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CMB Ob’ervables

» (

Holmes et al. 2008)

Think of the detector as a device that

counts the number of photons hitting

it per unit time per unit area with a
given polarization. ¢

It then measures the intensity
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CMB Ob’ervables

(Holmes et al 2008)

Think of the detector as a device that
counts the number of photons hitting

it per unit time per unit area with a
given polarization.

It then measures the intensity
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CMB Observables

This is usually shown in the form of color-coded maps

AT(#)

(Jarosik et al. 2010)

V-Band (61 GHz)




CMB Observables

The Stokes parameters Q and U can then also be
shown as color-coded maps

(Jarosik et al. 2010)
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CMB Observables

Comparison with theory

These quantities depend on initial conditions and
cannot be predicted theoretically. What can be
predicted are the correlations
(AT (n)AT (7)) »
(AT () [Q(7') iU (7')]) ,
(Q(7) +aU(n)] [Q(7') +UR)])
(Q(7) +U(n)] Q') — iU (7))

as well as higher n-point functions.




CMB Observables

Comparison with theory

It turns out to be more convenient to

use coefficients

o / d2i Y () AT ()4

b ot / & oY (7) (Q(7) + iU(7)
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CMB Observables

Comparison with theory

The correlations between temperature
fluctuations and polarization can then be given in |
terms of multipole coefficients C'xy ¢ defined by
X )
<CLT,£ m Qi g1 m/> 7 CTT,£5££f5mm' ;
%
(arem@s g m) = CTE0000 Omm
* .
(@B emOE 1 mi) = CEEL000 Ormm
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CMB Observables

Comparison with theory

These multipole coefficients can be calculated for
a given model, and they can be estimated from
the sky maps by

1
3o = yg O laFem|

m

o / 23 Y™ (R)NT (1)

and similarly for the others.



CMB Observables

Comparison with theory

Similarly, the information about three-point
correlations are contained in

gmlmgmg
616263 XYZ7£1€2£3

<aX,£1m1aY,£2m2 aZ,€3m3>
Currently neither data nor analysis tools are good
enough to measure this bispectrum directly. Instead
the magnitude of the temperature bispectrum is
constrained for different shapes.
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From the CMB to inflation
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From the #B to inflation

ds® = — (tl)!((l + A)Sig,l +l 0;0; B % h;;)dz"dx’

s“=—dt* +a
/
)77 ¢
scalar modes - /Crr¢,Crpe,Cerpe
additional scalar modes include A, g
- .
-t e ’j
0P, 0Pc - - -
. L 2

tensor modes Crre,CrE0;CEE 2, CBB.



From the CMB to inflation

The system of equations that governs the evolution of
the scalar modes from around few keV to the present
contains equations like

]{2
CL2

A+ H (SAk — k2Bk) =
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From the tcb inflation
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From the CMB to inflation

In single f‘eld mflatlon (at linear order in spatially
flat gauge):
0¢(k, t)

Rk, t) = —H—=
¢

Initial conditions are set by

A% (k)
Amk3

5

(R(k, )R ,t)) = (2m)°%5(k + k')

(R(ky,t)R(ks, t)R(ks, 1)) =
1 G(ki, ko, k3)

(2ﬂ)71l4

Rk2k2k25 (kl _|_ k2 —|_ k3) klekg



From the CMB to inflation

For standard single field slow-roll inflation, the
primordial spectrum of scalar perturbations is

3 HQ(tk) NAz ﬁ T gl
87T2€(tk) L k*

with n.,=1—4e, — 20,

A% (k)

and € 7 ST IT

and the 3-pt function is too small to be observed.



From the CMB to inflation

Comparison with theory

(Larson et al. 2010)
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From the CMB to inflation

In addition to the scalar modes, inflation also
predicts a nearly scale invariant spectrum of
tensor modes

Af o= 2 ()

T

A measurement of the tensor contribution
would provide a direct measurement of the
energy scale of inflation!



From the CMB to inflation

The tensor-to-scalar ratio r

Whether the tensor contribution is observable
is often discussed in terms of the tensor-to-scalar
ratio

B 16
r ="—>X — 16¢
AZ
1/4
V4~ 1.06 x 1016 G V(L)
inf B Y \0.01

Y AW? Sk
S 0.01



From the CMB to inflation

WMAP+BAO+ Hj . r < 0.24 (95% C'.L.) omatsuetal.2010)
Future experiments: r ~ 0.001

(Bock et al. 2009)
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... and to strings

2 Inflation is UV sensitive and should be studied
in a UV complete theory.

® For r>0.01 the inflaton must have moved over: a‘
distance in field space larger than the Planck mass.

® One must ensure the required flatness of the
potential over distances large compared to M,
e.g. by a shift symmetry.



... and to strings

® This makes axions natural candidates assuming
one can break their shift symmetries in a
controlled way.

® At the level of effective field theories, this cans
be done. Can it be done in a theory of quantum
gravity! (string theory)

® Instanton effects may generate periodic
contributions to the potential if the infldton is
an axion.

V(¢) = Vo(¢) + A* cos (?)



Basic Ingred)ents for Axion.
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Axion Monodf*omy Inflation

Consider string theory on M x X

Axions arise from integrating gauge potentials
over non-trivial cycles in the compactification
manifold. |

o) = | 0P

where ©(P) is an element of an
integral basis of H, (X, 7Z)



Axion Monodf*omy Inflation

These fields possess a shift symmetry to all orders
in string perturbation theory.

