Particle Dark Matter at Future Muon Colliders

Adil Jueid Institute for Basic Science

Based on 2006.01348, 2301.12524, 2309.11241

w/ Salah Nasri and Mohammed Belfkir

APEC Seminar 15 May 2024

1. Introduction

Introduction

- The discovery of a Higgs boson at the Large Hadron Collider (LHC) validated the standard model (SM) as a low energy (~EW scale) description of nature.
- The SM is unable to address, however, several outstanding questions like neutrino mass, origin of baryon asymmetry in the universe or the dark matter problem among others.
- In High-energy collider experiments are one of the best places to look for extensions of the SM and test its validity. This can be done in three ways:
 - Direct searches of new particles
 - Tails of kinematic distributions
 - Precise measurements of SM Higgs boson couplings
- Historically the collider physics strategy consists of building high energy hadron colliders for discovery then construct lepton colliders for precision measurements (and/or new discovery) and so on...

The Super Proton-Antiproton Synchrotron

Operation: 1981-1990 Collision energy: 546-630 GeV Integrated luminosity: up to 1.6×10^{37} cm⁻² **Achievements:** discovery of the W and Z-bosons.

Event display recorded in 1982 by UA1 collaboration

Tunnel

Particle Dark Matter at Future Muon Colliders

Adil Jueid

The Large Eectron-Positron (LEP) collider

Operation: 1989-2000 Collision energy: 91.2-209 GeV Integrated luminosity: up to $\approx 10^{32}$ cm⁻² Achievements: precision measurements; studies of QCD...

Adil Jueid

The Large Hadron Collider

Operation: 2010—present (until ~2030)

Collision energy: 7-13.6 TeV

Integrated luminosity: up to 10^{34} cm⁻² (so far)

Achievements:

- discovery of the SM Higgs boson
- Many precision measurements
- Strong bounds on various new physics candidates
- Discovery of various new hadrons (i.e. pentaquark).

Future Colliders (FCC-ee, ILC, FCC-hh...)?

Operation: from 2045 (?) Location: Japan, Europe, China... Collision energy: 91.2 GeV—100 TeV Integrated luminosity: up to 10³⁷ cm⁻² **Expected achievements:** discovery of new physics? more Higgs, top, and Z-boson precision measurements. More studies of QCD...

Introduction

- Lepton colliders are suitable for precise measurements due to their clean environment.
- Hadron colliders on the other hand can reach higher energies and are the best places to make discoveries.

Can we have a collider which has the best of these two?

In principle a future muon collider can both run at a very high energy and possess a clean environment.

There is only one challenge: a muon is unstable and decays weakly into an electron and neutrinos.

==> This problem may be solved by either the Muon Accelerator Program (R. B. Palmer; 2014) or LEMMA (M. Antonelli et al., 2015).

2. Muon colliders

Acceleration possibilities

MUON ACCELERATOR PROJECT (MAP) \bigcirc

LOW EMITTANCE MUON ACCELERATOR (LEMMA)

$$e^+ (45 \text{ GeV}) + e^-(0 \text{ GeV}) \rightarrow \mu^+\mu^-$$

From J. P. Delahauge et al., arXiv: 1901.06150

Particle Dark Matter at Future Muon Colliders

Adil Jueid

What is the center-of-mass energy that is necessary to achieve the same beam-level cross section for protons?

Example: $2 \rightarrow 1$ annihilation

$$\sigma_p(2 \to 1) = \sum_{i,j} \int_{\tau_0}^1 d\tau \frac{d\mathscr{L}_{ij}}{d\tau} [\hat{\sigma}_{ij}]_p \delta\left(\tau - \frac{M^2}{s_p}\right) \qquad \frac{d\mathscr{L}_{ij}}{d\tau} = \frac{1}{1+\delta}$$

Let us have the following assumptions:

$$\mu_F = \sqrt{\hat{s}}/2; s_\mu = \hat{s} = M^2$$
 and $\sigma_\mu = [\hat{\sigma}]_\mu$

Therefore

$$\sigma_p = \sigma_\mu \qquad \Longrightarrow \frac{[\hat{\sigma}]_p}{[\hat{\sigma}]_\mu} \sigma_{ij} \frac{\mathrm{d}\mathscr{L}_{ij}}{\mathrm{d}\tau} \left(\frac{s_\mu}{s_p}, \frac{\sqrt{s_\mu}}{2}\right) = 1$$

We can solve this numerically for different values of the ratio $\beta \equiv [\hat{\sigma}]_p / [\hat{\sigma}]_\mu$

Adil Jueid

Muons vs Protons

Taken from the Muon's Smasher Guide (arXiv: 2103.14043)

Vector-boson fusion

Well above the production threshold of a state X, the production cross section gets important contribution from vector-boson fusion (VBF) channels or equivalently the virtual gauge boson contents of a muon become very relevant

$$\sigma(\mu\mu \to F) = \sum_{i,j} \int_{\tau_0}^{1} dx_1 \int_{\tau_0/x_1}^{1} dx_2 f_{i/\mu^+}(x_1,\mu_F) f_{j/\mu^-}$$

$$Q = 10 \text{ TeV}$$

$$\int_{0.50}^{0.50} \int_{0.10}^{0.50} \int_{0.50}^{0.10} \int_{0.50}^{\gamma_-} \frac{\gamma_-}{z_+} \frac{\gamma_-}{z_+} \frac{W_-}{W_0}$$

$$Z = Z_+$$

$$W_0$$

$$Z = Z_+$$

$$Z = Z_+$$

$$W_0$$

$$Z = Z_+$$

$$Z$$

Particle Dark Matter at Future Muon Colliders

Adil Jueid

 $(x_2, \mu_F) \hat{\sigma}(ij \to F)$

$Q \equiv \mu_F$ is factorisation scale

There is a crossover between VBF contribution and annihilation channel at around a few TeVs (Constantini et al., 2005.10289)

$$\frac{\sigma_{\rm VBF}}{\sigma_{\rm ann}} \propto \begin{cases} \alpha_W^2 \frac{s}{M_V^2} \log^3 \frac{s}{M_V^2} & \text{for SM} \\ \alpha_W^2 \frac{s}{M_X^2} \log^2 \frac{s}{M_V^2} \log \frac{s}{M_X^2} & \text{for BSM} \end{cases}$$

