New invariants in birational geometry

with Chambert-Loir, Cheltsov, Hassett, Kontsevich, Kresch, K. Yang, Zh. Zhang

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

1

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

• Classify K = k(X) up to isomorphism.

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

• Classify K = k(X) up to isomorphism. In particular, when is X rational, i.e.,

$$K \simeq k(\mathbb{P}^n) = k(x_1,\ldots,x_n).$$

1

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

• Classify K = k(X) up to isomorphism. In particular, when is X rational, i.e.,

$$K \simeq k(\mathbb{P}^n) = k(x_1,\ldots,x_n).$$

• Classify finite groups

$$G \subset \operatorname{Aut}(K/k) = \operatorname{BirAut}(X),$$

1

up to conjugation.

Let X be a smooth projective algebraic variety over k, a field of characteristic zero.

Basic questions:

• Classify K = k(X) up to isomorphism. In particular, when is X rational, i.e.,

$$K \simeq k(\mathbb{P}^n) = k(x_1,\ldots,x_n).$$

• Classify finite groups

$$G \subset \operatorname{Aut}(K/k) = \operatorname{BirAut}(X),$$

up to conjugation. In particular, when does a finite group

$$G \subset \operatorname{Cr}_n := \operatorname{BirAut}(\mathbb{P}^n)$$

1

arise from a linear action on \mathbb{P}^n ?

$$\operatorname{Cr}_2 = \operatorname{BirAut}(\mathbb{P}^2)$$

is generated by elements in $\mathrm{PGL}_3=\mathrm{Aut}(\mathbb{P}^2)$

$$\operatorname{Cr}_2 = \operatorname{BirAut}(\mathbb{P}^2)$$

is generated by elements in $\mathrm{PGL}_3=\mathrm{Aut}(\mathbb{P}^2)$ and the Cremona involution

$$(x:y:z)\mapsto (\frac{1}{x}:\frac{1}{y}:\frac{1}{z}).$$

$$\operatorname{Cr}_2 = \operatorname{BirAut}(\mathbb{P}^2)$$

is generated by elements in $\mathrm{PGL}_3 = \mathrm{Aut}(\mathbb{P}^2)$ and the Cremona involution

$$(x:y:z)\mapsto (\frac{1}{x}:\frac{1}{y}:\frac{1}{z}).$$

Conjugacy classes of finite $G \subset PGL_3$ are known.

$$\operatorname{Cr}_2 = \operatorname{BirAut}(\mathbb{P}^2)$$

is generated by elements in $\mathrm{PGL}_3 = \mathrm{Aut}(\mathbb{P}^2)$ and the Cremona involution

$$(x:y:z)\mapsto (\frac{1}{x}:\frac{1}{y}:\frac{1}{z}).$$

Conjugacy classes of finite $G \subset PGL_3$ are known.

Open problem: Classify $G \subset PGL_3$ up to conjugation in Cr_2 .

$$\operatorname{Cr}_2 = \operatorname{BirAut}(\mathbb{P}^2)$$

is generated by elements in $\mathrm{PGL}_3 = \mathrm{Aut}(\mathbb{P}^2)$ and the Cremona involution

$$(x:y:z)\mapsto (\frac{1}{x}:\frac{1}{y}:\frac{1}{z}).$$

Conjugacy classes of finite $G \subset PGL_3$ are known.

Open problem: Classify $G \subset PGL_3$ up to conjugation in Cr_2 .

The classification of abelian $G \subset \operatorname{Cr}_2$ has been completed in 2006 (Blanc).

$$\operatorname{Cr}_2 = \operatorname{BirAut}(\mathbb{P}^2)$$

is generated by elements in $\mathrm{PGL}_3 = \mathrm{Aut}(\mathbb{P}^2)$ and the Cremona involution

$$(x:y:z)\mapsto (\frac{1}{x}:\frac{1}{y}:\frac{1}{z}).$$

Conjugacy classes of finite $G \subset PGL_3$ are known.

Open problem: Classify $G \subset PGL_3$ up to conjugation in Cr_2 .

The classification of abelian $G \subset Cr_2$ has been completed in 2006 (Blanc). Even the classification of involutions in Cr_3 is still open.

Birationality:

- varieties
- varieties with additional structures, e.g.,
 - G-varieties
 - varieties with logarithmic volume forms
 - varieties with Azumaya algebras ...

• $X \sim \mathbb{P}^n$ – rationality

- $X \sim \mathbb{P}^n$ rationality
- $X \times \mathbb{P}^n \sim \mathbb{P}^m$ stable rationality

- $X \sim \mathbb{P}^n$ rationality
- $X \times \mathbb{P}^n \sim \mathbb{P}^m$ stable rationality
- $X \sim_G \mathbb{P}^n G$ finite group, X a G-variety, action \mathbb{P}^n is linear

- $X \sim \mathbb{P}^n$ rationality
- $X \times \mathbb{P}^n \sim \mathbb{P}^m$ stable rationality
- $X \sim_G \mathbb{P}^n G$ finite group, X a G-variety, action \mathbb{P}^n is linear
- $X \times \mathbb{P}^m \sim_G \mathbb{P}^n$ the action \mathbb{P}^n is linear and on \mathbb{P}^m is trivial

- $X \sim \mathbb{P}^n$ rationality
- $X \times \mathbb{P}^n \sim \mathbb{P}^m$ stable rationality
- $X \sim_G \mathbb{P}^n G$ finite group, X a G-variety, action \mathbb{P}^n is linear
- $X \times \mathbb{P}^m \sim_G \mathbb{P}^n$ the action \mathbb{P}^n is linear and on \mathbb{P}^m is trivial
- $(X, \omega_X) \sim (\mathbb{P}^n, \omega_n)$, where

$$\omega_n = \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n}$$

is the standard volume form with logarithmic poles on \mathbb{P}^n .

 Burn_n(k) – free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k

- Burn_n(k) free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k
- Burn_n(*G*, *k*) free abelian group on birational equivalence classes of *n*-dimensional algebraic *G*-varieties over *k*

- Burn_n(k) free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k
- Burn_n(G, k) free abelian group on birational equivalence classes of *n*-dimensional algebraic G-varieties over k
- Burn_n(k) free abelian group on birational equivalence classes of n-dimensional algebraic varieties over k equipped with a volume form with logarithmic poles

- Burn_n(k) free abelian group on isomorphism classes of finitely generated extensions of k of transcendence degree n, i.e., birational equivalence classes of n-dimensional algebraic varieties over k
- Burn_n(G, k) free abelian group on birational equivalence classes of *n*-dimensional algebraic G-varieties over k
- Burn_n(k) free abelian group on birational equivalence classes of n-dimensional algebraic varieties over k equipped with a volume form with logarithmic poles

Why are these interesting?

Why are these interesting?

There is a ring structure on (all variants of)

 $\operatorname{Burn}(k) := \bigoplus_{n \ge 0} \operatorname{Burn}_n(k).$

Why are these interesting?

There is a ring structure on (all variants of)

 $\operatorname{Burn}(k) := \bigoplus_{n \ge 0} \operatorname{Burn}_n(k).$

These rings have an intricate internal structure, reflecting, e.g., nontrivial stable birationalities.

Burn_n(k) (with Chambert-Loir and Kontsevich, 2023)

Let

$$[X, \omega_X] \in \mathbf{Burn}(k)$$

be the class of the pair (X, ω_X) in this ring.

Burn_n(k) (with Chambert-Loir and Kontsevich, 2023)

Let

$$[X, \omega_X] \in \mathbf{Burn}(k)$$

be the class of the pair (X, ω_X) in this ring.

Example

In dimension 0, we have

$$\epsilon = [\operatorname{Spec}(k), -1] \in \operatorname{Burn}_0(k).$$

Let

$$[X, \omega_X] \in \mathbf{Burn}(k)$$

be the class of the pair (X, ω_X) in this ring.

Example

In dimension 0, we have

$$\epsilon = [\operatorname{Spec}(k), -1] \in \operatorname{Burn}_0(k).$$

In dimension 1,

 $\mathbf{T} := [\mathbb{P}^1, \mathrm{d}t/t] \in \mathbf{Burn}_1(k).$

Let *X* be a model of a function field K = k(X) such that the polar divisor of ω_X is

$$D = \cup_{\alpha \in \mathcal{A}} D_{\alpha},$$

a divisor with normal crossings.

