{Z} / p \mathbb{Z}, \quad \operatorname{gcd}(a, b, p)=1, \quad a \neq b
\end{aligned}
$$

Fixed points are

$$
(0: 0: 1), \quad(0: 1: 0), \quad(1: 0: 0)
$$

Record the weights in the tangent space at these points as a formal sum:

$$
\beta(X)=[a, b]+[a-b,-b]+[b-a,-a] .
$$

All such actions are equivalent. Declare $\beta(X)=0$, i.e.,

$$
[a, b]=-[b-a,-a]-[a-b,-b]
$$

Allowing

$$
[a, b]=-[a,-b]
$$

we find

$$
[a, b]=[a, b-a]+[a-b, b] .
$$

Birational types $\mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Generators: $[a, b], a, b \in \mathbb{Z} / p \mathbb{Z}, \operatorname{gcd}(a, b, p)=1$

Relations:

- $[a, b]=[b, a]$
- $[a, b]=[a, b-a]+[a-b, b]$ if $a \neq b$
- $[a, a]=[a, 0]$

Birational types $\mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Generators: $[a, b], a, b \in \mathbb{Z} / p \mathbb{Z}, \operatorname{gcd}(a, b, p)=1$

Relations:

- $[a, b]=[b, a]$
- $[a, b]=[a, b-a]+[a-b, b]$ if $a \neq b$
- $[a, a]=[a, 0]$

For $p \geq 5$, the \mathbb{Q}-rank of $\mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$ equals

$$
\frac{p^{2}-1}{24}+1
$$

Generators: $[a, b], a, b \in \mathbb{Z} / p \mathbb{Z}, \operatorname{gcd}(a, b, p)=1$

Relations:

- $[a, b]=[b, a]$
- $[a, b]=[a, b-a]+[a-b, b]$ if $a \neq b$
- $[a, a]=[a, 0]$

For $p \geq 5$, the \mathbb{Q}-rank of $\mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$ equals

$$
\frac{p^{2}-1}{24}+1=\operatorname{dim}\left(\mathrm{H}^{1}\left(X_{1}(p), \mathbb{Q}\right)\right)
$$

Birational types

Let G be a finite abelian group, and $A=G^{\vee}$ its group of characters.

Birational types

Let G be a finite abelian group, and $A=G^{\vee}$ its group of characters.

Let X be smooth projective, of dimension n, with regular G-action.
Consider $X^{G}=\sqcup F_{\alpha}$ and record eigenvalues of G

$$
\left[a_{1, \alpha}, \ldots, a_{n, \alpha}\right]
$$

in the tangent space $\mathcal{T}_{x_{\alpha}} X$, at some $x_{\alpha} \in F_{\alpha}$.

Birational types

Let G be a finite abelian group, and $A=G^{\vee}$ its group of characters.

Let X be smooth projective, of dimension n, with regular G-action.
Consider $X^{G}=\sqcup F_{\alpha}$ and record eigenvalues of G

$$
\left[a_{1, \alpha}, \ldots, a_{n, \alpha}\right]
$$

in the tangent space $\mathcal{T}_{x_{\alpha}} X$, at some $x_{\alpha} \in F_{\alpha}$. Put

$$
\beta(X):=\sum_{\alpha}\left[a_{1, \alpha}, \ldots, a_{n, \alpha}\right]
$$

Birational types

Let G be a finite abelian group, and $A=G^{\vee}$ its group of characters.

Let X be smooth projective, of dimension n, with regular G-action.
Consider $X^{G}=\sqcup F_{\alpha}$ and record eigenvalues of G

$$
\left[a_{1, \alpha}, \ldots, a_{n, \alpha}\right]
$$

in the tangent space $\mathcal{T}_{\chi_{\alpha}} X$, at some $x_{\alpha} \in F_{\alpha}$. Put

$$
\beta(X):=\sum_{\alpha}\left[a_{1, \alpha}, \ldots, a_{n, \alpha}\right]
$$

Here, we keep no information about F_{α}.

Birational types

Consider the free abelian group

$$
\mathcal{S}_{n}(G)
$$

spanned by unordered tupels

$$
\left[a_{1}, \ldots, a_{n}\right], \quad a_{i} \in A,
$$

Birational types

Consider the free abelian group

$$
\mathcal{S}_{n}(G)
$$

spanned by unordered tupels

$$
\left[a_{1}, \ldots, a_{n}\right], \quad a_{i} \in A,
$$

subject to condition:
(G) $\sum_{i} \mathbb{Z a}_{i}=A$,

Birational types

Consider the free abelian group

$$
\mathcal{S}_{n}(G)
$$

spanned by unordered tupels

$$
\left[a_{1}, \ldots, a_{n}\right], \quad a_{i} \in A
$$

subject to condition:
(G) $\sum_{i} \mathbb{Z} a_{i}=A$,

We get a map

$$
\begin{aligned}
\{\text { G-varieties }\} & \rightarrow \mathcal{S}_{n}(G) \\
X & \mapsto \beta(X)
\end{aligned}
$$

Birational types $\mathcal{B}_{n}(G)$

Let $Y \rightarrow X$ be a G-equivariant blowup and impose relations:

$$
\beta(Y)-\beta(X)=0 .
$$

Birational types $\mathcal{B}_{n}(G)$

Let $Y \rightarrow X$ be a G-equivariant blowup and impose relations:

$$
\beta(Y)-\beta(X)=0
$$

All such relations can be encoded in a compact form:

Birational types $\mathcal{B}_{n}(G)$

Let $Y \rightarrow X$ be a G-equivariant blowup and impose relations:

$$
\beta(Y)-\beta(X)=0
$$

All such relations can be encoded in a compact form: Consider the quotient

$$
\mathcal{S}_{n}(\mathrm{G}) \rightarrow \mathcal{B}_{n}(\mathrm{G}),
$$

by relations

Birational types $\mathcal{B}_{n}(\mathrm{C})$

Let $Y \rightarrow X$ be a G-equivariant blowup and impose relations:

$$
\beta(Y)-\beta(X)=0
$$

All such relations can be encoded in a compact form: Consider the quotient

$$
\mathcal{S}_{n}(G) \rightarrow \mathcal{B}_{n}(G)
$$

by relations
(B) for all $a_{1}, a_{2}, b_{3}, \ldots, b_{n} \in A$ we have

$$
\begin{aligned}
& {\left[a_{1}, a_{2}, b_{3}, \ldots b_{n}\right]=} \\
& {\left[a_{1}-a_{2}, a_{2}, b_{3}, \ldots, b_{n}\right]+\left[a_{1}, a_{2}-a_{1}, b_{3}, \ldots, b_{n}\right] \text { if } a_{1} \neq a_{2},} \\
& {\left[a_{1}, 0, b_{3}, \ldots, b_{n}\right]} \\
& \text { if } a_{1}=a_{2} .
\end{aligned}
$$

Birational types

Kontsevich-T. 2019
The class

$$
\beta(X) \in \mathcal{B}_{n}(G)
$$

is a well-defined G-equivariant birational invariant.