The position of the crossover depends on the number of particles in the final state and their masses.

here we assume $M_X^2 \ll s$

Vector-boson fusion (SM)

Adil Jueid

Vector-boson fusion (BSM)

Particle Dark Matter at Future Muon Colliders

Adil Jueid

One of the advantages of the muon colliders is that it has larger signal-to-background ratios than in proton colliders.

Even the cross section for the SM Higgs Boson at the LHC is about 50 times larger than at muon colliders!!! (at 14 TeV).

$$= \sigma(\mu\mu \to h\nu\nu)$$

$$\int_{Z,W} \sigma(\mu\mu \to i + X)^{\text{VBF}}$$

$$= \sigma(gg \rightarrow h)^{\text{N3LO}}$$

Challenges

There are also disadvantages/difficulties that face this ambitious program.

- Require sophisticated schemes for the production and captures of muons.
- \odot The muon decays in a few micro seconds \Longrightarrow very hard to create high-quality muon beams.
- Beam-induced backgrounds (BIBs) degrade the jet energy resolution. 0
- Neutrinos produced in the decays of muons can cause environmental hazard?

- Higgs boson: D. Butazzo et al. (1807.04743), M. Chiesa et al. (2005.10289), P. Bandyopadhyay et al. (2010.02597), D. Butazzo et al. (2012.11555), T. Han et al. (2108.05362), T. Han et al. (2102.08386), T. Han et al. (2008.12204), M. Forslund et al. (2308.02633), Z. Liu et al. (2308.06323).
- Muon g-2 and flavor: R. Capdevilla et al. (2006.16277, 2101.10334), D. Butazzo et al. (2012.02769), W. Yin et al. (2012.03928), G. Huang et al. (2103.01617), P. Asadi et al. (2104.05720), A. Azatov et al. (2205.13552).
- EWPT and Leptogenesis: W. Liu et al. (2101.10469), W. Liu et al. (2109.15087).
- Dark matter: T. Han et al. (2009.11287), R. Capdevilla et al. (2102.11292), A. Jueid et al. (2301.12524), M. Belfkir et al. (2309.11241).
- PDFs: T. Han et al. (2103.09844), T. Han et al. (2007.14300), F. Garosi et al. (2303.16964), S. Frixione et al. (2309.07516).
- Neutrino Physics: J. Liu et al. (2207.07382), A. Jueid et al. (2306.01255), S. Jana et al. (2308.07375).

3. Minimal Lepton Portal DM

The dark matter landscape

Adil Jueid

Credit: T. Tait

Direct detection is more harsh for WIMP: Close to the neutrino floor

PROBLEM: dark-matter direct searches are strongly correlated with collider searches.

Strong bounds imply expected weak signals at colliders.

• The strong bounds from direct-detection experiments tend to exclude the simplest dark-matter model; e.g. the singlet model.

Adil Jueid

- Usually, these simple dark-matter models lead to s-wave annihilation channels; Models with s-wave annihilations are almost excluded (Leane, Slatyer, Beacom and Ng; 2018).
- Collider searches at the Large Hadron Collider tend to exclude couplings of order $\mathcal{O}(1)$ and light masses (see e.g. the summary plots in ATL-PHYS-PUB-2020-021)
- An alternative solution is to consider (or reconsider) Majorana singlet fermions as darkmatter candidates:
 - i. The elastic scattering of dark-matter off the nucleus is induced at the oneloop order ——— The corresponding cross-section is always suppressed even for couplings of order $\mathcal{O}(1)$.
 - ii. Hard to produce at hadron colliders for a wide class models Explain why it is not observed so far?
 - iii. Annihilation cross section occurs through p-wave amplitudes; no signal, no problem.
 - iv. Lepton colliders may play the role of discovery machines for these models.

A Minimal Lepton portal dark-matter model

We suggest a new minimal model where extend the Standard Model with two gaugesinglets; a charged scalar S and a right-handed singlet Majorana fermion N_R . They transform under $SU(3)_c \times SU(2)_L \times U(1)_Y$ as

 $S: (1,1)_{+2}$ and $N_R: (1,1)_0$

These extra states are odd under an extra Z_2 symmetry (called matter parity) while all the SM particles are even, i.e. $\{S, N_R\} \rightarrow \{-S, -N_R\}$ and $\{V^{\mu}, f, \Phi\} \rightarrow \{V^{\mu}, f, \Phi\}$ The most general interaction Lagrangian can be written as

$$\mathcal{L}_{\text{int}} \supset \sum_{\ell=e,\mu,\tau} Y_{\ell} \bar{\ell}_{R}^{c} S N_{R} + \lambda_{2} |S^{\dagger}S|^{2} + \lambda_{3} |\Phi^{\dagger}\Phi$$

The scalar singlet (S) is electrically-charged and plays the role of a mediator between dark matter and the SM sectors:

$$\mathscr{L}_{\text{gauge}} \supset -i\left(eA^{\mu}-e\tan\theta_{W}Z^{\mu}\right)S^{\dagger}\overline{\partial}_{\mu}S$$

