Boosting SM and MSSM Higgs searches with Jet Substructure

Adam Martin (<u>aomartin@fnal.gov</u>)

based on work with G. Kribs, T. Roy and M. Spannowsky (U. Oregon) arxiv: 0912.4731, 1006.1656

IPMU, Sept. 9th, 2010

‡ Fermilab

<u>Outline</u>

Higgs in the SM

- A new handle on h->b bbar
- jets and jet-substructure
- Boosted MSSM Higgses
- Substructure for SUSY

<u>Higgs in the SM</u>

Where is the Higgs?

dependence on Higgs mass enters via virtual electroweak effects

Precise measurements of EW observables indirectly bound $m_{\rm H}$

suggest that the Higgs is light

<u>Unfortunately</u>

BUT, although easy to produce at the LHC,

light Higgses are difficult to find

<u>Unfortunately</u>

BUT, although easy to produce at the LHC,

light Higgses are difficult to find

Branching Ratios of SM Higgs

Branching Ratios of SM Higgs

Branching Ratios of SM Higgs

ATLAS TPR 2009

18

16

14

12

1(

8

2

(

expected significance

no way to use dominant h-> b bbar mode .. or so we thought

Outline

- Higgs in the SM
- A new handle on h->b bbar
- jets and jet-substructure
- Boosted MSSM Higgses
- Substructure for SUSY

<u>Recently, a new technique for light Higgses</u>

proposed by BDRS = Butterworth, Davison, Rubin, Salam (0802.2470)
considered associated Higgs production:

 $pp \rightarrow W(\ell\nu)/Z(\ell\ell) + h(\bar{b}b)$

find: significance ~ 4.5 for $\mathcal{L} = 30 \text{ fb}^{-1}$

$$\left(\sim 2.6 \text{ for } \mathcal{L} = 10 \text{ fb}^{-1}\right)$$

 \gtrsim 'conventional' channels!!

HOW? by focusing on boosted Higgses , $p_T > 200$ GeV and using 'jet substructure' to differentiate signal from t tbar, W/Z + jets, etc. backgrounds

<u>Recently, a new technique for light Higgses</u>

brings back a channel that had been thought extremely difficult at the LHC

allows measurement of y_b !

Outline

- Higgs in the SM
- A new handle on h->b bbar
- jets and jet-substructure
- Boosted MSSM Higgses
- Substructure for SUSY

Jets at the LHC

There is a lot going on in jets at the LHC: Several scales $\sqrt{s} \gg M_W, \ M_Z, \ m_t, \ m_h \gg \Lambda_{QCD}$

What's in a jet?

'theorist' picture: one hard parton = jet

Jets at the LHC

There is a lot going on in jets at the LHC: Several scales $\sqrt{s}\gg M_W,\,M_Z,\,m_t,\,m_h\gg\Lambda_{QCD}$

What's in a jet?

Jets at the LHC

to be able to better use the information contained in jets, we have to know how they are created

1.) the starting point is a list of four vectors to final state particles or calorimeter cells

more info? see talk by B.Tweedie at BOOST 2010 <u>http://www.physics.ox.ac.uk/boost2010/index.asp</u>

find the minimum: $\min(d_{ij}, d_i)$

if $\min(d_{ij}, d_i)$ is one of the d_i

promote $particle_i$ to a jet, and remove it from the list

repeat the procedure until the list is empty

jet area = R controls when to stop combining objects (d_{ij})

if $\min(d_{ij}, d_i)$ is one of the d_i

promote $particle_i$ to a jet, and remove it from the list

repeat the procedure until the list is empty

jet area = R controls when to stop combining objects (d_{ij})

if $\min(d_{ij}, d_i)$ is one of the d_i

promote $particle_i$ to a jet, and remove it from the list

repeat the procedure until the list is empty

jet area = R controls when to stop combining objects (d_{ij})

if $\min(d_{ij}, d_i)$ is one of the d_i

promote $particle_i$ to a jet, and remove it from the list

repeat the procedure until the list is empty

jet area = R controls when to stop combining objects (d_{ij})

when a heavy particle (Higgs) is boosted, its decay remnants get closer together in the detector

both decay products (and their associated radiation) can be captured by taking a larger jet cone -- resulting in a single 'fat-jet', R = 1.2 - 1.5

these 'resonance fat jets' have several distinct characteristics, which we can use to our advantage

when a heavy particle (Higgs) is boosted, its decay remnants get closer together in the detector

both decay products (and their associated radiation) can be captured by taking a larger jet cone -- resulting in a single 'fat-jet', R = 1.2 - 1.5

these 'resonance fat jets' have several distinct characteristics, which we can use to our advantage