Let *X* be a model of a function field K = k(X) such that the polar divisor of ω_X is

$$D=\cup_{\alpha\in\mathcal{A}}D_{\alpha},$$

a divisor with normal crossings. For each $A \subseteq A$, let $D_A := \bigcap_{\alpha \in A} D_\alpha$ and ω_A be the iterated residue of ω_X along D_A .

$\mathbf{Burn}_n(k)$

There is a (well-defined) derivation:

$$\partial$$
 : **Burn**_n(k) \rightarrow **Burn**_{n-1}(k),

given by

$$\partial([X,\omega]) = \sum_{\emptyset \neq A \subset \mathscr{A}} (-1)^{\operatorname{Card}(A)-1} [D_A, \omega_A] \cdot \mathbf{T}^{\operatorname{Card}(A)-1},$$

$\operatorname{Burn}_n(k)$

There is a (well-defined) derivation:

$$\partial$$
 : **Burn**_n(k) \rightarrow **Burn**_{n-1}(k),

given by

$$\partial([X,\omega]) = \sum_{\emptyset \neq A \subset \mathscr{A}} (-1)^{\operatorname{Card}(A)-1} [D_A, \omega_A] \cdot \mathbf{T}^{\operatorname{Card}(A)-1},$$

which satisfies

$$\partial \circ \partial = 0.$$

$\operatorname{Burn}_n(k)$

There is a (well-defined) derivation:

$$\partial$$
: Burn_n(k) \rightarrow Burn_{n-1}(k),

given by

$$\partial([X,\omega]) = \sum_{\emptyset \neq A \subset \mathscr{A}} (-1)^{\operatorname{Card}(A)-1} [D_A, \omega_A] \cdot \mathbf{T}^{\operatorname{Card}(A)-1},$$

which satisfies

$$\partial \circ \partial = 0.$$

This was inspired by polar homology of Khesin-Rosly (2003), except that

• we record contributions from strata of all codimensions, rather than only from those of codimension one,

$\operatorname{Burn}_n(k)$

There is a (well-defined) derivation:

$$\partial$$
: Burn_n(k) \rightarrow Burn_{n-1}(k),

given by

$$\partial([X,\omega]) = \sum_{\emptyset \neq A \subset \mathscr{A}} (-1)^{\operatorname{Card}(A)-1} [D_A, \omega_A] \cdot \mathbf{T}^{\operatorname{Card}(A)-1},$$

which satisfies

$$\partial \circ \partial = 0.$$

This was inspired by polar homology of Khesin-Rosly (2003), except that

- we record contributions from strata of all codimensions, rather than only from those of codimension one,
- we record birational types of strata, rather than the strata themselves.

Moreover,

$$\partial(a \cdot b) = \epsilon^n \cdot \partial(a) \cdot b + a \cdot \partial(b) - \mathbf{T} \cdot \partial(a) \cdot \partial(b),$$

when $a \in \operatorname{Burn}_m(k)$ and $b \in \operatorname{Burn}_n(k)$.

Now consider Burn(k) – free abelian group on birational equivalence classes of algebraic varieties over k.

Now consider Burn(k) – free abelian group on birational equivalence classes of algebraic varieties over k.

Let

$$\phi: X \dashrightarrow Y$$

be a birational map between smooth projective varieties over *k*.

Now consider Burn(k) – free abelian group on birational equivalence classes of algebraic varieties over k.

Let

$$\phi: X \dashrightarrow Y$$

be a birational map between smooth projective varieties over k. Let $Ex(\phi)$ and $Ex(\phi^{-1})$ be the sets of divisorial components of the exceptional locus of ϕ , respectively ϕ^{-1} .

Now consider Burn(k) – free abelian group on birational equivalence classes of algebraic varieties over k.

Let

$$\phi: X \dashrightarrow Y$$

be a birational map between smooth projective varieties over k. Let $Ex(\phi)$ and $Ex(\phi^{-1})$ be the sets of divisorial components of the exceptional locus of ϕ , respectively ϕ^{-1} . Put

$$c(\phi) := \sum_{E \in \operatorname{Ex}(\phi^{-1})} [k(E)] - \sum_{D \in \operatorname{Ex}(\phi)} [k(D)].$$

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of n-dimensional varieties over k,

$$c(\phi \circ \psi) := c(\phi) + c(\psi) \in \operatorname{Burn}_{n-1}(k).$$

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of *n*-dimensional varieties over *k*,

$$c(\phi \circ \psi) := c(\phi) + c(\psi) \in \operatorname{Burn}_{n-1}(k).$$

This yields a homomorphism:

$$c: \operatorname{BirAut}(X) \to \operatorname{Burn}_{n-1}(k).$$

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of n-dimensional varieties over k,

$$c(\phi \circ \psi) := c(\phi) + c(\psi) \in \operatorname{Burn}_{n-1}(k).$$

This yields a homomorphism:

 $c : \operatorname{BirAut}(X) \to \operatorname{Burn}_{n-1}(k).$

Corollary: Cr_n is not generated by regularizable maps, for $n \ge 4$, (disproving a conjecture from 2004). A map $\phi \in \operatorname{Cr}_n$ is regularizable if there exists a birational $\alpha : \mathbb{P}^n \dashrightarrow X$ such that $\alpha \circ \phi \circ \alpha^{-1} \in \operatorname{Aut}(X)$.

Theorem (Lin-Shinder 2022)

This assignment respects compositions of birational maps of n-dimensional varieties over k,

$$c(\phi \circ \psi) := c(\phi) + c(\psi) \in \operatorname{Burn}_{n-1}(k).$$

This yields a homomorphism:

 $c : \operatorname{BirAut}(X) \to \operatorname{Burn}_{n-1}(k).$

Corollary: Cr_n is not generated by regularizable maps, for $n \ge 4$, (disproving a conjecture from 2004). A map $\phi \in \operatorname{Cr}_n$ is regularizable if there exists a birational $\alpha : \mathbb{P}^n \dashrightarrow X$ such that $\alpha \circ \phi \circ \alpha^{-1} \in \operatorname{Aut}(X)$. **Proof:** It suffices to present **one** nonregularizable map; done by Hassett-Lai (2018).

This formalism extends to the equivariant, orbifold, and logarithmic volume forms context (Kresch-T. 2022, Chambert-Loir–Kontsevich-T. 2023).

This formalism extends to the equivariant, orbifold, and logarithmic volume forms context (Kresch-T. 2022, Chambert-Loir–Kontsevich-T. 2023).

This yields new structural information about the Cremona group

 $\operatorname{Cr}_n(k).$

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0 -triviality
- Nicaise–Shinder (2017): $K_0(Var_k)/\mathbb{L}$, char(k) = 0
- Kontsevich–T. (2017): Burn(k), char(k) = 0

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0 -triviality
- Nicaise–Shinder (2017): $K_0(Var_k)/\mathbb{L}$, char(k) = 0
- Kontsevich–T. (2017): Burn(k), char(k) = 0

These developments led to a wealth of new results in birational geometry,

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0 -triviality
- Nicaise–Shinder (2017): $K_0(Var_k)/\mathbb{L}$, char(k) = 0
- Kontsevich–T. (2017): Burn(k), char(k) = 0

These developments led to a wealth of new results in birational geometry, for the following reasons:

• new, computable, obstructions to (stable) rationality arise in singular fibers,

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0 -triviality
- Nicaise–Shinder (2017): $K_0(Var_k)/\mathbb{L}$, char(k) = 0
- Kontsevich–T. (2017): Burn(k), char(k) = 0

These developments led to a wealth of new results in birational geometry, for the following reasons:

- new, computable, obstructions to (stable) rationality arise in singular fibers,
- one can use general position arguments to establish rationality.

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o} , with special fiber $\bigcup_{\alpha \in \mathcal{A}} D_{\alpha}$.