 $||S^{\dagger}S||$

- If you would like neutrinos to be massive, add two extra right handed neutrinos (N_2, N_3) and an inert scalar isodoublet Φ_2 .
 - \Leftrightarrow decouple the two other right-neutrinos and make the other couplings small and you will get Leptogenesis as a bonus.
- We can embed this into e.g. a SU(5) theory: the matter fields in the $\mathbf{10}_F$ and $\mathbf{5}_F$ representations and the charged singlet belongs to the 10_H representation, while N_R belongs to the singlet representation $\mathbf{1}_N$

$$\mathscr{L} = g_{\alpha\beta} \overline{\mathbf{10}}_{F_{\alpha}} \otimes \mathbf{10}_{H} \otimes \mathbf{1}_{N_{\beta}} \supset g_{\alpha\beta} \mathscr{C}_{R\alpha}^{T} C N_{\beta}$$

• You can also have it in a flipped- $SU(5) \otimes U(1)_X$ grand-unified theory: The lepton field is a singlet of SU(5), and N_R is a member of the $\mathbf{10}_F$ representation

$$\mathscr{L} = \frac{h_{\alpha\beta}}{\Lambda} \overline{\mathbf{10}}_{F_{\alpha}} \otimes \overline{\mathbf{1}}_{F_{\beta}} \otimes \mathbf{10}_{H} \otimes \mathbf{1}_{S} \supset \frac{h_{\alpha\beta} \langle \mathbf{10}_{H} \rangle}{\Lambda} N^{T} C$$

Adil Jueid

$$S^+$$

 $\mathcal{C}\ell_R S^-$

What about the various constraints?

After electroweak symmetry breaking; one lefts with two extra states (N_R and H^{\pm}) and seven extra parameters (three are interconnected via lepton-flavor violation and one is irrelevant in phenomenological studies). The parameters are

- $\{M_{H^{\pm}}, M_{N_{P}}, \lambda_{2}, \lambda_{3}, Y_{eN}, Y_{\mu N}, Y_{\tau N}\}$ General case:
- $\{M_{H^{\pm}}, M_{N_{P}}, \lambda_{2}, \lambda_{3}, Y_{\ell N}\}$ Relevant for DM:

Theoretical constraints

- (i) Vacuum stability: the scalar potential should bounded from below (Branco et al.; 2012)
- (ii) Perturbativity & Perturbative unitarity
- (iii) False vacuum

Experimental constraints

(i)
$$H \rightarrow \gamma \gamma$$

for
$$m_H > 2m_N$$

 $\ell_{\alpha} \to \ell_{\beta} \gamma$ and $\ell_{\alpha} \to \ell_{\beta} \ell_{\gamma} \ell_{\gamma}$

(iv) Searches of charginos at LEP-II.

 $Y_{\ell N} = \sqrt{Y_{eN}^2 + Y_{\mu N}^2 + Y_{\tau N}^2}$

(ii) Higgs invisible decay ($H \rightarrow NN$): relevant

(iii) Charged lepton flavor violating decays;

Summary of theoretical and experimental constraints

- Perturbativity and unitarity constraints \approx exclude large values of λ_3 .
- The bounds on the charged Higgs mass do not depend on λ_3 for $\lambda_3 \approx \mathcal{O}(1)$.
- If λ_3 is large, false vacuum constraints exclude light charged scalar masses; i.e. one has $m_{H^{\pm}} \ge 350$ GeV for $\lambda_3 = 5$.
- For $\lambda_3 > 0$, there is a region where the constraints from $H \rightarrow \gamma \gamma$ completely vanish.

Charged lepton flavor violation

Adil Jueid

Higgs invisible decay

$$\begin{split} Y_{\ell N} &< \left(\frac{2^{11}\pi^5\Gamma_H^{\rm SM}}{\beta_N^3 m_H \lambda_3^2 \upsilon^2 m_N^2 |C_0 + C_2|^2 \mathscr{R}_{\rm exp}}\right)^{1/4} \\ \mathscr{R}_{\rm exp} &= \frac{1}{B_{H \to \rm invisible}^{\rm up.bound}} - 1 \quad \begin{array}{c} C_{0,2} \equiv C_{0,2}(m_N^2, m_H^2, m_N^2, m_\ell^2, m_{H^\pm}^2, m_{H^\pm}^2) \\ \end{array} \\ \textbf{Passarino-Veltman functions} \end{split}$$

- important for light charged Higgs boson.
- light dark-matter masses.
- perturbativity of the couplings.

Adil Jueid

• The future constraints on $Y_{\ell N}$ are expected to be very

• Still some room for future studies to be focused on

• Note that it's very hard to produce the correct relic density for $M_{N_R} < 10 \text{ GeV}$ if we assume the

 M_{N_R} (GeV)

Status at the Large Hadron Collider

- The model can be constrained from reulletinterpretation of the results of sleptons/ charginos (using MadAnalysis 5).
- In our model, we can pair produce the charged Higgs boson through $q\bar{q}$ annihilation and then decay them to charged leptons plus large MET.
- ATLAS has searched for sleptons/charginos defining eight signal regions — depend on the jet multiplicity $n_{\text{iet}} = 0.1$ and the bins for the stranverse mass M_{T2} —.
- Masses of the charged Higgs boson up to • 400 GeV can be excluded.
- No sensitivity at all for small mass splitting ullet $(m_{H^{\pm}} - m_N).$

Adil Jueid

Dark matter relic abundance

The relic abundance of N_R gets contributions that can be categorized into sets (assuming freeze-out mechanism):