The vertex operator forb;(x)in the limit of
vanishing momentum'is

Vi, (0) = /W PecPD,Y 05Vl (Y (£)) = / o
©

vanishes if p()V) = dC so that coupling vanishes.



Axion Monodf*omy Inflation

Breaking by branes

For definiteness consider a D5-brane
wrapping a two-cycle ¥(?) of size Lva’

1

®SDB1 = —

D_

(27"')504/393
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(27T)50/298

[ ev/iet- o (Gt B)

/ d'z/ W g/ LY

b2



Axion Monodf*omy Inflation

Breaking by branes

This implies the following potential

similarly for the C(® axion in the
presence of NS5 branes

€ -
‘/ c) = / 4 | 8262




Axion Monodf*omy Inflation

Breaking by branes

For large field values in terms of the canonically
normalized fields the potential then becomes

61/3(27'(')393
J,10/3

with = M,  forb

Y 61/:)>(27T)39§/3
W= T ain/3

M, for c



Axion Monodromy Inflation

The basic setup
® Type lIB orientifolds with O3/O7

® Stabilize the moduli a la KKLT

anti-NS5




Axion Monodf*omy Inflation

Consistency checks

The inflaton potential must be smaller than
the potential barriers stabilizing the moduli.

The backreaction on the geometry must be
controlled. ‘

Higher derivative corrections must be
negligible.

Instanton corrections must be controlled.



Axion Monodromy Inflation

Instanton corrections may lead to interesting
signatures.
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Signatures of Axion
Monodromy Inflation

The low energy effectiye field theory for Axion

Monodromy Inflation is that of a single scalar field
with canonical kinetic term, minimally coupled to

gravity, with potential

-
.

V() = p’¢ +bu’ f cos(¢/ f)



Signatures of Axion
Monodromy Inflation

Observable |:nsand r

(no instanton corrections b=0)

(Komatsu et al. 2010)
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Signatures of Axion
Monodromy Inflation

Observable |:nsand r

(no instanton corrections b=0)

(modification of
Komatsu et al. 2010)
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Signatures of Axion
Monodromy Inflation

Observable ll: the primordial power spectrum

In the presence of instanton corrections, the
power spectrum gets modified.

This madification is not captured by the slow-roll
approximation for the power spectrum because of
parametric resonance, and the Mukhanov-Sasaki
equation has to be solved carefully.



Signatures of Axion
Monodromy Inflation

Observable ll: the primordial power spectrum
d*Ri 2(1+ 2e+ ) dRy

- R =0
dx? 2] dx .
with 3 1‘
€ =€, — 3bf 26*Cos(¢k+'f€* nx)
o —36s1n<¢’“+\f€*mx)



Signatures of Axion
Monodromy Inflation
Observable ll: the primordial power spectrum

d2Rk 2(1 e (ZE)) dR ;.
dx? 2 dx
Look for a solution

-~

o) i 1 L2 e 2 o
Ri(z)=R) [z\/;x?)/Z Hy)(z) — ¢ )(x)z\/;x?)ﬂ e, (w)]
Then for large x

= [ezmic(—>(x)] _ gy escl®)

F R =0

dx dx *



Signatures of Axion
Monodromy Inflation

Observable ll: the primordial power spectrum
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Signatures of Axion
Monodromy Inflation

One finds

ns—1 2
A%(k) . A%(k*) (kﬁ*) {1 + 0N COS (%)}

with

27 f Y2
ongs = 3b
b <\/2€*>

f
V26

(This assumes

< 1. For the general case see our paper.)



Signatures of Axion

Monodromy Inflation

Constraints from VWMAPS
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Signatures of Axion

Monodromy Inflation
Constraints from YVWMAPS




Signatures of Axion

Monodromy Inflation
Constraints from YVWMAPS




Signatures of Axion

Monodromy Inflation
Constraints from YVWMAPS




Signatures of Axion
Monodromy Inflation

Observable lll: Resonant Non-Gaussianity

Models with large 6 can Iead to large non-Gaussianities
(Chen, Easther, Lim 2008)

(R(k1,t)R(kz, t)R(ks,t)) =

" / ; dt' ([R(k1, )R (ka, t)R (ks t), Hr(t)]) s

with
Hi(t) > — / B a® (S (OR2(x, DR (X, 1)



Signatures of Axion
Monodromy Inflation

Observable lll: Resonant Non-Gaussianity

After some algebra

g(k17k27k3) 1 / dXie_iX
R e R

-+ C.C



Signatures of Axion

Monodromy Inflation

Observable lll: Resonant Non-Gaussianity

G(k1, ko, k3)

W

with

sin (

In K /K,

-

)+

K=k +ky+ ks
3v/27h

e~

(f04)>/2

This satisfies the consistency condition.
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Signatures of Axion

Monodromy Inflation
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Signatures of Axion

Monodromy Inflatio
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Signatures of Axion
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Signatures of Axion
Monodromy Inflation

k) =0.00 100Mpc !
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Signatures of Axion
Monodromy Inflation

Can we convert existing constraints on local, equilateral,
and orthogonal shapes into constraints on this shape!?
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Signatures of Axion
Monodromy Inflation

Can we convert existing constraints on local, equilateral,
and orthogonal shapes into constraints on this shape!?
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Conclusions

S—

® The model has interesting signatures.
These are a large tensor to scalar ratio, and
potentially a modulated temperature

anisotropy spectrum as well as resonant non-
Gaussianities.

® This kind of non-Gaussianities is currently
poorly constrained and deserves further study
‘independent of the stringy scenario.






