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Brief Introduction to 
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It then measures the intensity

Think of the detector as a device that 
counts the number of photons hitting 
it per unit time per unit area with a 
given polarization.

(Holmes et al. 2008)

I(x, n̂, t, γ)
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It then measures the intensity

(Holmes et al. 2008)
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Think of the detector as a device that 
counts the number of photons hitting 
it per unit time per unit area with a 
given polarization.



This is usually shown in the form of color-coded maps

∆T (n̂)

V-Band (61 GHz)

(Jarosik et al. 2010)
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The Stokes parameters Q and U can then also be 
shown as color-coded maps

Q U

(Jarosik et al. 2010)
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These quantities depend on initial conditions and 
cannot be predicted theoretically.  What can be 
predicted are the correlations

�∆T (n̂)∆T (n̂�)� ,

�∆T (n̂) [Q(n̂�) + iU(n̂�)]� ,

�[Q(n̂) + iU(n̂)] [Q(n̂�) + iU(n̂�)]� ,

�[Q(n̂) + iU(n̂)] [Q(n̂�) − iU(n̂�)]� .

Comparison with theory

as well as higher n-point functions.
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It turns out to be more convenient to 
use coefficients

aT,�m =
�

d2n̂ Y m
�

∗(n̂)∆T (n̂)

aP,�m =
�

d2n̂ 2Y
m
�

∗(n̂) (Q(n̂) + iU(n̂))

aE,� m ≡ −(aP,� m + a∗P,�−m)/2

aB,� m ≡ i(aP,� m − a∗P,�−m)/2

Comparison with theory
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The correlations between temperature 
fluctuations and polarization can then be given in 
terms of multipole coefficients          defined by

�
aB,� ma∗B,�� m�

�
= CBB,�δ���δmm� .

�
aE,� ma∗E,�� m�

�
= CEE,�δ���δmm� ,

�
aT,� ma∗E,�� m�

�
= CTE,�δ���δmm� ,

�
aT,� ma∗T,�� m�

�
= CTT,�δ���δmm� ,

CXY,�

Comparison with theory
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These multipole coefficients can be calculated for 
a given model, and they can be estimated from 
the sky maps by

Comparison with theory

Cobs
TT,� ≡

1
2� + 1

�

m

��aobs
T,� m

��2

obsaT,�m =
�

d2n̂ Y m
�

∗(n̂)∆T (n̂)

and similarly for the others.
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Similarly, the information about three-point 
correlations are contained in

Comparison with theory

�aX,�1m1aY,�2m2aZ,�3m3� = Gm1m2m3
�1�2�3

bXY Z,�1�2�3

Currently neither data nor analysis tools are good 
enough to measure this bispectrum directly. Instead 
the magnitude of the temperature bispectrum is 
constrained for different shapes.
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From the CMB to inflation

of a spatially flat universe with Friedmann-Robertson-Walker (FRW) metric7

ds
2 = −dt

2 + a(t)2dx2 (3)

we see that inflation requires a source of negative pressure p and an energy density ρ which dilutes
very slowly8, while allowing for an exit into the standard Big Bang cosmology at later times. Such
a source of stress-energy can be modeled by the potential energy V (φ) of a scalar field φ, together
with a mechanism which maintains a near-constant value of V (φ) during the inflationary period.
That is, the scalar field φ(t,x) (the ‘inflaton’) is an order parameter used to describe the change in
energy density during inflation. There is a wide array of mechanisms for obtaining near-constant
V (φ) during inflation. Two basic approaches include (i) postulating a nearly flat potential V (φ),
or (ii) postulating an effective action for φ which contains strong self-interactions which slow the
field’s evolution down a steep potential. All single-field mechanisms for inflation can be captured by
an effective field theory for single-field inflation [32]; different mechanisms and models with diverse
theoretical motivations arise as limits of this basic structure.

reheating

Figure 1: Examples of Inflaton Potentials. Acceleration occurs when the potential energy of the
field V dominates over its kinetic energy 1

2 φ̇2. Inflation ends at φend when the slow-roll
conditions are violated, � → 1. CMB fluctuations are created by quantum fluctuations
δφ about 60 e-folds before the end of inflation. At reheating, the energy density of the
inflaton is converted into radiation.
Left: A typical small-field potential. Right: A typical large-field potential.