Birational types

Kontsevich-T. 2019

The class

$$
\beta(X) \in \mathcal{B}_{n}(G)
$$

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization (Abramovich, Karu, Matsuki, Włodarczyk)

Birational types

For $G=\mathbb{Z} / p \mathbb{Z}$ and $n=2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

Birational types

For $G=\mathbb{Z} / p \mathbb{Z}$ and $n=2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$
\operatorname{rk}_{\mathbb{Q}}\left(\mathcal{B}_{2}(\mathrm{G})\right)=\frac{p^{2}-1}{24}+1
$$

Birational types

For $G=\mathbb{Z} / p \mathbb{Z}$ and $n=2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$
\operatorname{rk}_{\mathbb{Q}}\left(\mathcal{B}_{2}(\mathrm{G})\right)=\frac{p^{2}-1}{24}+1
$$

For $n \geq 3$ the systems of equations are highly overdetermined.

Birational types

For $G=\mathbb{Z} / p \mathbb{Z}$ and $n=2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$
\operatorname{rk}_{\mathbb{Q}}\left(\mathcal{B}_{2}(\mathrm{G})\right)=\frac{p^{2}-1}{24}+1
$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$
\mathrm{rk}_{\mathbb{Q}}\left(\mathcal{B}_{3}(G)\right) \stackrel{?}{=} \frac{(p-5)(p-7)}{24}=\frac{p^{2}-1}{24}+1-\frac{p-1}{2}
$$

Birational types

For $G=\mathbb{Z} / p \mathbb{Z}$ and $n=2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$
\operatorname{rk}_{\mathbb{Q}}\left(\mathcal{B}_{2}(\mathrm{G})\right)=\frac{p^{2}-1}{24}+1
$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$
\mathrm{rk}_{\mathbb{Q}}\left(\mathcal{B}_{3}(G)\right) \stackrel{?}{=} \frac{(p-5)(p-7)}{24}=\frac{p^{2}-1}{24}+1-\frac{p-1}{2}
$$

Jumps at

$$
p=43,59,67,83, \ldots
$$

Birational types

For $G=\mathbb{Z} / p \mathbb{Z}$ and $n=2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$
\operatorname{rk}_{\mathbb{Q}}\left(\mathcal{B}_{2}(\mathrm{G})\right)=\frac{p^{2}-1}{24}+1
$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$
\mathrm{rk}_{\mathbb{Q}}\left(\mathcal{B}_{3}(G)\right) \stackrel{?}{=} \frac{(p-5)(p-7)}{24}=\frac{p^{2}-1}{24}+1-\frac{p-1}{2}
$$

Jumps at

$$
p=43,59,67,83, \ldots
$$

These are interesting groups!

Birational types

Variant: introduce the quotient

$$
\mu^{-}: \mathcal{B}_{n}(\mathrm{G}) \rightarrow \mathcal{B}_{n}^{-}(\mathrm{G})
$$

by an additional relation

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]=-\left[-a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

Birational types

Variant: introduce the quotient

$$
\mu^{-}: \mathcal{B}_{n}(G) \rightarrow \mathcal{B}_{n}^{-}(G)
$$

by an additional relation

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]=-\left[-a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

The class of $\mathbb{P}^{n}, n \geq 2$, with linear action of $G:=\mathbb{Z} / N \mathbb{Z}$ is

- torsion in $\mathcal{B}_{n}(G)$ and
- trivial in $\mathcal{B}_{n}^{-}(G)$.

Cyclic action on $\mathbb{P}^{n}, n \geq 2$

Since all such actions are birationally equivalent, it suffices to consider one, with $G=\mathbb{Z} / N \mathbb{Z}$ acting by

$$
\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(\zeta_{N} x_{0}, x_{1}, \ldots, x_{n}\right)
$$

Cyclic action on $\mathbb{P}^{n}, n \geq 2$

Since all such actions are birationally equivalent, it suffices to consider one, with $G=\mathbb{Z} / N \mathbb{Z}$ acting by

$$
\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(\zeta_{N x_{0}}, x_{1}, \ldots, x_{n}\right) .
$$

This action fixes the point $(1,0, \ldots, 0)$ and the hyperplane $x_{0}=0$.

Cyclic action on $\mathbb{P}^{n}, n \geq 2$

Since all such actions are birationally equivalent, it suffices to consider one, with $G=\mathbb{Z} / N \mathbb{Z}$ acting by

$$
\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(\zeta_{N x_{0}}, x_{1}, \ldots, x_{n}\right) .
$$

This action fixes the point $(1,0, \ldots, 0)$ and the hyperplane $x_{0}=0$. We have

$$
\beta\left(\mathbb{P}^{n}\right)=[1,0, \ldots, 0]+[0,-1, \ldots,-1]=[1,0, \ldots]+[-1,0, \ldots]
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

For $a, b \neq 0$, we have

$$
\begin{aligned}
{[a, b] } & =[a-b, b]+[a, b-a] \\
{[a-b, a] } & =[-b, a]+[a-b, b] .
\end{aligned}
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

For $a, b \neq 0$, we have

$$
\begin{aligned}
{[a, b] } & =[a-b, b]+[a, b-a] \\
{[a-b, a] } & =[-b, a]+[a-b, b] .
\end{aligned}
$$

Taking the difference,

$$
[a, b]+[-b, a]=[a, b-a]+[a, a-b] .
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

For $a, b \neq 0$, we have

$$
\begin{aligned}
{[a, b] } & =[a-b, b]+[a, b-a] \\
{[a-b, a] } & =[-b, a]+[a-b, b] .
\end{aligned}
$$

Taking the difference,

$$
[a, b]+[-b, a]=[a, b-a]+[a, a-b] .
$$

If $b-a=a$, we stop and record:

$$
[a, b]+[-b, a]=[a, a]+[a,-a]=[a, a]=[a, 0] .
$$

If $b-a \neq a$, we iterate until $a=b-m a$, i.e., $b=(m+1) a$, where it stops. This is solvable $\bmod p$.