1.) 'resonance fat jets' have high invariant mass

 $m_J \sim m_h$

while we don't think of QCD jets as having high mass

BUT there is a whole lot of QCD! tails extend to signal region

high jet-mass alone is not enough

unlike boosted top, we want 2-body decay structure, and there is no longer a W among subjets

2.) fat jets from resonance vs. QCD have very different origin

VS.

heavy particle decaying to two light particles

expect two 'cores' of energy deposition within the jet

QCD radiation

mainly gluon emission, dominated by soft, collinear emissisons

Jets are built from a series of 2 -> 1 mergings (k_{I} , C/A, anti- k_{I})

 $P_{1 \rightarrow 2}(z) \propto \text{independent of } z \qquad P_{1 \rightarrow 2}(z) \propto \text{singular as } z \rightarrow 0$

energy is shared evenly in a heavy particle decay, while uneven sharing configurations dominate the background

cut on z removes background!

In practice, 'undo' the jets step by step : $J \rightarrow i + j$

1.)
$$m_i < \mu m_J$$

2.) $\frac{\min(p_{T_i}^2, p_{T_j}^2)}{m_J^2} \Delta R_{ij}^2 > (y_{cut})^2$

In practice, 'undo' the jets step by step : $J \rightarrow i + j$

1.)
$$m_i < \mu m_J$$

2.) $\frac{\min(p_{T_i}^2, p_{T_j}^2)}{m_J^2} \Delta R_{ij}^2 > (y_{cut})^2$

In practice, 'undo' the jets step by step : $J \rightarrow i + j$

In practice, 'undo' the jets step by step : $J \rightarrow i + j$

What about g-> b bbar?

not removed by z-cut

BUT:

- because there is no singularity, g -> q qbar is a subleading process in the shower
- b bbar pairs will have low invariant mass, removed by looking at large jet mass

the downside of a large cone is that it allows in a lot of energy unrelated to the resonance: UE and ISR

different techniques to try to subtract off the unwanted noise

refine jets on smaller scale, take only n_{filt} hardest

keeps perturbative, angle-ordered radiation, throws out the rest

<u>not your 'garden-variety' jet tool !</u>

Putting everything togethersignalR = 1.2, C/Abackground

Putting everything together

<u>background</u>

undo jet clustering...

Putting everything together

<u>undo jet clustering...</u>

if mass drop conditions not satisfied, throw away lighter daughter jet, continue

1.)
$$m_i < 0.68 m_J$$

2.) $\frac{\min(p_{T_i}^2, p_{T_j}^2)}{m_J^2} \Delta R_{ij}^2 > (0.3)^2$

if mass drop conditions not satisfied, throw away lighter daughter jet, continue

1.)
$$m_i < 0.68 m_J$$

2.) $\frac{\min(p_{T_i}^2, p_{T_j}^2)}{m_J^2} \Delta R_{ij}^2 > (0.3)^2$

if mass drop conditions not satisfied, throw away lighter daughter jet, continue

1.)
$$m_i < 0.68 m_J$$

2.) $\frac{\min(p_{T_i}^2, p_{T_j}^2)}{m_J^2} \Delta R_{ij}^2 > (0.3)^2$

at some stage, h->b bbar signal should pass massdrop conditions, while QCP background will not

at some stage, h->b bbar signal should pass massdrop conditions, while QCP background will not

both b-tagged? if YES, then Filter

keep the hard partons, their perturbative radiation, throw away ISR/VE

at some stage, h->b bbar signal should pass massdrop conditions, while QCP background will not

both b-tagged? if YES, then Filter

keep the hard partons, their perturbative radiation, throw away ISR/VE

at some stage, h->b bbar signal should pass massdrop conditions, while QCP background will not

both b-tagged? if YES, then Filter

keep the hard partons, their perturbative radiation, throw away ISR/VE

<u>Summarizing...</u>

substructure analysis:

LOSE: rate, as a significant boost $(p_T > 200 \text{ GeV})$ is needed

<u>GAIN:</u>

- 1.) rejection over background through unique characteristics: high mass, structure
- 2.) resolution: combinatorics reduced, unwanted jet stuff (UE, ISR) rejected

BDRS at ATLAS

- LHC 14 TeV; 30 fb⁻¹
- HERWIG/JIMMY cross-checked with PYTHIA with "ATLAS tune"

₩Zi

ZZ

Range 104-138GeV

100 120 140 160 180 200

Higgs mass [GeV/c²]

Hiaas

60% b-tag; 2% mistag

60

80

40

no smearing

BDRS at ATLAS

ATLAS study: ~3.5 σ at L = 30 fb⁻¹

b-tagging seems to work very will within jets with substructure

Boosted Higgses

interesting new approach , BUT a bit limited in SM

* boosted Higgs are rare in the SM: $\sim 5\%~{\rm in}~H+W/Z$

* need to trigger & suppress SM backgrounds: limited to W/Z leptonic decay modes

What about BSM sources of boosted Higgses?