One simple limit is known as single-field slow-roll inflation, for which an effective Lagrangian
Leff(φ) = f [(∂φ)2]−V (φ) is postulated.9 We consider a time-dependent homogeneous and isotropic
background spacetime as in Eqn. (3). The expansion rate is characterized by the Hubble parameter

7For simplicity, we anticipate the inflationary solution of the flatness problem and assume that the spatial
geometry is flat. The generalization to curved space is straightforward.

8Note that the two Friedmann equations can be combined into the continuity equation ρ̇ = 3H(ρ+p). For
p ≈ −ρ, one therefore finds ρ̇ ≈ const. and ä > 0.

9For pedagogical reasons, we restrict the discussion in the remainder of this section to single-field slow-roll
inflation with canonical kinetic term f [(∂φ)2] = 1

2 (∂φ)2. In Section 5 and Appendix A we generalize our
treatment to single-field inflation with non-canonical kinetic terms and inflationary models with more than
one field.
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scalar modes

tensor modes

additional scalar modes include

δρb, δρc, . . .

CTT,�, CTE,�, CEE,�

CTT,�, CTE,�, CEE,�, CBB,�

ds2 = −dt2 + a(t)2((1 + A)δij + ∂i∂jB + hij)dxidxj

From the CMB to inflation



The system of equations that governs the evolution of 
the scalar modes from around few keV to the present 
contains equations like

k
2

a2
Ak + H

�
3Ȧk − k

2
Ḃk

�
=

8πG
�
δρb k + δρc b + ργ∆(S)

T,0 + ρν∆(S)
ν,0

�

δρ̇c k + 3Hδρc k +
1
2
ρc k

�
3Ȧk − k

2
Ḃk

�
= 0

...
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C(S)
XX,� = 4πT 2
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Initial Conditions

Physics of Recombination

Geometry

Late time evolution
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Initial conditions are set by

In single field inflation (at linear order in spatially 
flat gauge):

�R(k1, t)R(k2, t)R(k3, t)� =

(2π)7∆4
R

1
k2
1k

2
2k

2
3

δ3(k1 + k2 + k3)
G(k1, k2, k3)

k1k2k3

�R(k, t)R(k�, t)� = (2π)6δ(k + k�)
∆2
R(k)

4πk3

R(k, t) = −H
δφ(k, t)

˙̄
φ
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For standard single field slow-roll inflation, the 
primordial spectrum of scalar perturbations is

∆2
R(k) =

H
2(tk)

8π2�(tk)
≈ ∆2

R

�
k

k∗

�ns−1

ns = 1− 4�∗ − 2δ∗with

� = − Ḣ

H2
δ =

Ḧ

2HḢ
and

and the 3-pt function is too small to be observed.
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Comparison with theory

(Larson et al. 2010)
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In addition to the scalar modes, inflation also 
predicts a nearly scale invariant spectrum of 
tensor modes

∆2
h(k) =

2H
2(tk)
π2

A measurement of the tensor contribution 
would provide a direct measurement of the 
energy scale of inflation!

From the CMB to inflation



The tensor-to-scalar ratio r  

Whether the tensor contribution is observable
is often discussed in terms of the tensor-to-scalar
ratio

V 1/4
inf = 1.06× 1016 GeV

� r

0.01

�1/4

r =
∆2

h

∆2
R

= 16�

∆φ ≈ ∆N

�
r

8
≈

�
r

0.01
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Future experiments: 
WMAP+BAO+     :H0 r < 0.24 (95%C.L.)

r ∼ 0.001
(Komatsu et al. 2010)

(Bock et al. 2009)
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 Inflation is UV sensitive and should be studied 
in a UV complete theory.