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

We record:

$$
[a, b]+[-b, a]=[a, a]+[a,-a]=[a, 0]
$$

Replacing a by $-a$, and requiring that $b \neq \pm a$,

$$
[-a, b]+[-b,-a]=[-a, 0]
$$

adding these:

$$
[a, b]+[-b, a]+[-a, b]+[-b,-a]=[a, 0]+[-a, 0]
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

We record:

$$
[a, b]+[-b, a]=[a, a]+[a,-a]=[a, 0]
$$

Replacing a by $-a$, and requiring that $b \neq \pm a$,

$$
[-a, b]+[-b,-a]=[-a, 0]
$$

adding these:

$$
[a, b]+[-b, a]+[-a, b]+[-b,-a]=[a, 0]+[-a, 0]
$$

These are symmetric in a and b, thus

$$
[a, b]+[-b, a]+[-a, b]+[-b,-a]=[b, 0]+[-b, 0] .
$$

In particular,

$$
[a, 0]+[-a, 0]=[b, 0]+[-b, 0]
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

We record:

$$
[a, b]+[-b, a]=[a, a]+[a,-a]=[a, 0]
$$

Replacing a by $-a$, and requiring that $b \neq \pm a$,

$$
[-a, b]+[-b,-a]=[-a, 0]
$$

adding these:

$$
[a, b]+[-b, a]+[-a, b]+[-b,-a]=[a, 0]+[-a, 0]
$$

These are symmetric in a and b, thus

$$
[a, b]+[-b, a]+[-a, b]+[-b,-a]=[b, 0]+[-b, 0] .
$$

In particular,

$$
[a, 0]+[-a, 0]=[b, 0]+[-b, 0]=: \delta
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Consider the sum

$$
S:=\sum_{a, b, \neq 0, a \neq \pm b}[a, b],
$$

We have

$$
2 S:=\sum_{b} \sum_{a \neq \pm b}[a, b]+[-a, b]=(p-3) \cdot \sum_{b}[b, 0]=\frac{(p-3) \cdot(p-1)}{2} \cdot \delta,
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Consider the sum

$$
S:=\sum_{a, b, \neq 0, a \neq \pm b}[a, b],
$$

We have
$2 S:=\sum_{b} \sum_{a \neq \pm b}[a, b]+[-a, b]=(p-3) \cdot \sum_{b}[b, 0]=\frac{(p-3) \cdot(p-1)}{2} \cdot \delta$,
Apply the blowup relation to each term in S :

$$
S=\sum_{b} \sum_{a \neq \pm b}[a-b, b]+[a, b-a] .
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Relate the two sums to S :

$$
\begin{aligned}
& \sum_{b, a \neq \pm b}[a-b, b]=S+\sum_{b}([b, b]-[-2 b, b]) \\
& \sum_{b, a \neq \pm b}[a, b-a]=S+\sum_{a}([a, a]-[-2 a, a])
\end{aligned}
$$

The second sum equals the first, with a and b switched. Thus

$$
S=2 S+2 \sum_{b}[b, b]-\sum_{b}([-2 b, b]+[2 b,-b]) .
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Note that

$$
0=[-b, b]=[-2 b, b]+[-b, 2 b]
$$

so that the last sum vanishes.

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Note that

$$
0=[-b, b]=[-2 b, b]+[-b, 2 b]
$$

so that the last sum vanishes. As before,

$$
\sum_{b}[b, b]=\sum_{b}[b, 0]=\frac{(p-1)}{2} \cdot \delta
$$

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Note that

$$
0=[-b, b]=[-2 b, b]+[-b, 2 b]
$$

so that the last sum vanishes. As before,

$$
\sum_{b}[b, b]=\sum_{b}[b, 0]=\frac{(p-1)}{2} \cdot \delta
$$

We find that

$$
0=S+(p-1) \delta=\frac{(p-3)(p-1)}{4} \cdot \delta+(p-1) \cdot \delta
$$

It follows that

$$
0=\frac{(p-1)(p+1)}{4} \cdot \delta
$$

thus δ is torsion.

$[1,0]+[-1,0] \in \mathcal{B}_{2}(\mathbb{Z} / p \mathbb{Z})$

Note that

$$
0=[-b, b]=[-2 b, b]+[-b, 2 b]
$$

so that the last sum vanishes. As before,

$$
\sum_{b}[b, b]=\sum_{b}[b, 0]=\frac{(p-1)}{2} \cdot \delta
$$

We find that

$$
0=S+(p-1) \delta=\frac{(p-3)(p-1)}{4} \cdot \delta+(p-1) \cdot \delta
$$

It follows that

$$
0=\frac{(p-1)(p+1)}{4} \cdot \delta
$$

thus δ is torsion.

$$
\mathcal{B}_{n}^{-}(G) \otimes \mathbb{Q} \simeq \mathrm{H}^{\frac{n(n-1)}{2}}\left(\Gamma(\mathrm{G}, n), \text { or }_{n}^{\otimes n}\right)=\mathrm{H}_{0}\left(\Gamma(\mathrm{G}, n), \mathrm{St}_{n} \otimes \text { or }_{n}\right)
$$

where

$$
\Gamma(G, n) \subset \mathrm{GL}_{n}(\mathbb{Z})
$$

is a congruence subgroup,

- or is the orientation (the sign of the determinant), and
- St_{n} is the Steinberg representation.

Let G be a nontrivial abelian group. We work $\otimes \mathbb{Q}$ and consider $\mathcal{B}_{n}(G) \otimes \mathbb{Q}$ in both variables, n and G.

Consider short exact sequences of finite abelian groups

$$
0 \rightarrow \mathrm{C}^{\prime} \rightarrow \mathrm{G} \rightarrow \mathrm{C}^{\prime \prime} \rightarrow 0
$$

and the corresponding short exact sequences of character groups

$$
0 \rightarrow A^{\prime \prime} \rightarrow A \rightarrow A^{\prime} \rightarrow 0
$$

Let

$$
n=n^{\prime}+n^{\prime \prime}, \quad n^{\prime}, n^{\prime \prime} \geq 1
$$

Multiplication and co-multiplication

We define a \mathbb{Q}-bilinear multiplication map

$$
\nabla: \mathcal{B}_{n^{\prime}}\left(C^{\prime}\right) \otimes \mathcal{B}_{n^{\prime \prime}}\left(\mathrm{C}^{\prime \prime}\right) \rightarrow \mathcal{B}_{n^{\prime}+n^{\prime \prime}}(\mathrm{C})
$$

given by

$$
\left[a_{1}^{\prime}, \ldots, a_{n^{\prime}}^{\prime}\right] \otimes\left[a_{1}^{\prime \prime}, \ldots, a_{n^{\prime \prime}}^{\prime \prime}\right] \mapsto \sum\left[a_{1}, \ldots, a_{n^{\prime}}, a_{1}^{\prime \prime}, \ldots, a_{n^{\prime \prime}}^{\prime \prime}\right]
$$

the sum over all lifts $a_{i} \in A$ of $a_{i}^{\prime} \in A^{\prime}$, and $a_{i}^{\prime \prime}$ are understood as elements of A, via the embedding $A^{\prime \prime} \hookrightarrow A$.