(i) Annihilation into SM particles: important for $Y_{\ell N} = \sqrt{Y_{eN}^2 + Y_{\mu N}^2 + Y_{\tau N}^2} \approx \mathcal{O}(1)$

$$N_R N_R \to \ell_\alpha^{\pm} \ell_\beta^{\mp}$$

 $N_R N_R \rightarrow H^* \rightarrow \tau \tau, b \bar{b}, t \bar{t}, Z^0 Z^0, W^+ W^-, HH$

(ii) Co-annihilation channels: dominates for tiny mass-splitting ($\Delta < M_{N_{P}}/10$)

$$N_R H^{\pm} \rightarrow \ell^{\pm} H, W^{\pm} \nu_{\ell}, \ell^{\pm} Z, \ell^{\pm} \gamma$$

$H^{\pm}H^{\mp} \rightarrow \ell^{\pm}\ell^{\mp}, q\bar{q}, HH, ZZ, W^{\pm}W^{\mp}, ZH, t\bar{t}$

Particle Dark Matter at Future Muon Colliders

Adil Jueid

Dark matter relic abundance

Adil Jueid

Direct detection constraints

The spin-independent nucleus- N_R elastic cross section occurs at the one(two)-loop order

We get something like

$$\sigma_{\rm SI} \propto \left(\text{Nuclear matrix elements} \right)^2 \times \left| \frac{\tilde{y}(Q^2 \approx 0)}{\sqrt{M_{H^{\pm}}^2}} \right|^2 \times \text{phase}$$

Effective Higgs- N_R coupling

$$\tilde{y}(Q^2 \approx 0) = -\frac{\lambda_3 v |Y_{\ell N}^2|}{16\pi M_{H^{\pm}}} \varrho_N \times \left[1 - (1 - \varrho_N^{-2})\log(1 - \varrho_N^2)\right] \quad (\varrho_N = M_{N_R}$$
Jueid Particle Dark

Adil Jueic

ase space

 $(M_{H^{\pm}})$

Matter at Future Muon Colliders

Direct detection constraints

Adil Jueid

 10^4 $M_{H^{\pm}} \stackrel{00}{(GeV)}$ 10^{2}

- Strong anti-correlation is observed between the spinindependent cross section (σ_{SI}) and the relic abundance of N_R .
- Regions where the predicted $\sigma_{\rm SI}$ is enhanced are hard to exclude as they correspond to $\xi \equiv \Omega_N h^2 / \Omega_{\text{Planck}} h^2 \ll 1$

4. Lepton Portal DM at muon colliders

Phenomenology at muon colliders: BPs

For the case of muon colliders, we need to choose the following scenario

$$Y_{\mu N} \ge (\approx) Y_{\tau N} \gg Y_{eN}$$

Benchmark scenario	BP1	BP2	BP3
Parameters			
$M_{N_R}~({ m GeV})$	50	200	598
$M_{H^\pm}~({ m GeV})$	500	500	600
Y_{Ne}	10^{-4}	$5 imes 10^{-4}$	10^{-3}
$Y_{N\mu}$	2.8	1.6	1
$Y_{N au}$	$5 imes 10^{-2}$	$5 imes 10^{-1}$	$5 imes 10^{-1}$
λ_3	4	5	5

Adil Jueid

BP4

DM production at muon colliders

Optimistic scenario: Luminosity increases linearly with the center-of-mass energy

$$\sqrt{s_{\mu\mu}} = 3,10$$
, and 30 TeV
 \implies Decent statis
 $\int \mathscr{L} dt = 1,10$, and 90 ab^{-1}

Particle Dark Matter at Future Muon Colliders

Adil Jueid

stics for signal events!

DM production at muon colliders

(i) DM production plus X ($N_R N_R + X$)

 $> N_R N_R + \gamma \implies$ High-energetic photon plus MET. $N_R N_R + Z \implies 2$ leptons or two jets plus MET. $\circ N_R N_R + H_{SM} \Longrightarrow b\bar{b} + MET; gg + MET; \cdots.$

(ii) DM production plus XY ($N_R N_R + XY$)

 $> N_R N_R + \gamma \gamma \implies 2$ photons plus MET. $N_R N_R + \gamma Z$ one photon + 2 leptons or two jets plus MET. $N_R N_R + ZZ/HZ/W^+W^-/HH/t\bar{t} \implies variety of final-state$ particles depending on the decay products of the heavy resonances.

(iii) DM production plus three SM particles ($N_R N_R + XYZ$)