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o} , with special fiber $\bigcup_{\alpha \in \mathcal{A}} D_{\alpha}$. (For some of the constructions, one may ignore multiplicities.)

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o} , with special fiber $\bigcup_{\alpha \in \mathcal{A}} D_{\alpha}$. (For some of the constructions, one may ignore multiplicities.)

Put

$$\rho(\mathcal{X}_{K}) := \sum_{A \subseteq \mathcal{A}} (-1)^{\operatorname{Card}(A)-1} [k(D_{A})] \mathbf{L}^{\operatorname{Card}(A)-1}$$

Theorem (Kontsevich-T.)

This gives a well-defined homomorphism of abelian groups

 $\rho: \operatorname{Burn}_n(K) \to \operatorname{Burn}_n(k).$

Let \mathfrak{o} be a DVR, k its residue field and K the function field. Let X be a smooth projective variety over K of relative dimension n and \mathcal{X} a proper model over \mathfrak{o} , with special fiber $\bigcup_{\alpha \in \mathcal{A}} D_{\alpha}$. (For some of the constructions, one may ignore multiplicities.)

Put

$$\rho(\mathcal{X}_{K}) := \sum_{A \subseteq \mathcal{A}} (-1)^{\operatorname{Card}(A)-1} [k(D_{A})] \mathbf{L}^{\operatorname{Card}(A)-1}$$

Theorem (Kontsevich-T.)

This gives a well-defined homomorphism of abelian groups

 $\rho : \operatorname{Burn}_n(K) \to \operatorname{Burn}_n(k).$

This is essentially the same formula as the one for

$$\partial : \mathbf{Burn}_n(k) \to \mathbf{Burn}_{n-1}(k).$$
 ¹⁵

Rationality specializes in smooth families.

Rationality specializes in smooth families.

Similar specialization results hold for

• equivariant birational types (Kresch-T. 2022)

Rationality specializes in smooth families.

Similar specialization results hold for

- equivariant birational types (Kresch-T. 2022)
- birational types of varieties with logarithmic volume forms (Chambert-Loir, Kontsevich, T. 2023)

Rationality specializes in smooth families.

Similar specialization results hold for

- equivariant birational types (Kresch-T. 2022)
- birational types of varieties with logarithmic volume forms (Chambert-Loir, Kontsevich, T. 2023)
- birational types of orbifolds (Kresch-T. 2023)

Let *G* be a finite group. We had introduced

 $\operatorname{Burn}_n(G,k)$

as the free abelian group on birational equivalence classes of algebraic *G*-varieties over *k*.

Let *G* be a finite group. We had introduced

 $\operatorname{Burn}_n(G,k)$

as the free abelian group on birational equivalence classes of algebraic *G*-varieties over *k*.

To distinguish such classes, we would like to have an analog of ∂ , extracting invariants from information about subvarieties.

Problem: How to distinguish equivariant birational types of linear actions?

Problem: How to distinguish equivariant birational types of linear actions? How to distinguish linear actions from nonlinear actions?

Problem: How to distinguish equivariant birational types of linear actions? How to distinguish linear actions from nonlinear actions?

Basic facts:

• If *X* is rational and *G* is cyclic, then $X^G \neq \emptyset$.

Problem: How to distinguish equivariant birational types of linear actions? How to distinguish linear actions from nonlinear actions?

Basic facts:

- If *X* is rational and *G* is cyclic, then $X^G \neq \emptyset$.
- If Y --→ X is a G-birational map between smooth projective G-varieties, and G is abelian, then

$$Y^G \neq \emptyset \Leftrightarrow X^G \neq \emptyset.$$

Basic facts

More precisely, let *X* be smooth projective of dimension *n*, *G* abelian, and let $\mathfrak{p} \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of *G* in the tangent space to *X* at \mathfrak{p} .

Basic facts

More precisely, let *X* be smooth projective of dimension *n*, *G* abelian, and let $\mathfrak{p} \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of *G* in the tangent space to *X* at \mathfrak{p} . Let

$$\det(a_1,\ldots,a_n)=a_1\wedge\ldots\wedge a_n\in\wedge^n(G^\vee)$$

be the determinant.

Basic facts

More precisely, let *X* be smooth projective of dimension *n*, *G* abelian, and let $\mathfrak{p} \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of *G* in the tangent space to *X* at \mathfrak{p} . Let

$$\mathsf{det}(a_1,\ldots,a_n)=a_1\wedge\ldots\wedge a_n\in\wedge^n(G^\vee)$$

be the determinant.

Reichstein-Youssin (2002)

Let $Y \to X$ be a *G*-equivariant blowup. Then *Y* contains a point $\mathfrak{q} \in Y^G$ (in the preimage of \mathfrak{p}) with weights $\{b_1, \ldots, b_n\}$ in the tangent space, and such that

$$\det(b_1,\ldots,b_n)=\pm\det(a_1,\ldots,a_n),$$

i.e., this is a equivariant birational invariant.

Let *V* and *W* be *n*-dimensional faithful representations of an abelian group *G* of rank $r \leq n$, and

 a_1,\ldots,a_n , respectively b_1,\ldots,b_n ,

the characters of *G* appearing in *V*, respectively *W*. Then *V* and *W* are *G*-equivariantly birational if and only if

$$a_1 \wedge \cdots \wedge a_n = \pm b_1 \wedge \cdots \wedge b_n.$$

(This condition is meaningful only when r = n.)

• Thus, cyclic linear actions on \mathbb{P}^n , with $n \ge 2$, of the same order, are equivariantly birational.

- Thus, cyclic linear actions on \mathbb{P}^n , with $n \ge 2$, of the same order, are equivariantly birational.
- Note that any two faithful representations of *G* are equivariantly stably birational.

Consider an action of $\mathbb{Z}/p\mathbb{Z}$ on $X = \mathbb{P}^2$ given by

$$(x:y:z) \mapsto (\zeta^a x: \zeta^b y:z),$$

 $\zeta = \zeta_p, \quad a, b \in \mathbb{Z}/p\mathbb{Z}, \quad \gcd(a, b, p) = 1, \quad a \neq b.$

Fixed points are

Consider an action of $\mathbb{Z}/p\mathbb{Z}$ on $X = \mathbb{P}^2$ given by

$$(x:y:z)\mapsto (\zeta^a x:\zeta^b y:z),$$

 $\zeta = \zeta_p, \quad a, b \in \mathbb{Z}/p\mathbb{Z}, \quad \gcd(a, b, p) = 1, \quad a \neq b.$

Fixed points are

Record the weights in the tangent space at these points as a formal sum:

$$\beta(X) = [a, b] + [a - b, -b] + [b - a, -a].$$

All such actions are equivalent. Declare $\beta(X) = 0$, i.e.,

$$[a,b] = -[b-a,-a] - [a-b,-b]$$

Allowing

$$[a,b] = -[a,-b]$$

we find

$$[a,b] = [a,b-a] + [a-b,b].$$

Birational types $\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Generators: [a, b], $a, b \in \mathbb{Z}/p\mathbb{Z}$, gcd(a, b, p) = 1

Relations:

•
$$[a,b] = [b,a]$$

•
$$[a,b] = [a,b-a] + [a-b,b]$$
 if $a \neq b$

•
$$[a,a] = [a,0]$$

Birational types $\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Generators: [a, b], $a, b \in \mathbb{Z}/p\mathbb{Z}$, gcd(a, b, p) = 1

Relations:

•
$$[a,b] = [b,a]$$

•
$$[a,b] = [a,b-a] + [a-b,b]$$
 if $a \neq b$

•
$$[a, a] = [a, 0]$$

For $p \geq 5$, the \mathbb{Q} -rank of $\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$ equals

$$\frac{p^2-1}{24}+1$$

Birational types $\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Generators: [a, b], $a, b \in \mathbb{Z}/p\mathbb{Z}$, gcd(a, b, p) = 1

Relations:

•
$$[a,b] = [b,a]$$

•
$$[a,b] = [a,b-a] + [a-b,b]$$
 if $a \neq b$

•
$$[a, a] = [a, 0]$$

For $p \geq 5$, the \mathbb{Q} -rank of $\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$ equals

$$\frac{p^2 - 1}{24} + 1 = \dim(\mathrm{H}^1(X_1(p), \mathbb{Q}))$$

Let *G* be a finite abelian group, and $A = G^{\vee}$ its group of characters.