Multiplication and co-multiplication

We define a \mathbb{Q}-bilinear multiplication map

$$
\nabla: \mathcal{B}_{n^{\prime}}\left(\mathrm{C}^{\prime}\right) \otimes \mathcal{B}_{n^{\prime \prime}}\left(\mathrm{C}^{\prime \prime}\right) \rightarrow \mathcal{B}_{n^{\prime}+n^{\prime \prime}}(\mathrm{G})
$$

given by

$$
\left[a_{1}^{\prime}, \ldots, a_{n^{\prime}}^{\prime}\right] \otimes\left[a_{1}^{\prime \prime}, \ldots, a_{n^{\prime \prime}}^{\prime \prime}\right] \mapsto \sum\left[a_{1}, \ldots, a_{n^{\prime}}, a_{1}^{\prime \prime}, \ldots, a_{n^{\prime \prime}}^{\prime \prime}\right]
$$

the sum over all lifts $a_{i} \in A$ of $a_{i}^{\prime} \in A^{\prime}$, and $a_{i}^{\prime \prime}$ are understood as elements of A, via the embedding $A^{\prime \prime} \hookrightarrow A$.

We also have

$$
\nabla^{-}: \mathcal{B}_{n^{\prime}}^{-}\left(\mathrm{C}^{\prime}\right) \otimes \mathcal{B}_{n^{\prime \prime}}^{-}\left(\mathrm{C}^{\prime \prime}\right) \rightarrow \mathcal{B}_{n^{\prime}+n^{\prime \prime}}^{-}(\mathrm{C})
$$

Multiplication and co-multiplication

There are also co-multiplication maps

$$
\begin{aligned}
& \Delta: \mathcal{B}_{n^{\prime}+n^{\prime \prime}}^{\prime}(G) \rightarrow \mathcal{B}_{n^{\prime}}\left(\mathrm{C}^{\prime}\right) \otimes \mathcal{B}_{n^{\prime \prime}}^{-}\left(\mathrm{C}^{\prime \prime}\right), \\
& \Delta^{-}: \mathcal{B}_{n^{\prime}+n^{\prime \prime}}^{-}(G) \rightarrow \mathcal{B}_{n^{\prime}}^{-}\left(\mathrm{C}^{\prime}\right) \otimes \mathcal{B}_{n^{\prime \prime}}^{-}\left(\mathrm{C}^{\prime \prime}\right)
\end{aligned}
$$

where $C^{\prime \prime}$ is nontrivial.

Modular types: structure

$$
\mathcal{B}_{n, \text { prim }}^{-}(G)=\operatorname{Ker}\left(\mathcal{B}_{n}^{-}(G) \rightarrow \bigoplus_{\substack{n^{\prime}+n^{\prime \prime}=n \\ n^{\prime}, n^{\prime \prime} \geq 1 \\ 0 \subseteq G^{\prime} \subseteq G}} \mathcal{B}_{n^{\prime}}^{-}\left(G^{\prime}\right) \otimes \mathcal{B}_{n^{\prime \prime}}^{-}\left(G / G^{\prime}\right)\right),
$$

We have

$$
\mathcal{B}_{1}(G)=\mathcal{B}_{1, \text { prim }}(G)
$$

for all G; when $G=1=\mathbb{Z} / 1 \mathbb{Z}$ we have

$$
\mathcal{B}_{1}(1)=\mathbb{Q}, \quad \mathcal{B}_{n}(1)=\mathcal{B}_{n, p r i m}(1)=0, \text { for } n \geq 2
$$

Let G be a cyclic group. Then $\mathcal{B}_{n}(G) \otimes \mathbb{Q}$ is isomorphic to

$$
\bigoplus \quad \bigoplus \quad \mathcal{B}_{n_{1}, \text { prim }}\left(g_{1}\left(\mathcal{G}_{\bullet}\right)\right) \otimes \cdots \otimes \mathcal{B}_{n_{r}, p r i m}^{-}\left(\operatorname{gr}_{r}\left(\mathcal{G}_{\bullet}\right)\right) \otimes \mathbb{Q}
$$

$r \quad n_{1}+\cdots+n_{r}=n$
$\mathcal{G}_{\text {. of lengths } r}$
where \mathcal{G}_{\bullet} is a flag of subgroups of type

$$
0=G_{\leq 0} \subseteq G_{\leq 1} \subsetneq \ldots \subsetneq G_{\leq r}=G, \quad r \geq 1
$$

with strict inclusions, except in the first step.

Modular types: structure

$$
\operatorname{dim} \mathcal{B}_{2, \text { prim }}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}=\operatorname{dim} \mathcal{B}_{2, \text { prim }}^{-}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}
$$

and is equal to the dimension of the space of cusp forms of weight 2 for $\Gamma_{1}(N)$,

$$
\operatorname{dim} \mathcal{B}_{3, \text { prim }}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}=\operatorname{dim} \mathcal{B}_{3, p r i m}^{-}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}
$$

and is equal to the number of certain cuspidal automorphic representations for a congruence subgroup of $\mathrm{GL}_{3}(\mathbb{Z})$,

Modular types: structure

$$
\operatorname{dim} \mathcal{B}_{2, \text { prim }}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}=\operatorname{dim} \mathcal{B}_{2, \text { prim }}^{-}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}
$$

and is equal to the dimension of the space of cusp forms of weight 2 for $\Gamma_{1}(N)$,
-

$$
\operatorname{dim} \mathcal{B}_{3, \text { prim }}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}=\operatorname{dim} \mathcal{B}_{3, p r i m}^{-}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}
$$

and is equal to the number of certain cuspidal automorphic representations for a congruence subgroup of $\mathrm{GL}_{3}(\mathbb{Z})$,

Computer experiments suggest that, for all $N \geq 1$:

$$
\mathcal{B}_{n, p r i m}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}=\mathcal{B}_{n, \text { prim }}^{-}(\mathbb{Z} / N \mathbb{Z}) \otimes \mathbb{Q}=0, \quad n \geq 4,
$$

Modular types: structure

Thus we can compute the \mathbb{Q}-ranks of $\mathcal{B}_{n}(\mathbb{Z} / N \mathbb{Z})$ using:

- $n=1$: Euler function $\phi(N) / 2$

Modular types: structure

Thus we can compute the \mathbb{Q}-ranks of $\mathcal{B}_{n}(\mathbb{Z} / N \mathbb{Z})$ using:

- $n=1$: Euler function $\phi(N) / 2$
- $n=2: g\left(X_{1}(N)\right)$

Modular types: structure

Thus we can compute the \mathbb{Q}-ranks of $\mathcal{B}_{n}(\mathbb{Z} / N \mathbb{Z})$ using:

- $n=1$: Euler function $\phi(N) / 2$
- $n=2: g\left(X_{1}(N)\right)$
- $n=3$: mysterious dimensions

