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Liquid Noble Element Experiments

Looking for recoiling (nuclei) from collisions with 

dark matter particles

Thresholds of ~keV

Liquid noble element experiments:

● XENONnT ~1.5 t-yrs (so far)

● LZ ~0.9 t-yrs (so far)
________________________________________________________

● DarkSide-20k ~50 t-yrs (planned)

● DARWIN ~200 t-yrs (planned) 

● Argo ~360 t-yrs (planned)
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Liquid Noble Element Experiments

XENON Collaboration: Phys. Rev. Lett. 131, 041003 (2023)
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Liquid Noble Element Experiments

XENON Collaboration: Phys. Rev. Lett. 131, 041003 (2023)
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Semiconductor Experiments

Pushing to lower masses:

● Smaller experiments

● Thresholds of ~eV

● Emphasis on electron recoils

Experiments:

● Edelweiss

● CDMS

● Sensei ~9 g-days (so far)
_____________________________________________

● Sensei ~100 g-yrs (planned)

● Oscura ~30 kg-yrs (planned)
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Semiconductor Experiments
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Barak et. al. Phys. Rev. Lett. 125, 171802 (2020)



The Neutrino Floor

O'Hare et. al. Phys. Rev. D 92, 063518 (2015)

9



Neutrino Scattering
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The Neutrino Flux

Solar:

Nuclear processes, two 

main production chains: 

pp and CNO

Diffuse Supernova 

Neutrino Background 

(DSNB):

Theoretical prediction of 

neutrinos from the cosmic 

history of supernovae

Atmospheric:

Produced in the decays of 

pions from cosmic rays

● Contains 𝜈 and ҧ𝜈

● Produced with 𝜇 and 𝑒

flavors
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Neutrino Scattering
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The Neutrino Flux

Semiconductor electron scattering

Semiconductor nuclear scattering

Noble element nuclear scattering

Noble element electron scattering*
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Neutrino Scattering
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Neutrino Scattering
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Neutrino Flavors and Oscillations (Round 1)

● Long baseline → All flavors

● Reactor neutrino experiments are 

generally only sensitive to 

electron neutrinos

● Scattering rates differ for neutrino 

flavors

○ Only electron neutrinos interact via 

charged current

○ Certain BSM models such as gauged 

𝐿𝜇 − 𝐿𝜏 don’t affect electron 

neutrinos
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Neutrino Scattering
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Neutrino Interactions

Coherent Elastic Neutrino Nuclear Scattering (CEνNS)
● Low energy effective couplings

𝑑𝜎

𝑑𝐸𝑅
 ~ 𝑄2𝑚𝑁 𝑄~𝑁 − 𝑍 × 1 − 4𝑠𝑤

● Energy independent for 𝐸𝑅 < 𝐸𝜈
2/𝑚𝑁
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Neutrino Interactions

ν — e scattering:

● Charged Current

● Neutral Current
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Beyond the Standard Model — Light Mediators

Flavor Universal Interactions:

• Couplings to all neutrinos and 

quarks are identical

22

Even assuming flavor diagonal couplings... That’s a lot of parameters

Minimal NSI:

• Couplings to only one flavor of 

neutrino and quark

Low threshold detectors → Most interested in vector mediators



Vector Mediators

● 𝑀𝑍′ ≪ 𝑀𝑍 → momentum dependence is only relevant for 𝑍′

○ NSI contribution scales as 1/𝐸𝑅
2

○ Cross term scales as 1/𝐸𝑅

● BSM nuclear coupling ~𝑔2𝑁𝑞
23
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Scalar Mediators

● No interference term 

● Nuclear coupling is determined 

numerically and summed over quark 

content to give Q’ ~ 14A + 1.1Z

● Low Energy: cross-section scales as 

1/ER until the propagator momentum 

becomes smaller than its mass
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Differential recoil rates

Low Energy

• Solar neutrinos 

dominate
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Differential recoil rates

Weaker constraints 

below ~ keV

26

Low Energy

• Solar neutrinos 

dominate



Differential recoil rates
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Low Energy

• Solar neutrinos 

dominate

Weaker constraints 

below ~ keV

Light vectors are 

most visible



Signals in Dark Matter Experiments

Large liquid noble element detectors

 NEST simulation

Low threshold semiconductor detectors

 Energy bins → electron counts
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Semiconductor signals

Electron recoils:

● Simple linear model of energy bands

Nuclear recoils:

● Higher recoil energy for the same number of electrons

● Yield Function—Lindhard Model

○ Doesn’t match data at low energies

○ Neglects binding energy 
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Low energy modifications to the Lindhard Model

Energies on the y-axis correspond to the number of electrons excited to the conduction band
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Observable Event Rates

Electron Recoils:

● Integrate the differential rate 

over the range of energies 

corresponding to each 

electron bin

Nuclear Recoils:

● Convert electron bins to 

nuclear recoil energies and 

integrate

● Weight by the derivative of 

the yield function
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Vector event rates
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Projected Sensitivities
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Vector Mediated Interactions
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Mapping to U(1) B - L
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Gauged B - L
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Scalar Mediated Interactions
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Heavy Scalars

● 𝑀𝑆 ≫ 𝐸𝑅  → Integrate out the scalar (conventional NSI)

● Minimal → Only one flavor of neutrino scatters off one species 

of fermion

❖ Need to be more careful about neutrino oscillations

● Consider higher energy recoils

❖ Liquid noble elements and energy binning

❖ Include other neutrino sources
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Integrating out the mediator

● With 𝑚𝑆 ≳ 1 TeV and 𝐸𝑅 ≲ 1 MeV we can integrate out the field 𝜙
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Scalar NSI

● Standard Scalar NSI parameterization

● Lepton Flavor Violation (LFV) constraints → Only consider one lepton coupling 

at a time

● 𝜖𝑞𝑒
𝑆  is well constrained → look at 𝜖𝑞𝜇

𝑆  and 𝜖𝑞𝜏
𝑆  instead

○ Looking at specific neutrinos → treat oscillations more carefully
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Neutrino Oscillations (Round 2)

● Propagation of neutrinos through Earth → matter effects

● NSI → corrections to matter effect

● Some simplifying assumptions:

○ Production of atmospheric neutrinos is spherically symmetric

○ Constant Earth density

● Small scalar NSIs do not appreciably modify neutrino oscillations
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Noble element detector efficiency

Use efficiency function to enforce threshold and

Use 2 keV as a goal of future experiments 43



CEvNS with a heavy scalar
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Projected Discovery Reach

● DSNB has no significant effect

● A directional detector seeing only atmospheric neutrinos can place subdominant 

constraints 45



Mapping NSI to Leptoquarks

● Leptoquarks motivated by

○ GUT models

○ Flavor anomalies 

○ 𝑔 − 2 𝜇

○ Neutrino masses

● Carry baryon and lepton number

● 𝑆1 couples to 𝑆𝑈 2 L doublet → Same coupling for neutrinos and charged 

leptons

○ Don’t need to produce 𝜏-leptons to measure 𝜆𝑞𝜏

● Integrate out the LQ → Conventional scalar NSI
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Mapping NSI to Leptoquarks

● NSI scattering now proceeds via s and u-channel diagrams (rather than the t-

channel considered previously)
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Constraints on LQ Yukawas
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Summary

● Low threshold DM experiments are well optimized for BSM 

neutrino interactions mediated by a light vector

● Can match or exceed neutrino specific detectors in searches for BSM neutrino 

interactions

● Yield functions dominate the uncertainties at low energies and thresholds

● Dark Matter experiments can place constraints on heavy scalar 

Leptoquarks beyond the reach of colliders
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