Hunting Nonstandard Neutrino Interactions in Dark Matter Experiments

Tom Schwemberger

Phys. Rev. D **106**, 015002 with Tien-Tien Yu

2307.15736 (submitted to JHEP) with Tien-Tien Yu and Volodymyr Takhistov

University of Oregon Institute for Fundamental Science

APEC Seminar Sept. 15, 2023 IMPU

Outline

- Dark Matter experiments and neutrino scattering
- Light Mediators:
 - Vectors
 - \circ U(1) gauge theories
- Heavy Mediators:
 - Scalars
 - Leptoquarks

Outline

• Dark Matter experiments and neutrino scattering

- Light Mediators:
 - Vectors
 - \circ U(1) gauge theories
- Heavy Mediators:
 - Scalars
 - Leptoquarks

Liquid Noble Element Experiments

Looking for recoiling (nuclei) from collisions with dark matter particles

Thresholds of ~keV

Liquid noble element experiments:

- XENONnT ~1.5 t-yrs (so far)
- LZ ~0.9 t-yrs (so far)
- DarkSide-20k ~50 t-yrs (planned)
- DARWIN ~200 t-yrs (planned)
- Argo ~360 t-yrs (planned)

Liquid Noble Element Experiments

Liquid Noble Element Experiments

Semiconductor Experiments

Pushing to lower masses:

- Smaller experiments
- Thresholds of ~eV
- Emphasis on electron recoils

Experiments:

- Edelweiss
- CDMS
- Sensei ~9 g-days (so far)
- Sensei ~100 g-yrs (planned)
- Oscura ~30 kg-yrs (planned)

Semiconductor Experiments

The Neutrino Floor

Neutrino Scattering

$$E_{min} = \sqrt{\frac{m_T E_R}{2}}$$

Neutrino Scattering

$$E_{min} = \sqrt{\frac{m_T E_R}{2}}$$

The Neutrino Flux

Solar:

Nuclear processes, two main production chains: *pp* and CNO

Diffuse Supernova Neutrino Background (DSNB):

Theoretical prediction of neutrinos from the cosmic history of supernovae

Atmospheric:

Produced in the decays of pions from cosmic rays

- Contains ν and $\bar{\nu}$
- Produced with μ and e flavors

Neutrino Scattering

$$E_{min} = \sqrt{\frac{m_T E_R}{2}}$$

The Neutrino Flux

Neutrino Scattering

$$E_{min} = \sqrt{\frac{m_T E_R}{2}}$$

Neutrino Scattering

Neutrino Flavors and Oscillations (Round 1)

- Long baseline \rightarrow All flavors
- Reactor neutrino experiments are generally only sensitive to electron neutrinos
- Scattering rates differ for neutrino flavors
 - Only electron neutrinos interact via charged current
 - Certain BSM models such as gauged $L_{\mu} L_{\tau}$ don't affect electron neutrinos

Neutrino Scattering

$$E_{min} = \sqrt{\frac{m_T E_R}{2}}$$

Neutrino Interactions

Coherent Elastic Neutrino Nuclear Scattering (CEvNS)Low energy effective couplings

$$\frac{d\sigma}{dE_R} \sim Q^2 m_N \qquad \qquad Q \sim N - Z \times (1 - 4s_w)$$

• Energy independent for $E_R < E_v^2/m_N$

Neutrino Interactions

v - e scattering:

• Charged Current

• Neutral Current

Outline

- Dark Matter experiments and neutrino scattering
- Light Mediators:
 - Vectors
 - \circ U(1) gauge theories
- Heavy Mediators:
 - Scalars
 - Leptoquarks

Beyond the Standard Model — Light Mediators

Mediator	Couplings	Lorentz Structure	Cross-Section Scaling
Scalar (S)	$g_{ u S}, g_{eS}, g_{qS}$	$\phi ar{f} f_{-}$	$1/E_R$
Pseudoscalar (P)	$g_{ u P}, g_{eP}, g_{qP}$	$i\gamma^5 \phi ar{f} f$	const.
Vector (V)	$g_{ u V}, g_{eV}, g_{qV}$	$Z'_{\mu} f \gamma^{\mu} f$	$1/E_R^2$
Axial Vector (A)	$g_{ u A}, g_{eA}, g_{qA}$	$Z'_\mu ar f \gamma^\mu \gamma^5 f$	$1/E_{R}^{2}$

Even assuming flavor diagonal couplings... That's a lot of parameters

Flavor Universal Interactions:

• Couplings to all neutrinos and quarks are identical

Minimal NSI:

• Couplings to only one flavor of neutrino and quark

Low threshold detectors \rightarrow Most interested in vector mediators

Vector Mediators

- $M_{Z'} \ll M_Z \rightarrow$ momentum dependence is only relevant for Z'
 - NSI contribution scales as $1/E_R^2$
 - Cross term scales as $1/E_R$
- BSM nuclear coupling $\sim g^2 N_q$