Let *G* be a finite abelian group, and $A = G^{\vee}$ its group of characters.

Let *X* be smooth projective, of dimension *n*, with regular *G*-action. Consider $X^G = \sqcup F_{\alpha}$ and record eigenvalues of *G*

 $[a_{1,\alpha},\ldots,a_{n,\alpha}]$

in the tangent space $\mathcal{T}_{x_{\alpha}}X$, at some $x_{\alpha} \in F_{\alpha}$.

Let *G* be a finite abelian group, and $A = G^{\vee}$ its group of characters.

Let *X* be smooth projective, of dimension *n*, with regular *G*-action. Consider $X^G = \sqcup F_{\alpha}$ and record eigenvalues of *G*

 $[a_{1,\alpha},\ldots,a_{n,\alpha}]$

in the tangent space $\mathcal{T}_{x_{\alpha}}X$, at some $x_{\alpha} \in F_{\alpha}$. Put

$$\beta(X) := \sum_{\alpha} [a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

Let *G* be a finite abelian group, and $A = G^{\vee}$ its group of characters.

Let *X* be smooth projective, of dimension *n*, with regular *G*-action. Consider $X^G = \sqcup F_{\alpha}$ and record eigenvalues of *G*

 $[a_{1,\alpha},\ldots,a_{n,\alpha}]$

in the tangent space $\mathcal{T}_{x_{\alpha}}X$, at some $x_{\alpha} \in F_{\alpha}$. Put

$$\beta(X) := \sum_{\alpha} [a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

Here, we keep no information about F_{α} .

Consider the free abelian group

 $\mathcal{S}_n(G)$

spanned by unordered tupels

$$[a_1,\ldots,a_n], \quad a_i\in A,$$

Consider the free abelian group

 $\mathcal{S}_n(G)$

spanned by unordered tupels

$$[a_1,\ldots,a_n], \quad a_i\in A,$$

subject to condition:

(G)
$$\sum_i \mathbb{Z}a_i = A$$
,

Consider the free abelian group

 $\mathcal{S}_n(G)$

spanned by unordered tupels

$$[a_1,\ldots,a_n], \quad a_i\in A,$$

subject to condition:

(G)
$$\sum_i \mathbb{Z}a_i = A$$
,

We get a map

$$\{ \text{ G-varieties } \} \rightarrow S_n(G)$$
$$X \mapsto \beta(X)$$

Let $Y \rightarrow X$ be a *G*-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$

Let $Y \rightarrow X$ be a *G*-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$

All such relations can be encoded in a compact form:

Let $Y \rightarrow X$ be a *G*-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$

All such relations can be encoded in a compact form: Consider the quotient

$$\mathcal{S}_n(G) \to \mathcal{B}_n(G),$$

by relations

Let $Y \rightarrow X$ be a *G*-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$

All such relations can be encoded in a compact form: Consider the quotient

$$\mathcal{S}_n(G) \to \mathcal{B}_n(G),$$

by relations

(B) for all $a_1, a_2, b_3, \ldots, b_n \in A$ we have

$$[a_1, a_2, b_3, \dots b_n] =$$

$$[a_1 - a_2, a_2, b_3, \dots, b_n] + [a_1, a_2 - a_1, b_3, \dots, b_n] \text{ if } a_1 \neq a_2,$$

$$[a_1, 0, b_3, \dots, b_n] \qquad \text{if } a_1 = a_2.$$

Kontsevich-T. 2019

The class

$$\beta(X) \in \mathcal{B}_n(G)$$

is a well-defined G-equivariant birational invariant.

Kontsevich-T. 2019

The class

$$\beta(X) \in \mathcal{B}_n(G)$$

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization (Abramovich, Karu, Matsuki, Włodarczyk)

For $G = \mathbb{Z}/p\mathbb{Z}$ and n = 2, we get $\binom{p}{2}$ linear equations in the same number of variables.

For $G = \mathbb{Z}/p\mathbb{Z}$ and n = 2, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{2}(G)) = \frac{p^{2}-1}{24} + 1$$

For $G = \mathbb{Z}/p\mathbb{Z}$ and n = 2, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{2}(G)) = rac{p^{2}-1}{24} + 1$$

For $n \ge 3$ the systems of equations are highly overdetermined.

For $G = \mathbb{Z}/p\mathbb{Z}$ and n = 2, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{2}(G)) = rac{p^{2}-1}{24} + 1$$

For $n \ge 3$ the systems of equations are highly overdetermined.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{3}(G)) \stackrel{?}{=} \frac{(p-5)(p-7)}{24} = \frac{p^{2}-1}{24} + 1 - \frac{p-1}{2}$$

For $G = \mathbb{Z}/p\mathbb{Z}$ and n = 2, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{2}(G)) = rac{p^{2}-1}{24} + 1$$

For $n \ge 3$ the systems of equations are highly overdetermined.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{3}(G)) \stackrel{?}{=} \frac{(p-5)(p-7)}{24} = \frac{p^{2}-1}{24} + 1 - \frac{p-1}{2}$$

Jumps at

$$p = 43, 59, 67, 83, \dots$$

For $G = \mathbb{Z}/p\mathbb{Z}$ and n = 2, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{2}(G)) = rac{p^{2}-1}{24} + 1$$

For $n \ge 3$ the systems of equations are highly overdetermined.

$$\operatorname{rk}_{\mathbb{Q}}(\mathcal{B}_{3}(G)) \stackrel{?}{=} \frac{(p-5)(p-7)}{24} = \frac{p^{2}-1}{24} + 1 - \frac{p-1}{2}$$

Jumps at

$$p = 43, 59, 67, 83, \dots$$

These are interesting groups!

Variant: introduce the quotient

$$\mu^-: \mathcal{B}_n(G) \to \mathcal{B}_n^-(G)$$

by an additional relation

$$[a_1, a_2, \ldots, a_n] = -[-a_1, a_2, \ldots, a_n].$$

Variant: introduce the quotient

$$\mu^-: \mathcal{B}_n(G) \to \mathcal{B}_n^-(G)$$

by an additional relation

$$[a_1, a_2, \ldots, a_n] = -[-a_1, a_2, \ldots, a_n].$$

The class of \mathbb{P}^n , $n \ge 2$, with linear action of $G := \mathbb{Z}/N\mathbb{Z}$ is

- torsion in $\mathcal{B}_n(G)$ and
- trivial in $\mathcal{B}_n^-(G)$.

Since all such actions are birationally equivalent, it suffices to consider one, with $G = \mathbb{Z}/N\mathbb{Z}$ acting by

$$(x_0,\ldots,x_n)\mapsto (\zeta_N x_0,x_1,\ldots,x_n).$$

Since all such actions are birationally equivalent, it suffices to consider one, with $G = \mathbb{Z}/N\mathbb{Z}$ acting by

$$(x_0,\ldots,x_n)\mapsto (\zeta_N x_0,x_1,\ldots,x_n).$$

This action fixes the point (1, 0, ..., 0) and the hyperplane $x_0 = 0$.

Since all such actions are birationally equivalent, it suffices to consider one, with $G = \mathbb{Z}/N\mathbb{Z}$ acting by

$$(x_0,\ldots,x_n)\mapsto (\zeta_N x_0,x_1,\ldots,x_n).$$

This action fixes the point (1, 0, ..., 0) and the hyperplane $x_0 = 0$. We have

$$\beta(\mathbb{P}^n) = [1, 0, \dots, 0] + [0, -1, \dots, -1] = [1, 0, \dots] + [-1, 0, \dots].$$

For $a, b \neq 0$, we have

$$[a,b] = [a-b,b] + [a,b-a] [a-b,a] = [-b,a] + [a-b,b].$$

For $a, b \neq 0$, we have

$$[a,b] = [a-b,b] + [a,b-a] [a-b,a] = [-b,a] + [a-b,b].$$

Taking the difference,

$$[a,b] + [-b,a] = [a,b-a] + [a,a-b].$$

For $a, b \neq 0$, we have

$$[a,b] = [a-b,b] + [a,b-a] [a-b,a] = [-b,a] + [a-b,b].$$

Taking the difference,

$$[a,b] + [-b,a] = [a,b-a] + [a,a-b].$$

If b - a = a, we stop and record:

$$[a,b] + [-b,a] = [a,a] + [a,-a] = [a,a] = [a,0].$$

If $b - a \neq a$, we iterate until a = b - ma, i.e., b = (m + 1)a, where it stops. This is solvable mod p.