Adil Jueid

DM production at muon colliders: results

Particle Dark Matter at Future Muon Colliders

Adil Jueid

DM production at muon colliders: results

Adil Jueid

DM production at muon colliders: signal vs backgrounds

			$\sigma \times BR$ (fb) (number of events))
		3 TeV	10 TeV	30 TeV
$N_R N_R + \gamma$	BP1	$1.11 \times 10^3 (1.11 \times 10^6)$	$1.80 \times 10^2 (1.80 \times 10^6)$	$2.38 \times 10^{1} (2.65 \times 10^{6})$
	BP2	$1.13 \times 10^2 (1.13 \times 10^5)$	$1.88 \times 10^1 (1.88 \times 10^5)$	$2.83 \times 10^{0} (2.55 \times 10^{5})$
	BP3	$1.18 \times 10^{1} (1.18 \times 10^{3})$	$2.65 \times 10^{0} (2.65 \times 10^{4})$	$0.41 \times 10^{0} (3.69 \times 10^{4})$
	BP4	$3.92 \times 10^{1} (3.95 \times 10^{4})$	$3.20 \times 10^{1} (3.20 \times 10^{5})$	$5.94 \times 10^{0} (5.35 \times 10^{5})$
	bkgs	$3.02 \times 10^3 (3.02 \times 10^6)$	$3.29 \times 10^3 (3.29 \times 10^7)$	$3.36 \times 10^3 (3.02 \times 10^8)$
$N_R N_R + Z (\to \ell \ell)$	BP1	$1.68 \times 10^1 (1.68 \times 10^4)$	$4.44 \times 10^{0} (4.44 \times 10^{4})$	$0.91 \times 10^{0} (8.19 \times 10^{4})$
	BP2	$1.62 \times 10^{0} (1.62 \times 10^{3})$	$0.46 \times 10^{0} (4.58 \times 10^{3})$	$9.39 \times 10^{-2} (8.45 \times 10^3)$
	BP3	$0.13 \times 10^{0} (0.13 \times 10^{3})$	$0.58 \times 10^{-1} (0.58 \times 10^3)$	$1.30 \times 10^{-2} (1.17 \times 10^{3})$
	BP4	$0.28 \times 10^{0} (0.28 \times 10^{3})$	$0.61 \times 10^{0} (0.61 \times 10^{4})$	$0.17 \times 10^{0} (1.53 \times 10^{4})$
	bkgs	$2.75 \times 10^{1} (2.75 \times 10^{4})$	$2.57 \times 10^{1} (2.57 \times 10^{5})$	$4.69 \times 10^{1} (4.22 \times 10^{6})$
$N_R N_R + Z(\rightarrow q\bar{q})$	BP1	$1.59 \times 10^2 (1.59 \times 10^5)$	$4.20 \times 10^{1} (4.20 \times 10^{5})$	$8.61 \times 10^{0} (7.75 \times 10^{5})$
	BP2	$1.53 \times 10^{1} (1.53 \times 10^{4})$	$4.33 \times 10^{0} (4.33 \times 10^{4})$	$0.89 \times 10^{0} (8.00 \times 10^{4})$
	BP3	$1.26 \times 10^{0} (1.26 \times 10^{3})$	$0.55 \times 10^{0} (5.54 \times 10^{3})$	$0.12 \times 10^{0} (1.11 \times 10^{4})$
	BP4	$2.67 \times 10^{0} (2.67 \times 10^{3})$	$5.73 \times 10^{0} (5.73 \times 10^{4})$	$1.57 \times 10^{0} (1.41 \times 10^{5})$
	bkgs	$4.76 \times 10^{2} (4.76 \times 10^{5})$	$6.71 \times 10^{2} (6.71 \times 10^{6})$	$1.01 \times 10^3 (0.91 \times 10^8)$
$N_R N_R + H_{\rm SM} (\rightarrow b\bar{b})$	BP1	$2.05 \times 10^1 (2.05 \times 10^4)$	$1.02 \times 10^{0} (1.02 \times 10^{4})$	$3.67 \times 10^{-2} (3.30 \times 10^3)$
	BP2	$5.83 \times 10^{0} (5.83 \times 10^{3})$	$0.31 \times 10^{0} (0.31 \times 10^{4})$	$1.12 \times 10^{-2} (1.01 \times 10^{3})$
	BP3	$0.47 \times 10^{0} (0.47 \times 10^{3})$	$0.47 \times 10^{-1} (0.47 \times 10^3)$	$1.81 \times 10^{-3} (1.63 \times 10^{2})$
	BP4	$0.11 \times 10^{0} (0.11 \times 10^{3})$	$0.21 \times 10^{0} (0.21 \times 10^{4})$	$1.47 \times 10^{-2} (1.32 \times 10^{3})$
	bkgs	$4.76 \times 10^{2} (4.76 \times 10^{5})$	$6.71 \times 10^{2} (6.71 \times 10^{6})$	$1.01 \times 10^{3} (0.91 \times 10^{8})$