<u>Outline</u>

- Higgs in the SM
- A new handle on h->b bbar
- jets and jet-substructure
- Boosted MSSM Higgses
- Substructure for SUSY

For example: Weak Scale Supersymmetry

"Minimal Supersymmetric Standard Model (MSSM)"

<u>Going beyond the SM... light Higgs still hard</u>

450

<u>Higgs in the MSSM</u>

- MSSM Higgs has to be light $m_h \lesssim 130~{
 m GeV}$, decays dominantly to $b\overline{b}$
- Squarks/gluinos carry color, so they have a large production cross section despite being heavy
- Sparticles cascade decay, decay products can include Higgses
- Sparticles are heavy --> light decay products (h!) tend to be boosted
- All events have MET --> powerful discriminator vs. SM backgrounds

MSSM Higgses from cascade decays

are ideally suited for substructure analysis

2.) when the scale of SUSY-breaking is light (gmsb), gravitino is the LSP

2.) when the scale of SUSY-breaking is light (gmsb), gravitino is the LSP

2.) when the scale of SUSY-breaking is light (gmsb), gravitino is the LSP

Branching ratios and boosted fraction: neutralino LSP

Hasn't cascade-Higgs been done before? Not really

 m_0

1.) <u>mSUGRA-ism</u> --

Higgs BC + EWSB conditions generically give large μ

too few Higgses in cascades

 $m_{1/2}$

forget mSUGRA, there is a much wider parameter space to explore!

<u>Hasn't cascade-Higgs been done before? Not really</u>

2.) light Higgsino LSP is not great for PM(< obs)

BUT, as long as we don't create $\Omega_{DM} > \Omega_{DM}^{obs}$

shouldn't be a constraint for Higgs discovery!

3.) Without boosted/substructure techniques, combinatorial background is much bigger --> degrades mass resolution

<u>Outline</u>

- Higgs in the SM
- A new handle on h->b bbar
- jets and jet-substructure
- Boosted MSSM Higgses
- Substructure for SUSY

Higgses source comparison

how people usually look for the MSSM Higgs

- Higgs produced in <u>association</u> <u>with SM particles</u>
- smaller cross section (set by y_b)
- no (BSM) MET
- only SM backgrounds

how I want to look for the MSSM Higgs

- Higgses from sparticle decays
- Impose MET, H_T cuts to suppress SM background
- look for fat jets (C/A, R = 1.2)
- Look for substructure in remaining events -- suppresses combinatorial SUSY background & pulls out any Higgses

Remember

focus on the subset of new physics events with boosted characteristics

> specifically, demand R = 1.2one or more 'fat' jets: $p_{T,j} > 200 \text{ GeV}$

this limits the kinematic regime, costing us events, but we greatly reduce combinatorial background

* Our goal is to discover the Higgs, not the new physics!

* also, going to high- $p_T \longrightarrow$ better detector resolution:

$$\underline{\text{ex., for jets:}} \left(\frac{\delta E}{E}\right)_{\text{jets}} \cong \frac{0.6}{\sqrt{E/\text{GeV}}} + 0.03 \qquad \begin{array}{l} \text{(ATLAS TDR,} \\ \text{cone jets.)} \end{array}$$

so boosted analysis are also cleaner

<u>Substructure for SUSY</u>

SUSY events are busy. Lots of extra high-p_T partons flying around from decays of ${\tilde q}/\chi^{\pm,0}/t$

We could:

- 1. Focus on higher boost = smaller jets
- 2. Adapt substructure routine

<u>Substructure for SUSY</u>

SUSY events are busy. Lots of extra high-p_1 partons flying around from decays of $\tilde{q}/\chi^{\pm,0}/t$

<u>Specifically:</u>

- 1. undo clustering: j -> j_1 + j_2
- 2a. if a mass drop (BDRS):
 - keep $j_2 = constituent$
 - j₁ -> j, goto 1.)

2b. otherwise, j₁ -> j, goto 1.
3. continue until p_{T,j} < 30 GeV

take 2 b-tagged constituents with most similar p_T , filter candidate higgs

<u>Substructure for SUSY</u>

SUSY events are busy. Lots of extra high-p_T partons flying around from decays of $\tilde{q}/\chi^{\pm,0}/t$

<u>Specifically:</u>

- 1. undo clustering: j -> j_1 + j_2
- 2a. if a mass drop (BDRS):
 - keep $j_2 = constituent$
 - j1 -> j, goto 1.)