We record:

$$[a,b] + [-b,a] = [a,a] + [a,-a] = [a,0]$$

Replacing *a* by -a, and requiring that $b \neq \pm a$,

$$[-a,b] + [-b,-a] = [-a,0],$$

adding these:

$$[a,b] + [-b,a] + [-a,b] + [-b,-a] = [a,0] + [-a,0].$$

We record:

$$[a,b] + [-b,a] = [a,a] + [a,-a] = [a,0]$$

Replacing *a* by -a, and requiring that $b \neq \pm a$,

$$[-a,b] + [-b,-a] = [-a,0],$$

adding these:

$$[a,b] + [-b,a] + [-a,b] + [-b,-a] = [a,0] + [-a,0]$$

These are symmetric in *a* and *b*, thus

$$[a,b] + [-b,a] + [-a,b] + [-b,-a] = [b,0] + [-b,0].$$

In particular,

$$[a, 0] + [-a, 0] = [b, 0] + [-b, 0]$$

We record:

$$[a,b] + [-b,a] = [a,a] + [a,-a] = [a,0]$$

Replacing *a* by -a, and requiring that $b \neq \pm a$,

$$[-a,b] + [-b,-a] = [-a,0],$$

adding these:

$$[a,b] + [-b,a] + [-a,b] + [-b,-a] = [a,0] + [-a,0]$$

These are symmetric in *a* and *b*, thus

$$[a,b] + [-b,a] + [-a,b] + [-b,-a] = [b,0] + [-b,0]$$

In particular,

$$[a, 0] + [-a, 0] = [b, 0] + [-b, 0] =: \delta.$$

Consider the sum

$$S:=\sum_{a,b,\neq 0,a\neq \pm b}[a,b],$$

We have

$$2S := \sum_{b} \sum_{a \neq \pm b} [a, b] + [-a, b] = (p-3) \cdot \sum_{b} [b, 0] = \frac{(p-3) \cdot (p-1)}{2} \cdot \delta,$$

Consider the sum

$$S:=\sum_{a,b,\neq 0,a\neq \pm b}[a,b],$$

We have

$$25 := \sum_{b} \sum_{a \neq \pm b} [a, b] + [-a, b] = (p-3) \cdot \sum_{b} [b, 0] = \frac{(p-3) \cdot (p-1)}{2} \cdot \delta,$$

Apply the blowup relation to each term in *S*:

$$S = \sum_{b} \sum_{a \neq \pm b} [a - b, b] + [a, b - a].$$

Relate the two sums to *S*:

$$\sum_{b,a\neq\pm b} [a-b,b] = S + \sum_{b} ([b,b] - [-2b,b])$$
$$\sum_{b,a\neq\pm b} [a,b-a] = S + \sum_{a} ([a,a] - [-2a,a]).$$

The second sum equals the first, with a and b switched. Thus

$$S = 2S + 2\sum_{b} [b, b] - \sum_{b} ([-2b, b] + [2b, -b]).$$

$[1,0]+[-1,0]\in \mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Note that

$$0 = [-b, b] = [-2b, b] + [-b, 2b]$$

so that the last sum vanishes.

$[1,0]+[-1,0]\in \mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Note that

$$0 = [-b, b] = [-2b, b] + [-b, 2b]$$

so that the last sum vanishes. As before,

$$\sum_{b} [b, b] = \sum_{b} [b, 0] = \frac{(p-1)}{2} \cdot \delta.$$

$\overline{[1,0]+[-1,0]}\in\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Note that

$$0 = [-b, b] = [-2b, b] + [-b, 2b]$$

so that the last sum vanishes. As before,

$$\sum_{b} [b,b] = \sum_{b} [b,0] = \frac{(p-1)}{2} \cdot \delta.$$

We find that

$$0 = S + (p-1)\delta = \frac{(p-3)(p-1)}{4} \cdot \delta + (p-1) \cdot \delta.$$

It follows that

$$0=\frac{(p-1)(p+1)}{4}\cdot\delta,$$

thus δ is torsion.

$\overline{[1,0]+[-1,0]}\in\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Note that

$$0 = [-b, b] = [-2b, b] + [-b, 2b]$$

so that the last sum vanishes. As before,

$$\sum_{b} [b,b] = \sum_{b} [b,0] = \frac{(p-1)}{2} \cdot \delta.$$

We find that

$$0 = S + (p-1)\delta = \frac{(p-3)(p-1)}{4} \cdot \delta + (p-1) \cdot \delta.$$

It follows that

$$0=\frac{(p-1)(p+1)}{4}\cdot\delta,$$

thus δ is torsion.

Birational types and arithmetic groups

$$\mathcal{B}_n^-(G)\otimes \mathbb{Q}\simeq \mathrm{H}^{\frac{n(n-1)}{2}}(\Gamma(G,n),\mathrm{or}_n^{\otimes n})=\mathrm{H}_0(\Gamma(G,n),\mathrm{St}_n\otimes \mathrm{or}_n)$$

where

 $\Gamma(G,n) \subset \operatorname{GL}_n(\mathbb{Z})$

is a congruence subgroup,

- or is the orientation (the sign of the determinant), and
- St_n is the Steinberg representation.

Structure

Let *G* be a nontrivial abelian group. We work $\otimes \mathbb{Q}$ and consider $\mathcal{B}_n(G) \otimes \mathbb{Q}$ in both variables, *n* and *G*.

Consider short exact sequences of finite abelian groups

$$0\to G'\to G\to G''\to 0$$

and the corresponding short exact sequences of character groups

$$0 \to A'' \to A \to A' \to 0.$$

Let

$$n = n' + n'', \quad n', n'' \ge 1.$$

We define a Q-bilinear multiplication map

$$abla : \mathcal{B}_{n'}(G') \otimes \mathcal{B}_{n''}(G'') \to \mathcal{B}_{n'+n''}(G),$$

given by

$$[a'_1, \ldots, a'_{n'}] \otimes [a''_1, \ldots, a''_{n''}] \mapsto \sum [a_1, \ldots, a_{n'}, a''_1, \ldots, a''_{n''}]$$

the sum over all lifts $a_i \in A$ of $a'_i \in A'$, and a''_i are understood as elements of A, via the embedding $A'' \hookrightarrow A$.

We define a Q-bilinear multiplication map

$$abla : \mathcal{B}_{n'}(G') \otimes \mathcal{B}_{n''}(G'') \to \mathcal{B}_{n'+n''}(G),$$

given by

$$[a'_1, \ldots, a'_{n'}] \otimes [a''_1, \ldots, a''_{n''}] \mapsto \sum [a_1, \ldots, a_{n'}, a''_1, \ldots, a''_{n''}]$$

the sum over all lifts $a_i \in A$ of $a'_i \in A'$, and a''_i are understood as elements of A, via the embedding $A'' \hookrightarrow A$.