N	43	51	52	59	63	\ldots	208	211	239
dim	1	1	1	1	2	\ldots	54	7	3

Modular types: structure

Thus we can compute the \mathbb{Q}-ranks of $\mathcal{B}_{n}(\mathbb{Z} / N \mathbb{Z})$ using:

- $n=1$: Euler function $\phi(N) / 2$
- $n=2: g\left(X_{1}(N)\right)$
- $n=3$: mysterious dimensions

N	43	51	52	59	63	\ldots	208	211	239
dim	1	1	1	1	2	\ldots	54	7	3

- $n=4$: no primitives, with $N \leq 242$
- G a finite abelian group, $A=G^{\vee}$
- $\mathbf{L} \simeq \mathbb{Z}^{n}$,
- $\chi \in \mathbf{L} \otimes A$ such that the induced homomorphism

$$
\mathbf{L}^{\vee} \rightarrow A
$$

is a surjection,

- a basic simplicial cone, i.e., a strictly convex cone

$$
\Lambda \in \mathbf{L}_{\mathbb{R}}
$$

spanned by a basis of $\mathbf{L} ; \Lambda \simeq \mathbb{R}_{\geq 0}^{n}$, for $\mathbf{L}=\mathbb{Z}^{n} \subset \mathbb{R}^{n}$.

Modular types

For every equivalence class of triples

$$
(\mathbf{L}, \chi, \Lambda)
$$

define

$$
\psi(\mathbf{L}, \chi, \Lambda)
$$

as follows: choose a basis e_{1}, \ldots, e_{n} of \mathbf{L}, spanning Λ, express

$$
\begin{equation*}
\chi=\sum_{i=1}^{n} \mathrm{e}_{i} \otimes \mathrm{a}_{i} \tag{1}
\end{equation*}
$$

and put

$$
\psi(\mathbf{L}, \chi, \Lambda)=\left[a_{1}, \ldots, a_{n}\right] \in \mathcal{B}_{n}(C)
$$

Modular types

For every equivalence class of triples

$$
(\mathbf{L}, \chi, \Lambda)
$$

define

$$
\psi(\mathbf{L}, \chi, \Lambda)
$$

as follows: choose a basis e_{1}, \ldots, e_{n} of \mathbf{L}, spanning Λ, express

$$
\begin{equation*}
\chi=\sum_{i=1}^{n} \mathrm{e}_{i} \otimes \mathrm{a}_{i} \tag{1}
\end{equation*}
$$

and put

$$
\psi(\mathbf{L}, \chi, \Lambda)=\left[a_{1}, \ldots, a_{n}\right] \in \mathcal{B}_{n}(C) .
$$

The ambiguity in the choices corresponds to the \mathfrak{S}_{n}-action on the basis elements.

Modular types

For every equivalence class of triples

$$
(\mathbf{L}, \chi, \Lambda)
$$

define

$$
\psi(\mathbf{L}, \chi, \Lambda)
$$

as follows: choose a basis e_{1}, \ldots, e_{n} of \mathbf{L}, spanning Λ, express

$$
\begin{equation*}
\chi=\sum_{i=1}^{n} \mathrm{e}_{i} \otimes \mathrm{a}_{i} \tag{1}
\end{equation*}
$$

and put

$$
\psi(\mathbf{L}, \chi, \Lambda)=\left[a_{1}, \ldots, a_{n}\right] \in \mathcal{B}_{n}(C) .
$$

The ambiguity in the choices corresponds to the \mathfrak{S}_{n}-action on the basis elements. The blowup relation corresponds to scissors relations on cones. This yields multiplication, co-multiplication, Hecke operators, etc.

Equivariant Burnside group (Kresch-T. 2020)

We work over a field k of characteristic zero (with enough roots of 1). Let

$$
\operatorname{Burn}_{n}(G)=\operatorname{Burn}_{n, k}(G)
$$

be the \mathbb{Z}-module, generated by symbols

$$
(H, Y \subset K, \beta)
$$

where

Equivariant Burnside group (Kresch-T. 2020)

We work over a field k of characteristic zero (with enough roots of 1). Let

$$
\operatorname{Burn}_{n}(G)=\operatorname{Burn}_{n, k}(G)
$$

be the \mathbb{Z}-module, generated by symbols

$$
(H, Y \subset K, \beta)
$$

where

- $H \subseteq G$ is an abelian subgroup, $Y \subseteq Z_{G}(H) / H$,
- $K=k(F)$, with generically free Y-action, $\operatorname{trdeg}_{k}(K)=d \leq n$,
- $\beta=\left(b_{1}, \ldots, b_{n-d}\right)$, a sequence, up to order, of nonzero elements of H^{\vee}, that generate H^{\vee}.

Equivariant Burnside group: relations

The symbols are subject to conjugation and blowup relations:
(C): $(H, Y \subset K, \beta)=\left(H^{\prime}, Y^{\prime} \subset K, \beta^{\prime}\right)$, when

$$
H^{\prime}=\mathrm{gHg}^{-1}, \quad Y^{\prime}=\cdots, \quad \text { with } g \in G
$$

and β and β^{\prime} are related by conjugation by g .

Equivariant Burnside group: relations

The symbols are subject to conjugation and blowup relations:
(C): $(H, Y \subset K, \beta)=\left(H^{\prime}, Y^{\prime} \subset K, \beta^{\prime}\right)$, when

$$
H^{\prime}=\mathrm{gHg}^{-1}, \quad Y^{\prime}=\cdots, \quad \text { with } g \in G
$$

and β and β^{\prime} are related by conjugation by g .
(B1): $(H, Y \subset K, \beta)=0$ when $b_{1}+b_{2}=0$.

Equivariant Burnside group: relations

(B2): $(H, Y \subset K, \beta)=\Theta_{1}+\Theta_{2}$, where

$$
\Theta_{1}= \begin{cases}0, & \text { if } b_{1}=b_{2} \\ \left(H, Y \subset K, \beta_{1}\right)+\left(H, Y \subset K, \beta_{2}\right), & \text { otherwise }\end{cases}
$$

with
$\beta_{1}:=\left(b_{1}, b_{2}-b_{1}, b_{3}, \ldots, b_{n-d}\right), \quad \beta_{2}:=\left(b_{1}-b_{2}, b_{2}, b_{3}, \ldots, b_{n-d}\right)$, and

