



### Searching for binary SMBHs: from hundreds of kpc to sub-pc scales Yue Shen

Harvard-Smithsonian Center for Astrophysics

# Why binary SMBHs?

- Expected from hierarchical mergers
- Direct evidence (resolved binaries) and empirical evidence ("core" ellipticals; Xshaped radio jets, etc).
- Constraints for gravitational wave detections and galaxy formation models



#### Time sequence of a galaxy merger



Binary SMBHs on halo scales: hundreds of kpc ~ tens of kpc



Keck Spectrum taken by Bob Becker & Michael Gregg

### Binary quasars at z>~1

- ~ 220 quasar binaries (Rprop<1 Mpc/h) at z<3 (Hennawi et al. 2006, Myers et al. 2008)
- 24 new binaries at z>3 with physical separations 10~650 kpc (Hennawi et al. 2010; Shen et al. 2010a).



### An example of binary quasars



SDSS 1254+0846 (z=0.44)

Green et al. (2010)

~20 kpc (projected)

### Binary SMBHs on galactic scales: ~ a few kpc

### Kpc-scale binary AGNs

- confirmed kpc-scale binary SMBHs are rare
  - Only a handful of cases known (<~5)
  - Require good spatial resolution
  - Both BHs must be active

### Kiloparsec scale SMBH binaries



also see Mrk 463, Arp 299.

NGC 6240 Komossa et al. (2003)

#### Double-peaked [OIII]4959,5007 narrow line **AGNs**



Gerke et al. (2007); Comerford et al. (2009a,b) 2 objects found in DEEP2, and one found in COSMOS (but see Civano et al. for an alternative interoperation)

### Narrow-line AGNs with double-peaked [OIII] from SDSS spectroscopic data

• 167 narrow-line AGNs with double-peaked [OIII] in SDSS (Liu et al. 2010a; also see Smith et al. 2010, Wang et al. 2009)

Liu, Shen, Strauss, & Greene (2010)



# Double-peaked [OIII] AGNs

- Binary AGNs?
- Kinematics of the narrow line region around single AGNs? There are known local examples!

#### Mrk 78



The DEEP2 object from Gerke et al.



M. Whittle

- Not all double-peaked narrow line AGNs are kpc binaries
- SDSS is not good enough because: 1) spectra have no spatial information; 2) imaging has poor resolution
- Need spatially resolved imaging and spectroscopy

# NIR imaging and long-slit spectroscopy

- NIR imaging with PANIC on Magellan;
  ~0.4" seeing in K: several spatially resolved double stellar nuclei
- Optical slit-spectroscopy with LDSS3 on Magellan and DIS on ARC 3.5m: most have spatially resolved [OIII] emission (~ kpc)
- ~ 60 targets observed with NIR imaging, half of which had slit spectroscopy

# Kpc binary AGNs from SDSS

 6 out of ~60 objects show spatially resolved double nuclei in NIR and corresponding NLR emission – best cases for kpc binary AGNs in the double-peaked narrow line AGN sample.





### NLR kinematics around single AGNs

• Many double-peaked [OIII] objects seem to be of a kinematics origin: smooth stellar distribution, but two spatially offset [OIII] components.

#### Examples of NLR kinematics cases







# A mixed bag of objects in the double-peaked sample

- Kpc-scale binary AGNs: ~10%
- NLR kinematics in single AGNs: ~50%
- Ambiguous cases: ~40%; either NLR kinematics, or binary AGNs at smaller separations (~ sub-kpc)

More narrow line region kinematics than merging SMBH pairs (Shen, Liu, Greene, Strauss 2010, in prep.)

### Statistical properties of kpc binary AGNs



Small number statistics!

Shen, Liu, Greene, Strauss (2010), in prep.

### Observations VS simulations

- Observed binary AGN fraction: ~0.1-1% among all lowz (z<0.3) type 2 AGNs. (10-50% x 1-2%)</li>
- Need a large merger simulation set to probe the parameter space.
- Factors that affect the frequency of binary AGNs: merger fraction, gas fraction, mass ratio of the merger, dust, AGN duty cycle, etc.
- Binary fraction as functions of redshift and separation.

#### Searches for kpc-scale binary AGNs

- ~10% success rate of finding kpc binary AGNs from the double-peaked narrow line sample.
- So far we have followed up a small fraction of our sample (~1/3 imaging, ~1/6 spectroscopy), and we found 6 promising binaries. Will increase the sample of confirmed kpc binary AGNs by an order of magnitude by the end of our follow-up.
- Additional follow-ups: AO, Chandra/HST, IFU, radio, etc

# Binary SMBHs on sub-galactic scales: ~ sub-pc – pc

### Sub-pc to pc-scale binaries

- More difficult to spatially resolve; observational signature not unique to binaries
- ~3 candidates! (0402+379, Rodriguez et al. 2006; OJ287, Valtonen et al; SDSS J1536+0441, Boroson & Lauer 2009); based on different methods

### 0402+379 (Rodriguez et al. 2006)



VLBA observation. 2 compact, variable flat-spectrum radio AGN in the elliptical host, separated by ~7 pc

### OJ 287 (Valtonen et al.)

Historical V-magnitude light curve of OJ 287 (1891-1997)



# SDSS J1536+0441 (Boroson & Lauer 2009)



Double-peaked or offset broad emission lines: close binary or peculiar emission line properties?

#### Disk emitters (Chen, Halpern, Eracleous et al.)





# How to distinguish sub-pc binary and disk emitters?

- A long history of debate (Gaskell, Peterson, Eracleous, and many more); some doublepeaked emitters ruled out as binaries with distinct BLRs (e.g., Eracleous & Halpern), but circumbinary BLRs were not ruled out
- Periodic radial velocity drifts in the doublepeaks – binary orbital motion
- Uncorrelated variability of the double peaks

#### Spectroscopic sub-pc binaries based on broad line diagnosis



# Velocity resolved reverberation mapping



Shen & Loeb (2010)

# Double-peaked broad line AGNs in SDSS

- ~1000 "disk emitters" from the SDSS DR7 quasar catalog (Shen et al. 2010b).
- Some of them might be sub-pc binaries.



An example of disk emitters from SDSS