We also have

$$\nabla^-: \mathcal{B}^-_{n'}(G')\otimes \mathcal{B}^-_{n''}(G'') \to \mathcal{B}^-_{n'+n''}(G).$$

There are also co-multiplication maps

$$\Delta: \mathcal{B}_{n'+n''}(G) \to \mathcal{B}_{n'}(G') \otimes \mathcal{B}_{n''}^{-}(G''),$$

$$\Delta^{-}: \mathcal{B}^{-}_{n'+n''}(G) \to \mathcal{B}^{-}_{n'}(G') \otimes \mathcal{B}^{-}_{n''}(G'').$$

where G'' is nontrivial.

$$\mathcal{B}^{-}_{n,prim}(G) = \operatorname{Ker}\left(\begin{array}{c} \mathcal{B}^{-}_{n}(G) \to \bigoplus_{\substack{n'+n''=n\\n',n'' \geq 1\\ 0 \subseteq G' \subsetneq G}} \mathcal{B}^{-}_{n'}(G') \otimes \mathcal{B}^{-}_{n''}(G/G') \right),$$

We have

$$\mathcal{B}_1(G) = \mathcal{B}_{1,prim}(G)$$

for all *G*; when $G = 1 = \mathbb{Z}/1\mathbb{Z}$ we have

$$\mathcal{B}_1(1) = \mathbb{Q}, \quad \mathcal{B}_n(1) = \mathcal{B}_{n,prim}(1) = 0, \text{ for } n \geq 2.$$

 $\dim \mathcal{B}_{2,prim}(\mathbb{Z}/N\mathbb{Z})\otimes \mathbb{Q} = \dim \mathcal{B}_{2,prim}^{-}(\mathbb{Z}/N\mathbb{Z})\otimes \mathbb{Q}$ and is equal to the dimension of the space of cusp forms of weight 2 for $\Gamma_1(N)$,

 $\dim \mathcal{B}_{3,prim}(\mathbb{Z}/N\mathbb{Z}) \otimes \mathbb{Q} = \dim \mathcal{B}_{3,prim}^{-}(\mathbb{Z}/N\mathbb{Z}) \otimes \mathbb{Q}$ and is equal to the number of certain cuspidal automorphic representations for a congruence subgroup of $\operatorname{GL}_3(\mathbb{Z})$, $\dim \mathcal{B}_{2,prim}(\mathbb{Z}/N\mathbb{Z})\otimes \mathbb{Q} = \dim \mathcal{B}_{2,prim}^{-}(\mathbb{Z}/N\mathbb{Z})\otimes \mathbb{Q}$ and is equal to the dimension of the space of cusp forms of weight 2 for $\Gamma_1(N)$,

 $\dim \mathcal{B}_{3,prim}(\mathbb{Z}/N\mathbb{Z}) \otimes \mathbb{Q} = \dim \mathcal{B}_{3,prim}^{-}(\mathbb{Z}/N\mathbb{Z}) \otimes \mathbb{Q}$ and is equal to the number of certain cuspidal automorphic representations for a congruence subgroup of $\operatorname{GL}_3(\mathbb{Z})$,

Computer experiments suggest that, for all $N \ge 1$:

$$\mathcal{B}_{n,prim}(\mathbb{Z}/N\mathbb{Z})\otimes\mathbb{Q}=\mathcal{B}_{n,prim}^{-}(\mathbb{Z}/N\mathbb{Z})\otimes\mathbb{Q}=0,\quad n\geq 4,$$

• n = 1: Euler function $\phi(N)/2$

- n = 1: Euler function $\phi(N)/2$
- $n = 2: g(X_1(N))$

- n = 1: Euler function $\phi(N)/2$
- $n = 2: g(X_1(N))$
- n = 3: mysterious dimensions

							211	
dim	1	1	1	1	2	 54	7	3

- n = 1: Euler function $\phi(N)/2$
- $n = 2: g(X_1(N))$
- n = 3: mysterious dimensions

Ν	43	51	52	59	63		208	211	239
dim	1	1	1	1	2		54	7	3

• n = 4: no primitives, with $N \le 242$

Modular types

- *G* a finite abelian group, $A = G^{\vee}$
- $\mathbf{L}\simeq\mathbb{Z}^n$,
- $\chi \in \mathbf{L} \otimes A$ such that the induced homomorphism

 $L^{\vee} \to A$

is a surjection,

• a basic simplicial cone, i.e., a strictly convex cone

 $\Lambda \in L_{\mathbb{R}}$

spanned by a basis of L; $\Lambda \simeq \mathbb{R}^n_{\geq 0}$, for $L = \mathbb{Z}^n \subset \mathbb{R}^n$.

Modular types

For every equivalence class of triples

 $(\mathbf{L}, \chi, \Lambda),$

define

 $\psi(\mathbf{L}, \chi, \Lambda)$

as follows: choose a basis e_1, \ldots, e_n of L, spanning A, express

$$\chi = \sum_{i=1}^{n} \mathbf{e}_i \otimes \mathbf{a}_i,\tag{1}$$

and put

$$\psi(\mathbf{L},\chi,\Lambda) = [a_1,\ldots,a_n] \in \mathcal{B}_n(G).$$

For every equivalence class of triples

 $(\mathbf{L}, \chi, \Lambda),$

define

 $\psi(\mathbf{L},\chi,\Lambda)$

as follows: choose a basis e_1, \ldots, e_n of L, spanning A, express

$$\chi = \sum_{i=1}^{n} \mathbf{e}_i \otimes \mathbf{a}_i,\tag{1}$$

and put

$$\psi(\mathbf{L},\chi,\Lambda) = [a_1,\ldots,a_n] \in \mathcal{B}_n(G).$$

The ambiguity in the choices corresponds to the \mathfrak{S}_n -action on the basis elements.

For every equivalence class of triples

 $(\mathbf{L}, \chi, \Lambda),$

define

 $\psi(\mathbf{L},\chi,\Lambda)$

as follows: choose a basis e_1, \ldots, e_n of **L**, spanning Λ , express

$$\chi = \sum_{i=1}^{n} \mathbf{e}_i \otimes \mathbf{a}_i,\tag{1}$$

and put

$$\psi(\mathbf{L},\chi,\Lambda) = [a_1,\ldots,a_n] \in \mathcal{B}_n(G).$$

The ambiguity in the choices corresponds to the \mathfrak{S}_n -action on the basis elements. The blowup relation corresponds to scissors relations on cones. This yields multiplication, co-multiplication, Hecke operators, etc.

We work over a field k of characteristic zero (with enough roots of 1). Let

 $\operatorname{Burn}_n(G) = \operatorname{Burn}_{n,k}(G)$

be the \mathbb{Z} -module, generated by symbols

 $(H, Y \subset K, \beta),$

where

We work over a field k of characteristic zero (with enough roots of 1). Let

 $\operatorname{Burn}_n(G) = \operatorname{Burn}_{n,k}(G)$

be the \mathbb{Z} -module, generated by symbols

 $(H, Y \subset K, \beta),$

where

- $H \subseteq G$ is an abelian subgroup, $Y \subseteq Z_G(H)/H$,
- K = k(F), with generically free Y-action, $\operatorname{trdeg}_k(K) = d \le n$,
- β = (b₁,..., b_{n-d}), a sequence, up to order, of nonzero elements of H[∨], that generate H[∨].

The symbols are subject to conjugation and blowup relations:

(C):
$$(H, Y \subset K, \beta) = (H', Y' \subset K, \beta')$$
, when

$$H' = gHg^{-1}, \quad Y' = \cdots, \quad \text{with } g \in G,$$

and β and β' are related by conjugation by *g*.

The symbols are subject to conjugation and blowup relations:

(C):
$$(H, Y \subset K, \beta) = (H', Y' \subset K, \beta')$$
, when
 $H' = gHg^{-1}, \quad Y' = \cdots, \quad \text{with } g \in$

and β and β' are related by conjugation by g.

(B1): $(H, Y \bigcirc K, \beta) = 0$ when $b_1 + b_2 = 0$.

G,

Equivariant Burnside group: relations

(B2):
$$(H, Y \subset K, \beta) = \Theta_1 + \Theta_2$$
, where

$$\Theta_1 = \begin{cases} 0, & \text{if } b_1 = b_2, \\ (H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2), & \text{otherwise,} \end{cases}$$

with

$$\beta_1 := (b_1, b_2 - b_1, b_3, \dots, b_{n-d}), \quad \beta_2 := (b_1 - b_2, b_2, b_3, \dots, b_{n-d}),$$

and

Equivariant Burnside group: relations

(B2):
$$(H, Y \subset K, \beta) = \Theta_1 + \Theta_2$$
, where

$$\Theta_1 = \begin{cases} 0, & \text{if } b_1 = b_2, \\ (H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2), & \text{otherwise,} \end{cases}$$

with

$$\beta_1 := (b_1, b_2 - b_1, b_3, \dots, b_{n-d}), \quad \beta_2 := (b_1 - b_2, b_2, b_3, \dots, b_{n-d}),$$

and

$$\Theta_2 = \begin{cases} 0, & \text{if } b_i \in \langle b_1 - b_2 \rangle \text{ for some } i, \\ (\overline{H}, \overline{Y} \subset K(t), \overline{\beta}), & \text{otherwise,} \end{cases}$$

with

$$\overline{H}^{\vee} := H^{\vee}/\langle b_1 - b_2 \rangle, \quad \overline{\beta} := (\overline{b}_2, \overline{b}_3, \dots, \overline{b}_{n-d}), \quad \overline{b}_i \in \overline{H}^{\vee}.$$

Model case: Blowing up an isolated point (with abelian stabilizer) on a surface.