 For r>0.01 the inflaton must have moved over a 
distance in field space larger than the Planck mass.

  One must ensure the required flatness of the 
potential over distances large compared to      , 
e.g. by a shift symmetry.

Mp

... and to strings



 This makes axions natural candidates assuming 
one can break their shift symmetries in a 
controlled way. 

 At the level of effective field theories, this can 
be done. Can it be done in a theory of quantum 
gravity? (string theory)

 Instanton effects may generate periodic 
contributions to the potential if the inflaton is 
an axion.

... and to strings

V (φ) = V0(φ) + Λ4 cos
�

φ

f

�



Basic Ingredients for Axion 
Monodromy Inflation



where         is an element of an 
integral basis of 

Axions arise from integrating gauge potentials 
over non-trivial cycles in the compactification 
manifold.

bI(x) =
�

Σ(2)
I

B

cα(x) =
�

Σ(p)
α

C(p)

Σ(p)
α

Hp(X, Z)

Axion Monodromy Inflation
Consider string theory on M ×X



These fields possess a shift symmetry to all orders 
in string perturbation theory.

Axion Monodromy Inflation

The vertex operator for        in the limit of 
vanishing momentum is

bI(x)

VbI (0) =
�

W
d2ξ�αβ∂αY i∂βY jωI

ij(Y (ξ)) =
�

ϕ(W)
ωI

ϕ(W) = ∂Cvanishes if so that coupling vanishes.



Breaking by branes

For definiteness consider a D5-brane 
wrapping a two-cycle        of size L    .Σ(2) √

α�

SDBI = − 1
(2π)5α�3gs

�
d6ξ

�
det(−ϕ∗(G + B))

⊃ − �

(2π)5α�2gs

�
d4x

�
(4)g

�
L4 + b2

Axion Monodromy Inflation



This implies the following potential

V (b) =
�

(2π)5α�2gs

�
L4 + b2

similarly for the         axion in the 
presence of NS5 branes

C(2)

V (c) =
�

(2π)5α�2gs
2

�
L4 + gs

2c2

Axion Monodromy Inflation
Breaking by branes



For large field values in terms of the canonically 
normalized fields the potential then becomes

V (φ) ≈ µ3φ

with for b

for cµ =
�1/3(2π)3g2/3

s

L10/3
Mp

µ =
�1/3(2π)3gs

L10/3
Mp

Axion Monodromy Inflation
Breaking by branes



The basic setup

anti
5B

5B

5B

∫
C(2) = c

anti
5B

Figure 2: Schematic of tadpole cancellation. Blue: Two-real-parameter family of two-
cycles Σ1, drawn as spheres, extending into warped regions of the Calabi-Yau. Red: We have
placed a fivebrane in a local minimum of the warp factor, and an anti-fivebrane at a distant
local minimum of the warp factor. In the lower figure, Σ1 is drawn as the cycle threaded by
C(2), and global tadpole cancellation is manifest.

Moduli stabilization is essential for any realization of inflation in string theory, and we
must check its compatibility with inflation in each class of examples. In type IIB compactifi-
cations on Calabi-Yau threefolds, inclusion of generic three-form fluxes stabilizes the complex
structure moduli and dilaton [19]. A subset of these three-form fluxes – imaginary self-dual
fluxes – respect a no scale structure [19, 18]. This suffices to cancel the otherwise dangerous
flux couplings described in §3.2.1.

4.2 An Eta Problem for B

In this class of compactifications, however, the stabilization of the Kähler moduli leads to an
η problem in the b direction. This problem arises because the nonperturbative effects (e.g.

19

NS5
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Axion Monodromy Inflation

Type IIB orientifolds with O3/O7

Stabilize the moduli a la KKLT



Consistency checks

Axion Monodromy Inflation

The inflaton potential must be smaller than 
the potential barriers stabilizing the moduli.

The backreaction on the geometry must be 
controlled.

Higher derivative corrections must be 
negligible.

Instanton corrections must be controlled.



