

A PT symmetric non-hermitian holographic metal

Priv.-Doz. Dr. René Meyer Lehrstuhl für Theoretische Physik III Institut für Theoretische Physik & Astrophysik Julius Maximilians Universität Würzburg

People behind the research

M.Sc. Zhaohui Chen

Dr. Zhuoyu Xian

Dr. Yang Liu

Dr. David Rodriguez-Fernandez

PD Dr. René Meyer

Motivations for Non-Hermiticity

Open Quantum Systems https://www.matteoacrossi.com/

New Transport Phenomena PRX 13, 021007

Bulk vs. Boundary Unitarity

Generalizations of QFTs

PRB 107, 205153

Outline

1. Motivation

2. PT Symmetric Non-Hermitian QM/QFT

- 3. Non-Hermitian AdS/CFT Landsteiner, Arean SciPost 9 (2020)
- 4. Conductivity and Sum Rule Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)
- 5. Conclusions and Outlook

Unitarity in Quantum Mechanics

Quantum Mechanics: Closed systems, unitary time evolution

 $i\partial_t |\Psi(t)\rangle = H |\Psi(t)\rangle \qquad |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$

Measurement outcomes: Probability distributions $p_i(t) = |\langle i | \Psi(t) \rangle|^2$ $\sum_i p_i(t) = 1$

Probability conservation iff H is hermitian:

$$\sum_{i} p_i(t) = 1 = \sum_{i} p_i(0) \quad \Longleftrightarrow \quad H = H^{\dagger}$$

Non-unitary systems gain or loose probability with time through interactions with environment

Why PT symmetric Non-Hermiticity? Quantum Mechanics: Real energy spectrum $H |\Psi(0)\rangle = E |\Psi(0)\rangle$ $H = H^{\dagger}$ $\langle \Psi(0) | H = \langle \Psi(0) | E$ $E = E^*$ Generic non-unitarity: Complex spectrum or worse $[H, H^{\dagger}] = 0 \implies H \text{ is diagonalizable}$ PT symmetry: Diagonalizability and real spectrum $H \neq H^{\dagger}, \quad H = \mathcal{PT}H\mathcal{PT}, \quad [H, \mathcal{PT}] = 0, \qquad H\phi = E\phi, \quad \mathcal{PT}\phi = \lambda\phi,$ Due to $[\mathcal{P}, \mathcal{T}] = 0$ and $\mathcal{P}^2 = \mathcal{T}^2 = 1$, set $\lambda = 1$, $[\mathcal{PT}] H\phi = [\mathcal{PT}] E\phi = E^*\phi,$ $H[\mathcal{PT}\phi] = H\phi = E\phi.$

Unbroken \mathcal{PT} symmetry: $E = E^*$; broken \mathcal{PT} symmetry: $E \neq E^*$. Carl Bender, S. Boettcher, PRL 80 (24), 5243, 1998

PT symmetric anharmonic oscillator

One example of non-Hermitian \mathcal{PT} symmetric theories:

 $H = p^2 + x^2(ix)^{\epsilon}$ (ϵ is real).

Figure 1: Energy levels of H as a function of ϵ

- ► ε ≥ 0: the spectrum is real and positive, ε = 0: Harmonic oscillator;
- -1 < \epsilon < 0: finite number of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues;

▶ $\epsilon \leq -1$: no real eigenvalues

Carl Bender, Rep. Prog. Phys. 70 (6), 947

The PT symmetric Qubit

Two level system with gain loss balance

$$H = \begin{pmatrix} E - i\Gamma & g \\ g & E + i\Gamma \end{pmatrix} \qquad \qquad \mathcal{P}: \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \mathcal{T}: i \to -i$$
$$[H, \mathcal{PT}] = 0$$

Energy spectrum: $\epsilon_+ = E + \sqrt{g^2 - \Gamma^2}$ $\epsilon_- = E - \sqrt{g^2 - \Gamma^2}$

$$\begin{array}{ll} \mbox{Three phases:} & g^2 > \Gamma^2 & \mbox{PT symmetric} \\ & g^2 = \Gamma^2 & \mbox{Exceptional point} \\ & g^2 < \Gamma^2 & \mbox{PT broken} \end{array}$$

Dyson map:

$$H = \exp(\hat{lpha}\sigma_1/2) egin{pmatrix} E & g \ g & E \end{pmatrix} \exp(-\hat{lpha}\sigma_1/2)$$