Adil Jueid

DM production at muon colliders: signal vs backgrounds

			$\sigma \times BR$ (fb) (number of events	s)
		3 TeV	10 TeV	
$N_R N_R + \gamma \gamma$	BP1	$4.97 \times 10^{1} (4.97 \times 10^{4})$	$1.23 \times 10^1 (1.23 \times 10^5)$	2.38
	BP2	$4.93 \times 10^{1} (4.93 \times 10^{3})$	$1.28 \times 10^{0} (1.28 \times 10^{4})$	0.25
	BP3	$0.43 \times 10^{0} (0.43 \times 10^{3})$	$0.17 \times 10^{0} (1.73 \times 10^{3})$	0.36 >
	BP4	$1.00 \times 10^{0} (1.00 \times 10^{3})$	$1.87 \times 10^{0} (1.87 \times 10^{4})$	0.48
	bkgs	$8.73 \times 10^{1} (8.73 \times 10^{4})$	$1.04 \times 10^2 (1.04 \times 10^6)$	1.12
$N_R N_R + \gamma Z (\rightarrow \ell \ell)$	BP1	$1.24 \times 10^{0} (1.24 \times 10^{3})$	$0.49 \times 10^{0} (4.98 \times 10^{3})$	1.29 >
	BP2	$1.76 \times 10^{0} (1.76 \times 10^{3})$	$0.76 \times 10^{0} (7.64 \times 10^{3})$	0.20
	BP3	$0.12 \times 10^{0} (1.23 \times 10^{2})$	$9.50 \times 10^{-2} (9.50 \times 10^{2})$	2.80 >
	BP4	$0.18 \times 10^{0} (1.79 \times 10^{2})$	$9.05 \times 10^{-1} (9.05 \times 10^{3})$	3.46 >
	bkgs	$1.57 \times 10^{0} (1.57 \times 10^{3})$	$1.59 \times 10^{0} (1.59 \times 10^{4})$	2.97
$N_R N_R + Z(\to \ell\ell) Z(\to \ell\ell)$	BP1	$3.53 \times 10^{-2} (3.53 \times 10^{1})$	$2.29 \times 10^{-2} (2.29 \times 10^{2})$	7.21 :
	BP2	$0.98 \times 10^{0} (9.80 \times 10^{2})$	$0.75 \times 10^{0} (7.54 \times 10^{3})$	0.24
	BP3	$3.23 \times 10^{-2} (3.23 \times 10^{1})$	$7.87 \times 10^{-2} (7.87 \times 10^{2})$	3.08 >
	BP4	$7.50 \times 10^{-3} (7.50 \times 10^{0})$	$0.39 \times 10^{0} (3.89 \times 10^{3})$	0.30
	bkgs	$1.08 \times 10^{-1} (1.08 \times 10^{2})$	$1.39 \times 10^{-1} (1.39 \times 10^{3})$	3.74 >
$N_R N_R + V(\rightarrow q\bar{q})V(\rightarrow q\bar{q})$	BP1	$1.05 \times 10^{1} (1.05 \times 10^{4})$	$6.57 \times 10^{0} (6.57 \times 10^{4})$	2.02
	BP2	$2.76 \times 10^{0} (2.76 \times 10^{3})$	$2.08 \times 10^{0} (2.08 \times 10^{4})$	0.65
	BP3	$8.90 \times 10^{-2} (8.90 \times 10^{1})$	$2.15 \times 10^{-1} (2.15 \times 10^{3})$	8.30
	BP4	$1.30 \times 10^{-2} (1.30 \times 10^{1})$	$9.74 \times 10^{-1} (9.74 \times 10^{3})$	7.96 :
	bkgs	$6.63 \times 10^{1} (6.63 \times 10^{4})$	$1.71 \times 10^{2} (1.71 \times 10^{6})$	3.34
$N_P N_P + H_{\rm SM}(\rightarrow b\bar{b}) H_{\rm SM}(\rightarrow b\bar{b})$	BP1	$1.21 \times 10^{0} (1.21 \times 10^{3})$	$1.12 \times 10^{0} (1.12 \times 10^{4})$	3.77 >
	BP2	$3.95 \times 10^{-1} (3.95 \times 10^{2})$	$5.29 \times 10^{-1} (5.29 \times 10^{3})$	1.88 :
	BP3	$1.22 \times 10^{-2} (1.22 \times 10^{1})$	$5.32 \times 10^{-2} (5.32 \times 10^{2})$	2.36
	BP4	$1.40 \times 10^{-3} (1.40 \times 10^{0})$	$2.49 \times 10^{-1} (2.49 \times 10^{3})$	2.27 :
	bkgs	$6.63 \times 10^{1} (6.63 \times 10^{4})$	$1.71 \times 10^{2} (1.71 \times 10^{6})$	3.34

Adil Jueid

30 TeV

```
\times 10^{0} (2.38 \times 10^{5})
\times 10^{0} (2.53 \times 10^{4})
\times 10^{-1}(3.64 \times 10^3)
\times 10^{0} (4.85 \times 10^{4})
\times 10^{2}(1.12 \times 10^{7})
\times 10^{-1}(1.29 \times 10^4)
\times 10^{0} (2.02 \times 10^{4})
\times 10^{-2} (2.80 \times 10^3)
\times 10^{-1} (3.46 \times 10^4)
\times 10^{0} (2.67 \times 10^{5})
\times 10^{-3} (7.21 \times 10^2)
\times 10^{0} (2.42 \times 10^{4})
\times 10^{-2}(3.08 \times 10^3)
\times 10^{0} (3.02 \times 10^{4})
\times 10^{-1}(3.36 \times 10^4)
\times 10^{0} (2.02 \times 10^{5})
\times 10^{0} (6.57 \times 10^{4})
\times 10^{-2} (8.30 \times 10^3)
\times 10^{-1}(7.96 \times 10^4)
\times 10^2 (3.01 \times 10^7)
\times 10^{-1}(3.77 \times 10^4)
\times 10^{-1} (1.88 \times 10^4)
\times 10^{-2} (2.36 \times 10^3)
\times 10^{-1} (2.27 \times 10^4)
\times 10^2 (3.01 \times 10^7)
```

5. Mono-Higgs advanced with ML

Why mono-Higgs is important?

Mono-Higgs production refers to the production of one or more DM particle in association with a SM Higgs boson.

10 TeV

30 TeV $3.67 \times 10^{-2} (3.30 \times 10^{3})$

 $1.02 \times 10^{0} (1.02 \times 10^{4})$ $0.31 \times 10^{0} (0.31 \times 10^{4})$ $0.47 \times 10^{-1} (0.47 \times 10^3)$ $0.21 \times 10^{0} (0.21 \times 10^{4})$ $6.71 \times 10^2 (6.71 \times 10^6)$

 $1.12 \times 10^{-2} (1.01 \times 10^{3})$ $1.81 \times 10^{-3} (1.63 \times 10^{2})$ $1.47 \times 10^{-2} (1.32 \times 10^{3})$ $1.01 \times 10^3 (0.91 \times 10^8)$

Signal and Backgrounds

We consider $\mu^+\mu^- \rightarrow H_{\rm SM}$ ($\rightarrow b\bar{b}$) + $N_R N_R$ which leads to signatures consisting of jets plus MET