It will explain the action of \overline{Y} on $\overline{K} = K(t)$.

The class

$$[X \circlearrowright G] \in \operatorname{Burn}_n(G)$$

of a G-variety is computed on a standard model (X, D):

- X is smooth projective, D a normal crossings divisor,
- *G* acts freely on $U := X \setminus D$,
- for every $g \in G$ and every irreducible component D, either g(D) = D or $g(D) \cap D = \emptyset$.

$$[X \circlearrowright G] := \sum_{H} \sum_{F} (H, Y \circlearrowright k(F), \beta_{F}(X)) \in \operatorname{Burn}_{n}(G),$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

$$[X \circlearrowright G] := \sum_{H} \sum_{F} (H, Y \circlearrowright k(F), \beta_{F}(X)) \in \operatorname{Burn}_{n}(G),$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

• the generic stabilizer H,

$$[X \circlearrowright G] := \sum_{H} \sum_{F} (H, Y \circlearrowright k(F), \beta_{F}(X)) \in \operatorname{Burn}_{n}(G),$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,
- the induced Y ⊆ Z_G(H)/H-action on the function field of the subvariety F ⊂ X, with generic stabilizer H,

$$[X \circlearrowright G] := \sum_{H} \sum_{F} (H, Y \circlearrowright k(F), \beta_{F}(X)) \in \operatorname{Burn}_{n}(G),$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,
- the induced $Y \subseteq Z_G(H)/H$ -action on the function field of the subvariety $F \subset X$, with generic stabilizer H,
- the (generic) eigenvalues of *H* in the normal bundle along *F*.

Kresch-T. (2020)

The class

$[X \circlearrowright G] \in \operatorname{Burn}_n(G)$

is a well-defined G-equivariant birational invariant.

Kresch-T. (2020)

The class

$[X \odot G] \in \operatorname{Burn}_n(G)$

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization.

Simplifications arise when we focus on geometric properties of the function fields of strata

Simplifications arise when we focus on geometric properties of the function fields of strata; there is a distinguished subgroup

 $\operatorname{Burn}_n^{\operatorname{inc}}(G) \subset \operatorname{Burn}_n(G),$

generated by incompressible divisor symbols, i.e.,

$$\mathfrak{s} = (H, Y \subset K, \beta), \quad \operatorname{trdeg}_k(K) = n - 1,$$

H is a nontrivial cyclic group and $\beta = (b)$, a single character, generating H^{\vee}

Simplifications arise when we focus on geometric properties of the function fields of strata; there is a distinguished subgroup

 $\operatorname{Burn}_n^{\operatorname{inc}}(G) \subset \operatorname{Burn}_n(G),$

generated by incompressible divisor symbols, i.e.,

$$\mathfrak{s} = (H, Y \subset K, \beta), \quad \operatorname{trdeg}_k(K) = n - 1,$$

H is a nontrivial cyclic group and $\beta = (b)$, a single character, generating H^{\vee} , and such that \mathfrak{s} cannot arise from Θ_2 in relation (**B2**).

The subgroup

$$\operatorname{Burn}_n^{\operatorname{inc}}(G) \subseteq \operatorname{Burn}_n(G),$$

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).

The subgroup

$\operatorname{Burn}_n^{\operatorname{inc}}(G) \subseteq \operatorname{Burn}_n(G),$

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).

n = 1 Every divisor symbol in incompressible.

The subgroup

$\operatorname{Burn}_n^{\operatorname{inc}}(G) \subseteq \operatorname{Burn}_n(G),$

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).

n = 1 Every divisor symbol in incompressible.

n = 2 A divisor symbol

$$(H, Y \subset K, \beta), \quad \beta = (b),$$

is compressible if and only if Y is cyclic and K = k(t).

$$\mathbb{P}^2 = \mathbb{P}(\mathbf{I} \oplus \mathbf{V} \otimes \chi),$$

where *V* is the standard 2-dimensional representation of \mathfrak{S}_3 and I is the trivial representation of *G*.

$$\mathbb{P}^2 = \mathbb{P}(\mathbf{I} \oplus \mathbf{V} \otimes \chi),$$

where *V* is the standard 2-dimensional representation of \mathfrak{S}_3 and I is the trivial representation of *G*. Then

$$[X \bigcirc C]^{\mathrm{inc}} = (C_n, \mathfrak{S}_3 \bigcirc k(\mathbb{P}^1), (\chi)) + (C_n, \mathfrak{S}_3 \bigcirc k(\mathbb{P}^1), (-\chi)).$$

$$\mathbb{P}^2 = \mathbb{P}(\mathbf{I} \oplus \mathbf{V} \otimes \chi),$$

where *V* is the standard 2-dimensional representation of \mathfrak{S}_3 and I is the trivial representation of *G*. Then

$$[X \bigcirc G]^{\mathrm{inc}} = (C_n, \mathfrak{S}_3 \bigcirc k(\mathbb{P}^1), (\chi)) + (C_n, \mathfrak{S}_3 \bigcirc k(\mathbb{P}^1), (-\chi)).$$

If $\chi \neq \pm \chi'$ then the corresponding actions are not G-birational.

$$\mathbb{P}^2 = \mathbb{P}(\mathbf{I} \oplus \mathbf{V} \otimes \chi),$$

where *V* is the standard 2-dimensional representation of \mathfrak{S}_3 and I is the trivial representation of *G*. Then

$$[X \bigcirc G]^{\mathrm{inc}} = (C_n, \mathfrak{S}_3 \bigcirc k(\mathbb{P}^1), (\chi)) + (C_n, \mathfrak{S}_3 \bigcirc k(\mathbb{P}^1), (-\chi)).$$

If $\chi \neq \pm \chi'$ then the corresponding actions are not G-birational.

Birational rigidity techniques do not work well in this case, since $X^G \neq \emptyset$.

Applications: quadric threefolds

Consider $X \subset \mathbb{P}^4$ given by

$$x_1^2 + \dots + x_5^2 = 0,$$

with an action of $G \subset W(D_5)$, permuting the variables and changing signs.

Applications: quadric threefolds

Consider $X \subset \mathbb{P}^4$ given by

$$x_1^2 + \dots + x_5^2 = 0,$$

with an action of $G \subset W(D_5)$, permuting the variables and changing signs.

The action is linearizable if $X^G \neq \emptyset$.

$$x_1^2 + \dots + x_5^2 = 0,$$

with an action of $G \subset W(D_5)$, permuting the variables and changing signs.

The action is linearizable if $X^G \neq \emptyset$. Linearizable actions of abelian groups have fixed points; thus we assume that

- $X^H \neq \emptyset$, for all abelian $H \subseteq G$, and
- $X^G = \emptyset$.

$$x_1^2 + \dots + x_5^2 = 0,$$

with an action of $G \subset W(D_5)$, permuting the variables and changing signs.

The action is linearizable if $X^G \neq \emptyset$. Linearizable actions of abelian groups have fixed points; thus we assume that

- $X^H \neq \emptyset$, for all abelian $H \subseteq G$, and
- $X^G = \emptyset$.

Then G is one of the following...