 $\tanh \hat{\alpha} = \Gamma/g$

 $\exp(i\frac{\alpha}{2}\sigma_1) \xrightarrow{\alpha \to i\hat{\alpha}} \exp(-\frac{\hat{\alpha}}{2}\sigma_1)$

Complexified global SU(2):

Pseudohermiticity

PT symmetric phase always admits Dyson map:

$$H = \eta^{-1} h \eta \qquad \qquad h = h$$

Dyson map can be complicated, generically SU(2)

PT symmetric 1+1D Fermions

Hamiltonian satisfying $H = H^{\dagger} = \mathcal{PT}H\mathcal{PT}$:

$$egin{aligned} &H=\int dx(-iar{\psi}
abla\psi+NO_1)=\int dx(-iar{\psi}
abla\psi+NO^{\dagger}+NO),\ &O_1=ar{\psi}\psi,\ O_5=ar{\psi}\gamma_5\psi,\ O^{\dagger}=(O_1+O_5)/2,\ O=(O_1-O_5)/2. \end{aligned}$$

Dyson map with $Q = -\frac{1}{2} \int dx \psi^{\dagger} \gamma_5 \psi$:

$$H_{ heta} = e^{ heta Q} H e^{- heta Q} = \int dx (-i \bar{\psi} \nabla \psi + e^{- heta} N O^{\dagger} + e^{ heta} N O).$$

Non-Hermiticity and $\mathcal{P}_{\theta}\mathcal{T}$ symmetry $(\mathcal{P}_{\theta} = e^{2\mathrm{Im}\theta Q}\mathcal{P})$:

$$H_{\theta}^{\dagger} \neq H_{\theta}, \quad \mathcal{P}_{\theta}\mathcal{T}H_{\theta}\mathcal{P}_{\theta}\mathcal{T} = H_{\theta}.$$

Dyson map: Complexified axial U(1) rotation

Outline

- 1. Motivation
- 2. PT Symmetric Non-Hermitian QM/QFT
- **3. Non-Hermitian AdS/CFT** Landsteiner, Arean SciPost 9 (2020)
- 4. Conductivity and Sum Rule Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)
- 5. Conclusions and Outlook

Holographic S-Wave Superconductor

Bulk action with a local U(1) symmetry:

$$S = \int d_X^4 \sqrt{-g} \left(R + \frac{6}{L^2} - D_a^\dagger \bar{\phi} D^a \phi - m^2 \bar{\phi} \phi - v \bar{\phi}^2 \phi^2 - \frac{1}{4} F_{ab} F^{ab} \right)$$

Hartnoll, Herzog, Horowitz 2008

Probe Limit: Charged AdS-RN Black Brane

Scalar field asymptotics: $\phi \simeq J z^{d-\Delta} + \langle \mathcal{O}_{\phi} \rangle z^{\Delta} m^2 L^2 = \Delta (\Delta - d)$

Condensed solutions spontaneously break U(1) at low T

PT symmetric deformation

Bulk action with a local U(1) symmetry:

$$S = \int d_X^4 \sqrt{-g} (R + rac{6}{L^2} - D_a^\dagger \overline{\phi} D^a \phi - m^2 \overline{\phi} \phi - v \overline{\phi}^2 \phi^2 - rac{1}{4} F_{ab} F^{ab})$$

Arean, Landsteiner 2019

HHH with sources: Explicit breaking at high enough T

$$H = H_{\rm CFT} - \int d^2 x (M \mathcal{O}^{\dagger} + \bar{M} \mathcal{O}) \qquad \bar{M} = M^{\star}$$

Complexified U(1) deformation:

$$ar{M}
eq M^{\star}, \quad M
ightarrow M e^{- heta}, \quad ar{M}
ightarrow ar{M} e^{ heta}$$

Dyson map:

$$H_{ heta} = e^{ heta Q} H e^{- heta Q} = H_{\mathsf{CFT}} - \int d^2 x (M e^{- heta} \mathcal{O}^{\dagger} + ar{M} e^{ heta} \mathcal{O})$$

Phases and their Properties

Partition function: $Z[M, \overline{M}] = Z[e^{-\theta}M, e^{\theta}M] = Z[N^2], N^2 = M\overline{M},$

- ▶ $N^2 \ge 0$: $M\overline{M}$ is invariant under the Dyson map;
- N² < 0: non-Hermitian Hamiltonian cannot be mapped to Hermitian one via a Dyson map.