Equivariant Burnside group: relations

(B2): $(H, Y \subset K, \beta)=\Theta_{1}+\Theta_{2}$, where

$$
\Theta_{1}= \begin{cases}0, & \text { if } b_{1}=b_{2} \\ \left(H, Y \subset K, \beta_{1}\right)+\left(H, Y \subset K, \beta_{2}\right), & \text { otherwise }\end{cases}
$$

with
$\beta_{1}:=\left(b_{1}, b_{2}-b_{1}, b_{3}, \ldots, b_{n-d}\right), \quad \beta_{2}:=\left(b_{1}-b_{2}, b_{2}, b_{3}, \ldots, b_{n-d}\right)$,
and

$$
\Theta_{2}= \begin{cases}0, & \text { if } b_{i} \in\left\langle b_{1}-b_{2}\right\rangle \text { for some } i \\ (\bar{H}, \bar{Y} \subset K(t), \bar{\beta}), & \text { otherwise }\end{cases}
$$

with

$$
\bar{H}^{\vee}:=H^{\vee} /\left\langle b_{1}-b_{2}\right\rangle, \quad \bar{\beta}:=\left(\bar{b}_{2}, \bar{b}_{3}, \ldots, \bar{b}_{n-d}\right), \quad \bar{b}_{i} \in \bar{H}^{\vee} .
$$

Equivariant Burnside group: relations

Model case: Blowing up an isolated point (with abelian stabilizer) on a surface.

It will explain the action of \bar{Y} on $\bar{K}=K(t)$.

Equivariant Burnside group

The class

$$
[\mathrm{X} \bigcirc \mathrm{C}] \in \operatorname{Burn}_{n}(\mathrm{C})
$$

of a C-variety is computed on a standard model (X, D) :

- X is smooth projective, D a normal crossings divisor,
- G acts freely on $U:=X \backslash D$,
- for every $g \in G$ and every irreducible component D, either $g(D)=D$ or $g(D) \cap D=\emptyset$.

Equivariant Burnside group

Passing to a standard model X, define:

$$
[X \bigcirc G]:=\sum_{H} \sum_{F}\left(H, Y \subset k(F), \beta_{F}(X)\right) \in \operatorname{Burn}_{n}(G),
$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

Equivariant Burnside group

Passing to a standard model X, define:

$$
[X \bigcirc G]:=\sum_{H} \sum_{F}\left(H, Y \subset k(F), \beta_{F}(X)\right) \in \operatorname{Burn}_{n}(G),
$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,

Equivariant Burnside group

Passing to a standard model X, define:

$$
[X \bigcirc G]:=\sum_{H} \sum_{F}\left(H, Y \subset k(F), \beta_{F}(X)\right) \in \operatorname{Burn}_{n}(G),
$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,
- the induced $Y \subseteq \mathrm{Z}_{\mathrm{G}}(H) / H$-action on the function field of the subvariety $F \subset X$, with generic stabilizer H,

Equivariant Burnside group

Passing to a standard model X, define:

$$
[X \bigcirc G]:=\sum_{H} \sum_{F}\left(H, Y \subset k(F), \beta_{F}(X)\right) \in \operatorname{Burn}_{n}(G),
$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,
- the induced $Y \subseteq Z_{G}(H) / H$-action on the function field of the subvariety $F \subset X$, with generic stabilizer H,
- the (generic) eigenvalues of H in the normal bundle along F.

Equivariant Burnside group

Kresch-T. (2020)
The class

$$
[x \bigcirc G] \in \operatorname{Burn}_{n}(\mathrm{G})
$$

is a well-defined G-equivariant birational invariant.

Equivariant Burnside group

Kresch-T. (2020)
The class

$$
[x \bigcirc G] \in \operatorname{Burn}_{n}(G)
$$

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization.

Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the function fields of strata

Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the function fields of strata; there is a distinguished subgroup

$$
\operatorname{Burn}_{n}^{\mathrm{inc}}(G) \subset \operatorname{Burn}_{n}(G),
$$

generated by incompressible divisor symbols, i.e.,

$$
\mathfrak{s}=(H, Y \subset K, \beta), \quad \operatorname{trdeg}_{k}(K)=n-1,
$$

H is a nontrivial cyclic group and $\beta=(b)$, a single character, generating H^{\vee}

Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the function fields of strata; there is a distinguished subgroup

$$
\operatorname{Burn}_{n}^{\mathrm{inc}}(G) \subset \operatorname{Burn}_{n}(G),
$$

generated by incompressible divisor symbols, i.e.,

$$
\mathfrak{s}=(H, Y \subset K, \beta), \quad \operatorname{trdeg}_{k}(K)=n-1,
$$

H is a nontrivial cyclic group and $\beta=(b)$, a single character, generating H^{\vee}, and such that \mathfrak{s} cannot arise from Θ_{2} in relation (B2).

Burnside groups: incompressibles

The subgroup

$$
\operatorname{Burn}_{n}^{\mathrm{inc}}(G) \subseteq \operatorname{Burn}_{n}(G),
$$

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).

Burnside groups: incompressibles

The subgroup

$$
\operatorname{Burn}_{n}^{\mathrm{inc}}(G) \subseteq \operatorname{Burn}_{n}(G),
$$

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).
$n=1$ Every divisor symbol in incompressible.

Burnside groups: incompressibles

The subgroup

$$
\operatorname{Burn}_{n}^{\mathrm{inc}}(G) \subseteq \operatorname{Burn}_{n}(G),
$$

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).
$n=1$ Every divisor symbol in incompressible.
$n=2$ A divisor symbol

$$
(H, Y \subset K, \beta), \quad \beta=(b)
$$

is compressible if and only if Y is cyclic and $K=k(t)$.

Applications: Birationality of linear actions on \mathbb{P}^{2}

Let $G=C_{n} \times \mathfrak{S}_{3}$, and χ be a primitive character of C_{n}. We have a G-action on

$$
\mathbb{P}^{2}=\mathbb{P}(\mathrm{I} \oplus V \otimes \chi)
$$

where V is the standard 2-dimensional representation of \mathfrak{S}_{3} and I is the trivial representation of G.

Applications: Birationality of linear actions on \mathbb{P}^{2}

Let $G=C_{n} \times \mathfrak{S}_{3}$, and χ be a primitive character of C_{n}. We have a G-action on

$$
\mathbb{P}^{2}=\mathbb{P}(\mathrm{I} \oplus V \otimes \chi)
$$

where V is the standard 2-dimensional representation of \mathfrak{S}_{3} and I is the trivial representation of G. Then

$$
[X \frown G]^{\mathrm{inc}}=\left(C_{n}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{1}\right),(\chi)\right)+\left(C_{n}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{1}\right),(-\chi)\right)
$$

Applications: Birationality of linear actions on \mathbb{P}^{2}

Let $G=C_{n} \times \mathfrak{S}_{3}$, and χ be a primitive character of C_{n}. We have a G -action on

$$
\mathbb{P}^{2}=\mathbb{P}(\mathrm{I} \oplus V \otimes \chi)
$$

where V is the standard 2-dimensional representation of \mathfrak{S}_{3} and I is the trivial representation of G. Then

$$
[X \frown G]^{\mathrm{inc}}=\left(C_{n}, \mathfrak{S}_{3} \odot k\left(\mathbb{P}^{1}\right),(\chi)\right)+\left(C_{n}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{1}\right),(-\chi)\right)
$$

If $\chi \neq \pm \chi^{\prime}$ then the corresponding actions are not G-birational.