Backgrounds

Center-of-mass energy	3 TeV	10 TeV	30 TeV	
	Cross section	e (fb)		H _{SM}
$\mu\mu \to H_{\rm SM}Z$	1.37×10^{0}	0.12×10^{0}	1.37×10^{-2}	μ^-
$\mu\mu \rightarrow WW$	4.67×10^{2}	5.89×10^{1}	8.26×10^{0}	μ^+
$\mu\mu \rightarrow ZZ$	2.61×10^{1}	3.28×10^{0}	4.60×10^{-1}	
$\mu\mu \to t\bar{t}$	1.91×10^{1}	1.72×10^{0}	1.92×10^{-1}	u^{-} u^{-} u
$VV \rightarrow HZ$	9.87×10^{0}	3.53×10^{1}	7.59×10^{1}	$\begin{array}{c} \mu \\ \hline \\$
$VV \rightarrow H_{\rm SM}$	4.98×10^{2}	8.45×10^{2}	1.17×10^{3}	$Z, W $ $H_{\rm SM}$
$VV \rightarrow WZ$	3.98×10^{1}	3.19×10^{1}	1.26×10^{1}	Z, W
$VV \rightarrow WW$	1.51×10^{2}	4.30×10^{2}	8.58×10^{2}	
$VV \rightarrow ZZ$	5.66×10^{1}	2.03×10^{2}	4.30×10^{2}	μ ' μ ' , $ u_{\mu}$
$VV \to t\bar{t}$	5.22×10^{0}	1.71×10^{1}	3.14×10^{1}	
$VV \to t\bar{t}W$	5.67×10^{-2}	1.05×10^{-1}	6.97×10^{-2}	
$VV \to t\bar{t}Z$	1.10×10^{-1}	9.01×10^{-1}	2.77×10^{0}	

Adil Jueid

Cut-based analysis strategy

The Higgs boson being produced with DM can be either resolved or boosted (depending on the amount of the missing energy).

- Resolved: Two well-separated jets can be identified and used to reconstruct the Higgs boson candidates.
- Boosted: The Higgs boson is identified as a single large-R jet.

At first step we follow closely three analysis strategies carried out by the ATLAS and the CMS collaboration: one for resolved regime and two for the boosted regime.

Resolved regime:

- Lepton and photon veto.
- $E_T^{\text{miss}} > 100 \text{ GeV}$
- $\Delta \phi_{\min} > 20^{\circ}$
- $p_T^{bb} > 300 \text{ GeV}$
- Other quality cuts.

Boosted regime

- Lepton and photon veto.
- $E_T^{\text{miss}} > 300 \text{ GeV}$
- $N_{\rm I} > 0$
- $m_{\rm I} \in [70, 180]$ GeV

Adil Jueid

Resolved regime: Results

Cut-flow table

	VV + X		$t\overline{t} + X$	$t\overline{t} + X$		H + X		BP1	
	Events	ε	Events	ε	Events	Е	Events	ε	
Initial	7.4×10^{5}	_	24 367.3	_	5.1×10^{5}	_	20 500.0	_	
$E_T^{\text{miss}} > 100 \text{ GeV}$	$2.5\times10^5\pm90.6$	0.332	17285.9 ± 8.3	0.709	$1.6 \times 10^{5} \pm 73.7$	0.315	15153.9 ± 9.2	0.739	
Lepton veto	$1.6 \times 10^5 \pm 67.0$	0.670	13647.4 ± 8.0	0.790	$1.5 \times 10^{5} \pm 72.5$	0.961	15108.2 ± 9.3	0.997	
τ veto	$1.5 \times 10^5 \pm 60.1$	0.898	12061.3 ± 7.6	0.884	$1.5 \times 10^5 \pm 72.1$	0.966	14880.0 ± 9.3	0.985	
Photon veto	$1.4 \times 10^5 \pm 56.2$	0.937	10998.0 ± 7.2	0.912	$1.5 \times 10^5 \pm 72.0$	0.990	14622.4 ± 9.4	0.983	
$\geq 2 \text{ small-} R \text{ jets}$	$1.0 \times 10^5 \pm 41.6$	0.727	8967.4 ± 6.1	0.815	82718.7 ± 46.7	0.561	10729.8 ± 8.9	0.734	
$\geq 2 b$ -jets	1904.6 ± 0.6	0.019	1920.4 ± 1.6	0.214	19203.6 ± 12.8	0.232	929.2 ± 1.1	0.087	
$\Delta \phi > 0.35$	1732.2 ± 0.6	0.909	1190.6 ± 0.9	0.620	19155.7 ± 13.1	0.998	769.3 ± 0.9	0.828	
$N_b = 2$	1617.7 ± 0.5	0.934	1133.2 ± 0.9	0.952	19064.6 ± 13.4	0.995	764.8 ± 0.9	0.994	
$E_T^{\text{miss}} \in]300, 1000] \text{ GeV}$	402.3 ± 0.1	0.249	432.4 ± 0.4	0.382	2195.4 ± 1.3	0.115	549.6 ± 0.6	0.719	
$p_T^{b\bar{b}} > 300 \text{ GeV}$	230.7 ± 0.1	0.574	319.5 ± 0.3	0.739	1942.0 ± 1.3	0.885	446.3 ± 0.5	0.812	
$\Delta \phi(\vec{p}_{\rm miss}, \vec{p}_{\rm H}) > 2\pi/3$	224.2 ± 0.1	0.972	306.4 ± 0.3	0.959	1941.7 ± 1.3	1.000	317.7 ± 0.4	0.712	
$m_{T,h}^{\min} > 170 \text{ GeV}$	208.5 ± 0.1	0.930	129.5 ± 0.1	0.422	1928.3 ± 1.4	0.993	314.0 ± 0.4	0.988	
$m_{T b}^{\text{max}} > 200 \text{ GeV}$	208.0 ± 0.1	0.998	129.4 ± 0.1	1.000	1927.6 ± 1.4	1.000	313.6 ± 0.4	0.999	
$N_{\rm jets} < 3$	183.3 ± 0.1	0.882	81.7 ± 0.1	0.632	1921.4 ± 1.4	0.997	312.5 ± 0.4	0.996	
$m_{b\bar{b}} \in]80, 160[$ GeV	7.5 ± 0.0	0.041	$3.6~\pm~0.0$	0.045	1520.7 ± 1.2	0.791	216.2 ± 0.3	0.692	