	Phase I	Phase II	Phase III
\mathcal{PT} symmetry	preserved	preserved	broken
(free) energy	real	real	complex
scalar stability	stable	unstable	unstable
vector stability	stable	stable	stable
superfluid	positivo	nogativo	comploy
density	positive	negative	complex
QC conductivity	suppressed	enhanced	complex
FGT sum rule	holds	holds	holds
NEC	holds	violated	ill-defined

Arean, Landsteiner 2019 Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)

Backreacted Solution Structure

 \mathcal{PT} symmetry:

 $\blacktriangleright M, \ \bar{M} \in \mathbb{R}, \ \mathcal{PT} \text{ symmetric, } \ \mathcal{P} : \phi \to \bar{\phi}, \ \mathcal{T} : \phi \to \bar{\phi};$

The solutions: $\phi \overline{\phi} \in \mathbb{R}$, \mathcal{PT} symmetric; $\phi \overline{\phi} \notin \mathbb{R}$, \mathcal{PT} broken. Boundary condition: $\phi(z) = N z + \langle \mathcal{O} \rangle z^2 + \cdots$, Free energy: $f = -\frac{1}{3}(Ts + 2N\langle \mathcal{O} \rangle)$.

▶ $N^2 \ge 0$, $\phi \overline{\phi}(z) \ge 0$, \mathcal{PT} symmetry is preserved;

► $(N/T)_c^2 \leq (N/T)^2 < 0$, $\phi(z) \notin \mathbb{R}$, $\phi\bar{\phi}(z) < 0$, \mathcal{PT} symmetry is preserved;

► $(N/T)^2 < (N/T)_c^2$, $\phi \bar{\phi}(z) \in \mathbb{C}$, \mathcal{PT} symmetry is broken.

Arean, Landsteiner 2019

Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)

Thermodynamics

Arean, Landsteiner 2019

Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)

Scalar channel stability

Stability: No spontaneously growing VEVs at finite ω, k Quasinormal modes must obey $Im(\omega) \leq 0$

Figure 4: Pseudo-diffusive mode as a function of x for different values of T/M.

Arean, Landsteiner 2019

Figure 5: k dependence of the pseudo-diffusive mode for several values of x at T/M = 1/2.

Endpoint of instability?

FIG. 5: Expectation values II.22 for a quench with profile III.2 for $\tilde{v}_m/\tilde{\tau} = \{20, 25, 30, 35, 40\}$. The initial and final states are located at $\xi = 0.8$, besides we set $\xi_m = 1.1$ and $\tau = \tilde{\tau} = 0.25$. We explore here the \mathcal{PT} -broken regime $|\xi| > 1$ remaining progressively more time into it. An instability starts to develop, see for instance the green and orange curves, but it eventually fades out as we re-enter the \mathcal{PT} -symmetric region.

Landsteiner, Morales Tejera 2203.02524

Outline

- 1. Motivation
- 2. PT Symmetric Non-Hermitian QM/QFT
- 3. Non-Hermitian AdS/CFT Landsteiner, Arean SciPost 9 (2020)
- 4. Conductivity and Sum Rule Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)
- 5. Conclusions and Outlook

AC conductivity in AdS-Schwarzschild Linearized vector perturbations: $\delta A_x(z) = a(z)e^{-i\omega t} dx$ a(z) = a(0) + a'(0)zKubo formula: $\sigma_{xx}(\omega) = \frac{\langle J^x J^x \rangle_R(\omega)}{i\omega} = \frac{a'(0)}{i\omega a(0)}$ $\sigma(\omega)$ 1.0 0.8 $\sigma(\omega) = 1\frac{e^2}{h}$ 0.6 0.4 Particle-vortex duality 0.2 Witten 2003 ω 2 10 4 6 8

AC conductivity in AdS-RN Finite density background: $A_t = \mu - \rho z$ Kubo formula: $\sigma_{xx}(\omega) = \frac{\langle J^x J^x \rangle_R(\omega)}{i\omega} = \frac{a'(0)}{i\omega a(0)}$ Kramers-Kronig: $0 = \oint \frac{\chi(\omega')}{\omega' - \omega} \, d\omega' = \mathcal{P}\!\!\int_{-\infty}^{\infty} \frac{\chi(\omega')}{\omega' - \omega} \, d\omega' - i\pi\chi(\omega).$ Im ω' $\chi(\omega) = rac{1}{i\pi} \mathcal{P}\!\!\int_{-\infty}^{\infty} rac{\chi(\omega')}{\omega'-\omega} \, d\omega'$ $\sigma(\omega)$ Re ω ŵ 2.5 2.0 Integral contour for 品 deriving Kramers-1.5 **Kronig relations** 11 11 1.0 At low frequencies: 0.5