Applications: Birationality of linear actions on \mathbb{P}^{2}

Let $G=C_{n} \times \mathfrak{S}_{3}$, and χ be a primitive character of C_{n}. We have a G-action on

$$
\mathbb{P}^{2}=\mathbb{P}(\mathrm{I} \oplus V \otimes \chi)
$$

where V is the standard 2-dimensional representation of \mathfrak{S}_{3} and I is the trivial representation of G. Then

$$
[X \frown G]^{\text {inc }}=\left(C_{n}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{1}\right),(\chi)\right)+\left(C_{n}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{1}\right),(-\chi)\right)
$$

If $\chi \neq \pm \chi^{\prime}$ then the corresponding actions are not G-birational.

Birational rigidity techniques do not work well in this case, since $X^{G} \neq \emptyset$.

Applications: quadric threefolds

Consider $X \subset \mathbb{P}^{4}$ given by

$$
x_{1}^{2}+\cdots+x_{5}^{2}=0
$$

with an action of $G \subset W\left(D_{5}\right)$, permuting the variables and changing signs.

Applications: quadric threefolds

Consider $X \subset \mathbb{P}^{4}$ given by

$$
x_{1}^{2}+\cdots+x_{5}^{2}=0
$$

with an action of $G \subset W\left(D_{5}\right)$, permuting the variables and changing signs.

The action is linearizable if $X^{G} \neq \emptyset$.

Applications: quadric threefolds

Consider $X \subset \mathbb{P}^{4}$ given by

$$
x_{1}^{2}+\cdots+x_{5}^{2}=0
$$

with an action of $G \subset W\left(D_{5}\right)$, permuting the variables and changing signs.

The action is linearizable if $X^{G} \neq \emptyset$. Linearizable actions of abelian groups have fixed points; thus we assume that

- $X^{H} \neq \emptyset$, for all abelian $H \subseteq G$, and
- $x^{G}=\emptyset$.

Applications: quadric threefolds

Consider $X \subset \mathbb{P}^{4}$ given by

$$
x_{1}^{2}+\cdots+x_{5}^{2}=0
$$

with an action of $G \subset W\left(D_{5}\right)$, permuting the variables and changing signs.

The action is linearizable if $X^{G} \neq \emptyset$. Linearizable actions of abelian groups have fixed points; thus we assume that

- $X^{H} \neq \emptyset$, for all abelian $H \subseteq G$, and
- $x^{G}=\emptyset$.

Then G is one of the following...

Applications: quadric threefolds

Applications: quadric threefolds

$$
\begin{aligned}
& \text { Theorem (Cheltsov-Sarikyan-Zhuang, 2023) } \\
& \text { Let } X \subset \mathbb{P}^{4} \text { be a smooth quadric over } k=\mathbb{C} \text { : } \\
& \qquad x_{1}^{2}+\cdots+x_{5}^{2}=0, \\
& \text { with the } \mathfrak{S}_{5} \text {-action given by permutations of variables. This action is } \\
& \text { not linearizable. }
\end{aligned}
$$

Consider $X_{4} \subset \mathbb{P}^{5}$ given by

$$
\sum_{1 \leq i<i<k<l \leq 6} x_{i} x_{j} x_{k} x_{l}=\sum_{i=1}^{6} x_{i}=0
$$

it carries an action of \mathfrak{S}_{6}.

Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider $X_{4} \subset \mathbb{P}^{5}$ given by

$$
\sum_{1 \leq i<j<k<l \leq 6} x_{i} x_{j} x_{k} x_{l}=\sum_{i=1}^{6} x_{i}=0
$$

it carries an action of \mathfrak{S}_{6}. Then the action of any G containing

$$
H:=\langle(12)\rangle
$$

is not linearizable.

Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider $X_{4} \subset \mathbb{P}^{5}$ given by

$$
\sum_{1 \leq i<i<k<l \leq 6} x_{i} x_{j} x_{k} x_{l}=\sum_{i=1}^{6} x_{i}=0
$$

it carries an action of \mathfrak{S}_{6}. Then the action of any G containing

$$
H:=\langle(12)\rangle
$$

is not linearizable. Indeed, the fixed locus of H is a quartic with 12 singular points, a K3 surface S.

Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider $X_{4} \subset \mathbb{P}^{5}$ given by

$$
\sum_{1 \leq i<i<k<l \leq 6} x_{i} x_{j} x_{k} x_{l}=\sum_{i=1}^{6} x_{i}=0
$$

it carries an action of \mathfrak{S}_{6}. Then the action of any G containing

$$
H:=\langle(12)\rangle
$$

is not linearizable. Indeed, the fixed locus of H is a quartic with 12 singular points, a K3 surface S. The symbol

$$
(H, Y \subset k(X),(1))
$$

is incompressible (for any Y).

Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider $X_{4} \subset \mathbb{P}^{5}$ given by

$$
\sum_{1 \leq i<i<k<l \leq 6} x_{i} x_{j} x_{k} x_{l}=\sum_{i=1}^{6} x_{i}=0
$$

it carries an action of \mathfrak{S}_{6}. Then the action of any G containing

$$
H:=\langle(12)\rangle
$$

is not linearizable. Indeed, the fixed locus of H is a quartic with 12 singular points, a K3 surface S. The symbol

$$
(H, Y \subset k(X),(1))
$$

is incompressible (for any Y). Such symbols do not arise for linear actions.

Applications: cubic fourfolds

Kresch-Hassett-T. 2020

There exists a rational cubic 4 -fold with a nonlinearizable action of

$$
G=C_{6} .
$$

Applications: cubic fourfolds

Kresch-Hassett-T. 2020

There exists a rational cubic 4-fold with a nonlinearizable action of

$$
G=C_{6} .
$$

Böhning-von Bothmer-T. 2023

There exists a rational cubic 4 -folds with nonlinearizable but stably
linearizable action of \mathfrak{F}_{7}.

Applications: Birational characters for (projective) linear actions

[^0]
Applications: Birational characters for (projective) linear actions

Theorem (Kresch-T. 2022)
 Explicit algorithm to compute
 $$
[\mathbb{P}(V) \supset G] \in \operatorname{Burn}_{n}(G)
$$
 for (projective) linear actions.

Based on an equivariant version of De-Concini-Procesi compactifications of subspace arrangements.