Significance

Benchmark point	BP1	BP2	BP3
S	5.40	1.61	0.14

BP4

 2.62×10^{-2}

Boosted regime: Results

Cut-flow table

	VV + X		$t\overline{t} + X$		H + X		BP1	
	Events	Е	Events	Е	Events	Е	Events	Е
Initial	7.4×10^{5}	_	24 367.3	_	5.1×10^{5}	_	20 500.0	_
Lepton veto	$4.8 \times 10^5 \pm 157.6$	0.652	18123.7 ± 7.9	0.744	$4.7 \times 10^5 \pm 91.4$	0.923	20371.8 ± 1.9	0.994
τ veto	$4.6 \times 10^5 \pm 156.5$	0.956	16321.9 ± 8.0	0.901	$4.5 \times 10^5 \pm 109.2$	0.955	20029.1 ± 3.6	0.983
$E_T^{\text{miss}} > 300 \text{ GeV}$	39334.6 ± 18.6	0.085	7076.6 ± 6.1	0.434	12253.7 ± 3.1	0.027	12014.1 ± 9.2	0.600
$N_{\rm CA15}$ jets > 0	39166.6 ± 18.6	0.996	7075.5 ± 6.1	1.000	12182.3 ± 3.0	0.994	12014.1 ± 9.2	1.000
$N_{\rm SD}$ jets > 0	37419.0 ± 17.9	0.955	7060.5 ± 6.0	0.998	11083.4 ± 2.7	0.910	11118.7 ± 9.0	0.925
$M_{\rm SD} \in \]70, \ 180[\ {\rm GeV}]$	31615.2 ± 15.3	0.845	4233.1 ± 3.9	0.600	9625.0 ± 2.3	0.868	6978.8 ± 6.8	0.628

Significance

Benchmark point		BP1	BP2	BP3	BP4
S	AK10 jets	38.18	10.91	0.84	0.17
	CA15 jets	31.93	9.02	0.74	0.15
р	AK10 jets	0.15	4.91×10^{-2}	3.95×10^{-3}	8.23×10^{-4}
	CA15 jets	0.13	4.08×10^{-2}	3.46×10^{-3}	7.06×10^{-4}

Improvements with Boosted-Decision Trees

After a basic event selection, we train the BDT for the mixing of the samples from the four benchmark points using the following variables:

• Resolved regime:

 $\{E_T^{\text{miss}}, \phi_{\text{miss}}, p_{T,b}^i, \phi_b^i, \eta_b^i, E_b^i, p_T^{bb}, \phi_{bb}, \eta_{bb}, E_{bb}, m_{bb}, \Delta\phi(\vec{b}_1, \vec{p}_{\text{miss}}), \Delta\phi(\vec{b}_2, \vec{p}_{\text{miss}}), m_T^{\text{min}}, m_T^{\text{max}}\}$

• Boosted regime with AK10 jets:

$$E_T^{\text{miss}}, \phi_{\text{miss}}, p_T^{\text{J}}, \eta_{\text{J}}, \phi_{\text{J}}, E_{\text{J}}, m_{\text{J}}, \Delta \phi(\vec{\text{J}}, \vec{p}_{\text{miss}}), m_T(\text{J}, E_T^{\text{miss}})$$

• Boosted regime with CA15 jets:

$$\left\{E_T^{\text{miss}}, \phi_{\text{miss}}, p_T^{\text{J}}, \eta_{\text{J}}, \phi_{\text{J}}, E_{\text{J}}, m_{\text{J}}, \Delta\phi(\vec{\text{J}}, \vec{p}_{\text{miss}}), m_T\left(\text{J}, E_T^{\text{miss}}\right), M_2^{(\beta)}, N_2^{(\beta)}\right\}$$

Adil Jueid

Improvements with BDTs

Particle Dark Matter at Future Muon Colliders

Adil Jueid

Impressive results for the

Improvements with BDTs

Benchmark point		BP1	BP2	BP3	BP4
Resolved (AK4)	${{\cal S}_{100~{ m fb}^{-1}} \over {{\cal S}_{1000~{ m fb}^{-1}}}}$	33.85 75.69	9.59 21.45	1.77 3.97	0.63 1.42
Merged (AK10)	${{\cal S}_{100\ { m fb}^{-1}} \over {{\cal S}_{1000\ { m fb}^{-1}}}}$	143.44 320.76	45.41 101.55	6.86 15.34	1.99 4.45
Merged (CA15)	${{\cal S}_{100\ { m fb}^{-1}}\over {{\cal S}_{1000\ { m fb}^{-1}}}}$	149.20 333.62	47.83 106.95	7.66 17.13	2.60 5.81

Impressive enhancement of the signal significance!

Improvements with BDTs

DM masses up to 1 TeV can be excluded for 3 TeV muon collider!

Conclusions and Outlook

- We have studied the potential of future muon colliders in testing dark matter candidate interacting primarily with muons.
- We have analysed all the possible theoretical and experimental constraints.
- The model can be tested in a variety of production modes (totaling up to 54) channels).
- We then studied the sensitivity for a subleading channel, i.e. mono-Higgs.
- We also found that even basic ML algorithms can dramatically enhance the sensitivity at future muon colliders.
- More work is needed to study further channels, dark-matter characterization, ... etc.