2b. otherwise, j₁ -> j, goto 1.
3. continue until p_{T,j} < 30 GeV

take 2 b-tagged constituents with most similar p_T , filter candidate higgs

similar method to t tbar h tagger (Plehn, Salam, Spannowsky '09)

BDRS stops here

BDRS stops here 'similarity' method keeps going

BDRS stops here 'similarity' method keeps going

Higgs is spin-0 -> more symmetric decay products

90

BDRS stops here 'similarity' method keeps going

Higgs is spin-0 -> more symmetric decay products

more efficient in busy environments

now, results..

Candidate fat jet mass (GeV)

— similarity

Neutralino LSP Results: #1

 $L = 10 \text{ fb}^{-1}, \sqrt{s} = 14 \text{ TeV}$

$$BR(\tilde{u}_L, \tilde{d}_L \to h + X) \sim 23\%$$
 $BR(\tilde{u}_R, \tilde{d}_R \to h + X) \sim 16\%$
 $m_{\tilde{Q}_{1,2}}$
 1 TeV

 M_2
 600 GeV

 M_1
 300 GeV

 μ
 300 GeV

 150 GeV

MET > 300 GeV, H_T > 1 TeV, 3+ jets, + substructure 1 TeV

Neutralino LSP Results: #1

 $L = 10 \text{ fb}^{-1}, \sqrt{s} = 14 \text{ TeV}$

<u>**Results: Details**</u>

Background:ALPGEN \longrightarrow PYTHIA6.4underlying event:Signal:SUSPECT2 \longrightarrow PYTHIA6.4ATLAS tune

- All final-state hadrons grouped into cells of size $(\Delta\eta\times\Delta\phi)=(0.1\times0.1)$
- Each cell is rescaled to be massless (Thaler, Wang '08)

jet gymnastics performed using Fastlet (hep-ph/0512210)

b-tagging: 60% efficiency, 2% fake rate

jet-photon fake rate: .1%

"But I really liked SUSY Dark Matter..."

Though we typically have too little PM

permitting $M_1 \lesssim \mu$, we can get consistent $~\Omega_{DM}~$ without losing all our Higgses

Neutralino LSP Results: #2

technique holds up at low m_A and $\tan\beta$, where traditional approaches have the most trouble

Can even discover heavier A,H states!

<u>Gravitino LSP Results:</u>

 $pp \to SUSY \to \chi_0 \chi_0 \to h + \gamma + E_T + X$

High-p_T photon makes things easier... No need for large H_T , jet mult. cuts

(0912.4731)

MSSM Higgs Comments

We've used the MSSM as an example source of Higgses from BSM, but the technique is by no means limited to this

- new, heavy particles who's decays include Higgses
- Higgs which decays primarily to b b-bar

* cleanliness of substructure analysis
better extraction of underlying parameters

MSSM Higgs Comments

We've used the MSSM as an example source of Higgses from BSM, but the technique is by no means limited to this

- new, heavy particles who's decays include Higgses
- Higgs which decays primarily to b b bar

* cleanliness of substructure analysis
better extraction of underlying parameters

More exotic Higgses

Ex.) Buried Higgs' (Bellazini et al '09)

add in a new pseudoscalar $\eta\,$, can easily arrange for $\,h\to 2\eta\,$ to dominate: small $m_\eta\,$ --> $h\to 2\eta\to 4g\,$!!

• η certainly boosted. **2** light subjets of the same mass

 color singlet -> 2 color singlets distinct color flow

More exotic Higgses

Ex.) Buried Higgs (Bellazini et al '09)

tricky, but can be 'unburied' with substructure methods

add in a new pseudoscalar η , can easily arrange for $h \to 2\eta$ to dominate: small $m_\eta \dashrightarrow h \to 2\eta \to 4g$!!

• η certainly boosted. 2 light subjets of the same mass

color singlet -> 2 color singlets distinct color flow ttH

90

Signal xxxxx

100 110 120 130 140

Background

<u>Conclusions</u>

• Using jet substructure techniques, can find boosted $h \to \overline{b}b$ brings back W/Z + h mode in SM can be extended to work in busy environments

- •MSSM Higgs must be light, decays mainly to b-bbar
- Higgses from sparticle cascades have potentially large rate, high boost --> ideal for substructure
- For a wide range of SUSY parameters, cascade-Higgs discovery channels can <u>easily</u> be as significant (or more so) than conventional $h \rightarrow \gamma\gamma$, $h \rightarrow \tau\tau$ (H/A discovery too!)