Applications: Birational characters for (projective) linear actions

Theorem (Kresch-T. 2022)
Explicit algorithm to compute

$$
[P(V) \supset G] \in \operatorname{Burn}_{n}(G)
$$

for (projective) linear actions.

Based on an equivariant version of De-Concini-Procesi compactifications of subspace arrangements.

This has been implemented in Magma by Kaiqi Yang and Zhijia Zhang.

Applications: Birational characters for (projective) linear actions

There are two projective linear actions of $G=\mathfrak{S}_{6}$ on \mathbb{P}^{3}, with classes

$$
\begin{aligned}
{\left[\mathbb{P}^{3} \bigcirc C\right] } & =\left(C_{1}, \mathfrak{S}_{6} \subset k\left(\mathbb{P}^{3}\right),()\right) \\
& +\left(C_{2}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{2}^{\prime}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right) \\
& +\left(C_{2}^{\prime \prime}, C_{2}^{2} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{3}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{2}\right),(1)\right) \\
& +\left(C_{3}^{2}, 1 \subset k,((1,1),(1,2),(2,0))\right),
\end{aligned}
$$

respectively,

$$
\begin{aligned}
{\left[\mathbb{P}^{3} \bigcirc G\right] } & =\left(C_{1}, \mathfrak{S}_{6} \subset k\left(\mathbb{P}^{3}\right),()\right) \\
& +\left(C_{2}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{2}^{\prime}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right) \\
& +\left(C_{2}^{\prime \prime}, C_{2}^{2} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{3}^{\prime}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{2}\right),(2)\right) \\
& +\left(C_{3}^{2}, 1 \subset k,((0,2),(2,0),(2,2))\right) .
\end{aligned}
$$

Applications: Birational characters for (projective) linear actions

There are two projective linear actions of $G=\mathfrak{S}_{6}$ on \mathbb{P}^{3}, with classes

$$
\begin{aligned}
{\left[\mathbb{P}^{3} \bigcirc \mathrm{C}\right] } & =\left(C_{1}, \mathfrak{S}_{6} \subset k\left(\mathbb{P}^{3}\right),()\right) \\
& +\left(C_{2}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{2}^{\prime}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right) \\
& +\left(C_{2}^{\prime \prime}, C_{2}^{2} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{3}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{2}\right),(1)\right) \\
& +\left(C_{3}^{2}, 1 \subset k,((1,1),(1,2),(2,0))\right),
\end{aligned}
$$

respectively,

$$
\begin{aligned}
{\left[\mathbb{P}^{3} \bigcirc G\right] } & =\left(C_{1}, \mathfrak{S}_{6} \subset k\left(\mathbb{P}^{3}\right),()\right) \\
& +\left(C_{2}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{2}^{\prime}, \mathfrak{A}_{4} \subset k\left(\mathbb{P}^{2}\right),(1)\right) \\
& +\left(C_{2}^{\prime \prime}, C_{2}^{2} \subset k\left(\mathbb{P}^{2}\right),(1)\right)+\left(C_{3}^{\prime}, \mathfrak{S}_{3} \subset k\left(\mathbb{P}^{2}\right),(2)\right) \\
& +\left(C_{3}^{2}, 1 \subset k,((0,2),(2,0),(2,2))\right) .
\end{aligned}
$$

These differ in $\operatorname{Burn}_{3}(\mathrm{G})$; thus, the actions are not birational.

Equivariant Burnside group: structure

Let us examine the crucial relation
(B2): $(H, Y \subset K, \beta)=$

$$
\left(H, Y \subset K, \beta_{1}\right)+\left(H, Y \subset K, \beta_{2}\right)+(\bar{H}, \bar{Y} \subset K(t), \bar{\beta})
$$

Equivariant Burnside group: structure

Let us examine the crucial relation
(B2): $(H, Y \subset K, \beta)=$

$$
\left(H, Y \subset K, \beta_{1}\right)+\left(H, Y \subset K, \beta_{2}\right)+(\bar{H}, \bar{Y} \subset K(t), \bar{\beta})
$$

Observation: This relation preserves various geometric properties of the function field K, e.g.,

- dimensions of MRC quotients

Equivariant Burnside group: structure

Let us examine the crucial relation
(B2): $(H, Y \subset K, \beta)=$

$$
\left(H, Y \subset K, \beta_{1}\right)+\left(H, Y \subset K, \beta_{2}\right)+(\bar{H}, \bar{Y} \subset K(t), \bar{\beta})
$$

Observation: This relation preserves various geometric properties of the function field K, e.g.,

- dimensions of MRC quotients
- unramified cohomology, $\mathrm{H}^{1}(Y, \operatorname{Pic}(D))$,

Equivariant Burnside group: structure

Let us examine the crucial relation
(B2): $(H, Y \subset K, \beta)=$

$$
\left(H, Y \subset K, \beta_{1}\right)+\left(H, Y \subset K, \beta_{2}\right)+(\bar{H}, \bar{Y} \subset K(t), \bar{\beta})
$$

Observation: This relation preserves various geometric properties of the function field K, e.g.,

- dimensions of MRC quotients
- unramified cohomology, $\mathrm{H}^{1}(Y, \operatorname{Pic}(D))$,
- other stable birational invariants.

This means that the Burnside group admits direct sum decompositions

$$
\operatorname{Burn}_{n}(G)=\oplus \ldots
$$

Equivariant Burnside group: structure

Let us examine the crucial relation
(B2): $(H, Y \subset K, \beta)=$

$$
\left(H, Y \subset K, \beta_{1}\right)+\left(H, Y \subset K, \beta_{2}\right)+(\bar{H}, \bar{Y} \subset K(t), \bar{\beta})
$$

Observation: This relation preserves various geometric properties of the function field K, e.g.,

- dimensions of MRC quotients
- unramified cohomology, $\mathrm{H}^{1}(Y, \operatorname{Pic}(D))$,
- other stable birational invariants.

This means that the Burnside group admits direct sum decompositions

$$
\operatorname{Burn}_{n}(C)=\oplus \ldots
$$

The incompressibles we discussed give just one of the direct summands.

Summary

- Ideas from motivic integration led to the introduction of new invariants in birational geometry,

Summary

- Ideas from motivic integration led to the introduction of new invariants in birational geometry,
- Burnside groups have a rich algebraic structure, to be investigated,

Summary

- Ideas from motivic integration led to the introduction of new invariants in birational geometry,
- Burnside groups have a rich algebraic structure, to be investigated,
- There are now many examples of nonbirational actions of finite groups; and we continue to explore the range of applicability of these new invariants.

[^0]: Theorem (Kresch-T. 2022)
 Explicit algorithm to compute

 $$
 [\mathbb{P}(V) \supset G] \in \operatorname{Burn}_{n}(G)
 $$

 for (projective) linear actions.