Scalar Mediators

- No interference term
- Nuclear coupling is determined numerically and summed over quark content to give Q' ~ 14A + 1.1Z

$$\sim \frac{E_R}{\left(E_R m_f + m_S^2\right)^2}$$

• Low Energy: cross-section scales as $1/E_R$ until the propagator momentum becomes smaller than its mass

Differential recoil rates

Differential recoil rates

Differential recoil rates

Large liquid noble element detectors

NEST simulation

Low threshold semiconductor detectors

Energy bins \rightarrow electron counts

Semiconductor signals

Electron recoils:

• Simple linear model of energy bands

Nuclear recoils:

- Higher recoil energy for the same number of electrons
- Yield Function—Lindhard Model
 - Doesn't match data at low energies
 - Neglects binding energy

Low energy modifications to the Lindhard Model

Energies on the y-axis correspond to the number of electrons excited to the conduction band

Observable Event Rates

Electron Recoils:

• Integrate the differential rate over the range of energies corresponding to each electron bin

Nuclear Recoils:

- Convert electron bins to nuclear recoil energies and integrate
- Weight by the derivative of the yield function

Vector event rates

Vector : $M_V = 100 \text{ eV}$

Projected Sensitivities

Mapping to U(1) B - L

Gauged B - L

Outline

- Dark Matter experiments and neutrino scattering
- Light Mediators:
 - Vectors
 - \circ U(1) gauge theories
- Heavy Mediators:
 - Scalars
 - Leptoquarks

- $M_S \gg E_R \rightarrow$ Integrate out the scalar (conventional NSI)
- Minimal → Only one flavor of neutrino scatters off one species of fermion
 - Need to be more careful about neutrino oscillations
- Consider higher energy recoils
 - * Liquid noble elements and energy binning
 - Include other neutrino sources

Integrating out the mediator

• With $m_S \gtrsim 1$ TeV and $E_R \lesssim 1$ MeV we can integrate out the field ϕ

$$\mathcal{L} \supset G_F \sum_{q,\ell} \epsilon_{q\ell}^S \bar{\nu}_{\ell} \nu_{\ell} \bar{q} q \qquad \epsilon_{q\ell}^S = \frac{g_{\nu_{\ell}} g_{qS}}{m_S^2 G_F}$$

Scalar NSI

 $\mathcal{L} \supset G_F \sum_{q,\ell} \epsilon^S_{q\ell} \bar{\nu}_{\ell} \nu_{\ell} \bar{q} q$

$$\epsilon_{q\ell}^S = \frac{g_{\nu_\ell} g_{qS}}{m_S^2 G_F}$$

• Standard Scalar NSI parameterization

• Lepton Flavor Violation (LFV) constraints → Only consider one lepton coupling at a time

- ϵ_{qe}^{S} is well constrained \rightarrow look at $\epsilon_{q\mu}^{S}$ and $\epsilon_{q\tau}^{S}$ instead
 - Looking at specific neutrinos \rightarrow treat oscillations more carefully

Neutrino Oscillations (Round 2)

- Propagation of neutrinos through Earth \rightarrow matter effects
- $NSI \rightarrow$ corrections to matter effect

$$\mathcal{H}_{\rm sNSI,matter} = E_{\nu} + \frac{M_{eff}M_{eff}^{\dagger}}{2E_{\nu}} + V_{\rm SI}$$

- Some simplifying assumptions:
 - Production of atmospheric neutrinos is spherically symmetric
 - Constant Earth density
- Small scalar NSIs do not appreciably modify neutrino oscillations

Noble element detector efficiency

Use efficiency function to enforce threshold and Use 2 keV as a goal of future experiments

CEvNS with a heavy scalar

Projected Discovery Reach

- DSNB has no significant effect
- A directional detector seeing only atmospheric neutrinos can place subdominant constraints

Mapping NSI to Leptoquarks

- Leptoquarks motivated by
 - GUT models
 - Flavor anomalies
 - \circ $(g-2)_{\mu}$
 - Neutrino masses
- Carry baryon and lepton number
- S_1 couples to $SU(2)_L$ doublet \rightarrow Same coupling for neutrinos and charged leptons
 - Don't need to produce τ -leptons to measure $\lambda_{q\tau}$
- Integrate out the LQ \rightarrow Conventional scalar NSI

Mapping NSI to Leptoquarks

• NSI scattering now proceeds via s and u-channel diagrams (rather than the tchannel considered previously)

Constraints on LQ Yukawas

Summary

- Low threshold DM experiments are well optimized for BSM neutrino interactions mediated by a light vector
 - Can match or exceed neutrino specific detectors in searches for BSM neutrino interactions
 - Yield functions dominate the uncertainties at low energies and thresholds
- Dark Matter experiments can place constraints on heavy scalar Leptoquarks beyond the reach of colliders