Applications: quadric threefolds

58

Theorem (Cheltsov-Sarikyan-Zhuang, 2023)

Let $X \subset \mathbb{P}^4$ be a smooth quadric over $k = \mathbb{C}$:

$$x_1^2 + \cdots + x_5^2 = 0,$$

with the \mathfrak{S}_5 -action given by permutations of variables. This action is not linearizable.

$$\sum_{1 \le i < j < k < l \le 6} x_i x_j x_k x_l = \sum_{i=1}^6 x_i = 0,$$

it carries an action of \mathfrak{S}_6 .

$$\sum_{1 \le i < j < k < l \le 6} x_i x_j x_k x_l = \sum_{i=1}^6 x_i = 0,$$

it carries an action of \mathfrak{S}_6 . Then the action of any G containing

 $H := \langle (12) \rangle$

is not linearizable.

$$\sum_{1 \le i < j < k < l \le 6} x_i x_j x_k x_l = \sum_{i=1}^6 x_i = 0,$$

it carries an action of \mathfrak{S}_6 . Then the action of any G containing

 $H := \langle (12) \rangle$

is not linearizable. Indeed, the fixed locus of *H* is a quartic with 12 singular points, a K3 surface *S*.

$$\sum_{1 \le i < j < k < l \le 6} x_i x_j x_k x_l = \sum_{i=1}^6 x_i = 0,$$

it carries an action of \mathfrak{S}_6 . Then the action of any G containing

 $H := \langle (12) \rangle$

is not linearizable. Indeed, the fixed locus of *H* is a quartic with 12 singular points, a K3 surface *S*. The symbol

 $(H, Y \subset k(X), (1))$

is incompressible (for any Y).

1

$$\sum_{\leq i < j < k < l \le 6} x_i x_j x_k x_l = \sum_{i=1}^6 x_i = 0,$$

it carries an action of \mathfrak{S}_6 . Then the action of any G containing

 $H := \langle (12) \rangle$

is not linearizable. Indeed, the fixed locus of *H* is a quartic with 12 singular points, a K3 surface *S*. The symbol

 $(H, Y \subset k(X), (1))$

is incompressible (for any Y). Such symbols do not arise for linear actions.

Kresch-Hassett-T. 2020

There exists a rational cubic 4-fold with a nonlinearizable action of

 $G = C_6$.

Kresch-Hassett-T. 2020

There exists a rational cubic 4-fold with a nonlinearizable action of

 $G = C_6$.

Böhning-von Bothmer-T. 2023

There exists a rational cubic 4-folds with nonlinearizable but stably

linearizable action of \mathfrak{F}_7 .

Theorem (Kresch-T. 2022)

Explicit algorithm to compute

$$[\mathbb{P}(V) \mathfrak{t} G] \in \operatorname{Burn}_n(G)$$

for (projective) linear actions.

Theorem (Kresch-T. 2022)

Explicit algorithm to compute

```
[\mathbb{P}(V) \circlearrowright G] \in \operatorname{Burn}_n(G)
```

for (projective) linear actions.

Based on an equivariant version of De-Concini–Procesi compactifications of subspace arrangements.

Theorem (Kresch-T. 2022)

Explicit algorithm to compute

```
[\mathbb{P}(V) \circlearrowright G] \in \operatorname{Burn}_n(G)
```

for (projective) linear actions.

Based on an equivariant version of De-Concini–Procesi compactifications of subspace arrangements.

This has been implemented in Magma by Kaiqi Yang and Zhijia Zhang.

Applications: Birational characters for (projective) linear actions

There are two projective linear actions of $G = \mathfrak{S}_6$ on \mathbb{P}^3 , with classes

$$\begin{split} [\mathbb{P}^{3} \circlearrowright G] &= (C_{1}, \mathfrak{S}_{6} \circlearrowright k(\mathbb{P}^{3}), ()) \\ &+ (C_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C'_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) \\ &+ (C''_{2}, C^{2}_{2} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C_{3}, \mathfrak{S}_{3} \circlearrowright k(\mathbb{P}^{2}), (1)) \\ &+ (C^{2}_{3}, 1 \circlearrowright k, ((1, 1), (1, 2), (2, 0))), \end{split}$$

respectively,

$$\begin{split} [\mathbb{P}^{3} \circlearrowright G] &= (C_{1}, \mathfrak{S}_{6} \circlearrowright k(\mathbb{P}^{3}), ()) \\ &+ (C_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C'_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) \\ &+ (C''_{2}, C^{2}_{2} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C'_{3}, \mathfrak{S}_{3} \circlearrowright k(\mathbb{P}^{2}), (2)) \\ &+ (C^{2}_{3}, 1 \circlearrowright k, ((0, 2), (2, 0), (2, 2))). \end{split}$$

Applications: Birational characters for (projective) linear actions

There are two projective linear actions of $G = \mathfrak{S}_6$ on \mathbb{P}^3 , with classes

$$\begin{split} [\mathbb{P}^{3} \circlearrowright G] &= (C_{1}, \mathfrak{S}_{6} \circlearrowright k(\mathbb{P}^{3}), ()) \\ &+ (C_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C'_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) \\ &+ (C''_{2}, C^{2}_{2} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C_{3}, \mathfrak{S}_{3} \circlearrowright k(\mathbb{P}^{2}), (1)) \\ &+ (C^{2}_{3}, 1 \circlearrowright k, ((1, 1), (1, 2), (2, 0))), \end{split}$$

respectively,

$$\begin{split} [\mathbb{P}^{3} \circlearrowright G] &= (C_{1}, \mathfrak{S}_{6} \circlearrowright k(\mathbb{P}^{3}), ()) \\ &+ (C_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C'_{2}, \mathfrak{A}_{4} \circlearrowright k(\mathbb{P}^{2}), (1)) \\ &+ (C''_{2}, C^{2}_{2} \circlearrowright k(\mathbb{P}^{2}), (1)) + (C'_{3}, \mathfrak{S}_{3} \circlearrowright k(\mathbb{P}^{2}), (2)) \\ &+ (C^{2}_{3}, 1 \circlearrowright k, ((0, 2), (2, 0), (2, 2))). \end{split}$$

These differ in $Burn_3(G)$; thus, the actions are not birational.

Equivariant Burnside group: structure

Let us examine the crucial relation

(B2): $(H, Y \subset K, \beta) =$ $(H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2) + (\overline{H}, \overline{Y} \subset K(t), \overline{\beta}).$

(B2): $(H, Y \subset K, \beta) =$

 $(H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2) + (\overline{H}, \overline{Y} \subset K(t), \overline{\beta}).$

Observation: This relation preserves various geometric properties of the function field *K*, e.g.,

• dimensions of MRC quotients

(B2): $(H, Y \subset K, \beta) =$

 $(H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2) + (\overline{H}, \overline{Y} \subset K(t), \overline{\beta}).$

Observation: This relation preserves various geometric properties of the function field *K*, e.g.,

- dimensions of MRC quotients
- unramified cohomology, H¹(Y, Pic(D)),

(B2): $(H, Y \subset K, \beta) =$

 $(H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2) + (\overline{H}, \overline{Y} \subset K(t), \overline{\beta}).$

Observation: This relation preserves various geometric properties of the function field *K*, e.g.,

- dimensions of MRC quotients
- unramified cohomology, H¹(Y, Pic(D)),
- other stable birational invariants.

This means that the Burnside group admits direct sum decompositions

 $\operatorname{Burn}_n(G) = \oplus \ldots$

(B2): $(H, Y \subset K, \beta) =$

 $(H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2) + (\overline{H}, \overline{Y} \subset K(t), \overline{\beta}).$

Observation: This relation preserves various geometric properties of the function field *K*, e.g.,

- dimensions of MRC quotients
- unramified cohomology, H¹(Y, Pic(D)),
- other stable birational invariants.

This means that the Burnside group admits direct sum decompositions

```
\operatorname{Burn}_n(G) = \oplus \ldots
```

The incompressibles we discussed give just one of the direct summands.

• Ideas from motivic integration led to the introduction of new invariants in birational geometry,

- Ideas from motivic integration led to the introduction of new invariants in birational geometry,
- Burnside groups have a rich algebraic structure, to be investigated,

- Ideas from motivic integration led to the introduction of new invariants in birational geometry,
- Burnside groups have a rich algebraic structure, to be investigated,
- There are now many examples of nonbirational actions of finite groups; and we continue to explore the range of applicability of these new invariants.