ω

10

6

4

8

$$\sigma^{xx}(\omega) = \rho_s q^2(\pi \delta(\omega) + \frac{i}{\omega}) + \cdots$$

Ferrel-Glover-Tinkham Sum Rule

Consequence of causality and electric charge conservation in the dissipative real part of the conductivity

$$S_{\sigma}(\Omega) = \int_{-\Omega}^{\Omega} (\operatorname{Re}[\sigma(\omega)] - 1) d\omega. \qquad \lim_{\Omega \to \infty} S_{\sigma}(\Omega) =$$

Conditions for sum rule to hold:

c.f. e.g. Erdmenger, RM, Schalm etal JHEP 2015

()

1. $G_R(\omega)$ is analytical on the upper half plane and on the real axis,

Vector Channel Stability

Stability: No spontaneously growing VEVs at finite $\omega, ec{k}$

Quasinormal modes must obey

 $\operatorname{Im}(\omega) \leq 0$

Figure 10: $1/\det[\mathcal{D}]$ in the complex ω/T plane in phase I, II, and III (from left to right), where the color denotes the argument and the shading denotes the absolute value of $1/\det[\mathcal{D}]$. The white points denote the poles. The three plots correspond to $(N^2/\mu^2, T/\mu) = (6.2, 2.4), (-6.2, 2.4), (-100, 2.4 + 0.1i)$, respectively.

Scalar channel was investigated before Arean, Landsteiner 2019 Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)

AC conductivity (I)

Linearized vector perturbations: $\delta A_x(z) = a(z)e^{-i\omega t} dx$

$$a(z)=a(0)+a'(0)z$$

Kubo formula: $\sigma_{xx}(\omega) = \frac{\langle J^x J^x \rangle_R(\omega)}{i\omega} = \frac{a'(0)}{i\omega a(0)}$

At low frequencies: $\sigma^{xx}(\omega) = \rho_s q^2 (\pi \delta(\omega) + \frac{i}{\omega}) + \cdots$

Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)

AC conductivity (II)

Linearized vector perturbations:

$$\delta A_x(z) = a(z)e^{-i\omega t} dx$$

$$a(z)=a(0)+a'(0)z$$

Kubo formula:
$$\sigma_{xx}(\omega) = \frac{\langle J^x J^x \rangle_R(\omega)}{i\omega} = \frac{a'(0)}{i\omega a(0)}$$

Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)

Landau-Ginzburg Theory U(1) Rotor model

$$S_{\phi} = -\int d^d x \left(D_{\mu} \phi D^{\dagger \mu} \bar{\phi} + V(\phi, \bar{\phi}) + \bar{M} \phi + M \bar{\phi} \right), \quad V(\phi, \bar{\phi}) = r \phi \bar{\phi} + \frac{1}{2} u \phi^2 \bar{\phi}^2,$$

Saddle point equations and superfluid density:

$$r_{\mu}\phi_{s} + u\phi_{s}^{2}\bar{\phi}_{s} + M = 0$$
, $r_{\mu}\bar{\phi}_{s} + u\bar{\phi}_{s}^{2}\phi_{s} + \bar{M} = 0$ $\rho_{s} = 2\phi_{s}\bar{\phi}_{s}$

Superfluid density qualitatively follows holographic model

Full AC conductivity needs fluctuations and electrons

Xian ZY, Rodriguez, Chen ZH, Liu Y, RM, SciPost Physics 16 (2024)

Conclusions & Outlook (I)

Conclusions

- Interesting phase structure with QPT
- New behavior of AC conductivity
- Stability and sum rule in vector channel guaranteed
- Phase structure and zero frequency spectral weight reproduced by U(1) rotor model

Outlook

- Stability & nature of phases II/III unclear
- Landsteiner et.al

- Finite density, magnetic fields
- Superconductivity at low temperatures Chen, Kornich, RM, Xian
- Other transport coefficients?
- PT deformations of other holographic systems
- Relate to strongly correlated PT symmetric systems