Axion Monodromy Inflation
Instanton corrections may lead to interesting 
signatures.
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Figure 2: Schematic of tadpole cancellation. Blue: Two-real-parameter family of two-
cycles Σ1, drawn as spheres, extending into warped regions of the Calabi-Yau. Red: We have
placed a fivebrane in a local minimum of the warp factor, and an anti-fivebrane at a distant
local minimum of the warp factor. In the lower figure, Σ1 is drawn as the cycle threaded by
C(2), and global tadpole cancellation is manifest.

Moduli stabilization is essential for any realization of inflation in string theory, and we
must check its compatibility with inflation in each class of examples. In type IIB compactifi-
cations on Calabi-Yau threefolds, inclusion of generic three-form fluxes stabilizes the complex
structure moduli and dilaton [19]. A subset of these three-form fluxes – imaginary self-dual
fluxes – respect a no scale structure [19, 18]. This suffices to cancel the otherwise dangerous
flux couplings described in §3.2.1.

4.2 An Eta Problem for B

In this class of compactifications, however, the stabilization of the Kähler moduli leads to an
η problem in the b direction. This problem arises because the nonperturbative effects (e.g.
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K = −2 log(VE + e−SED1 cos(c))



Signatures of Axion 
Monodromy Inflation in the 

CMB
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placed a fivebrane in a local minimum of the warp factor, and an anti-fivebrane at a distant
local minimum of the warp factor. In the lower figure, Σ1 is drawn as the cycle threaded by
C(2), and global tadpole cancellation is manifest.

Moduli stabilization is essential for any realization of inflation in string theory, and we
must check its compatibility with inflation in each class of examples. In type IIB compactifi-
cations on Calabi-Yau threefolds, inclusion of generic three-form fluxes stabilizes the complex
structure moduli and dilaton [19]. A subset of these three-form fluxes – imaginary self-dual
fluxes – respect a no scale structure [19, 18]. This suffices to cancel the otherwise dangerous
flux couplings described in §3.2.1.

4.2 An Eta Problem for B

In this class of compactifications, however, the stabilization of the Kähler moduli leads to an
η problem in the b direction. This problem arises because the nonperturbative effects (e.g.
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Signatures of Axion 
Monodromy Inflation

The low energy effective field theory for Axion 
Monodromy Inflation is that of a single scalar field 
with canonical kinetic term, minimally coupled to 
gravity, with potential

V (φ) = µ3φ + bµ3f cos(φ/f)
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(no instanton corrections b=0)

Observable 1: ns and r

(Komatsu et al. 2010)
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µ3φ(modification of 
Komatsu et al. 2010)

(no instanton corrections b=0)

Observable 1: ns and r



In the presence of instanton corrections, the 
power spectrum gets modified. 

This modification is not captured by the slow-roll 
approximation for the power spectrum because of 
parametric resonance, and the Mukhanov-Sasaki 
equation has to be solved carefully.

Signatures of Axion 
Monodromy Inflation

Observable II:  the primordial power spectrum    
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Observable II:  the primordial power spectrum    
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Observable II:  the primordial power spectrum    

Look for a solution
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Observable II:  the primordial power spectrum    
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One finds
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with

∆2
R(k) = ∆2

R(k∗)
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Models with large   can lead to large non-Gaussianities

Signatures of Axion 
Monodromy Inflation

Observable III: Resonant Non-Gaussianity
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Observable III: Resonant Non-Gaussianity
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This satisfies the consistency condition.
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Can we convert existing constraints on local, equilateral,
and orthogonal shapes into constraints on this shape?  
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Can we convert existing constraints on local, equilateral,
and orthogonal shapes into constraints on this shape?  
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Conclusions

The model has interesting signatures. 
These are a large tensor to scalar ratio, and 
potentially a modulated temperature 
anisotropy spectrum as well as resonant non-
Gaussianities.

This kind of non-Gaussianities is currently 
poorly constrained and deserves further study 
independent of the stringy scenario.
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