SymTFT for Flavor Symmetries

2503.04546 w/ Qiang Jia, Ran Luo, Jiahua Tian and Yi Zhang

Yi-Nan Wang

Peking University

Kavli IPMU, Tokyo Apr. 25, 2025

Topological Holography/SymTFT

- SymTFT also contains the anomaly polynomial information
- In AdS/CFT: SymTFT $_{d+1}$ topological terms in the bulk (Witten 98')
- In CMT: SymTFT $_{d+1}$ topological order (Kong, Levin, Wen etc.)

Topological Holography/SymTFT

• Examples (many more):

Bulk	Boundary	Symmetries
\mathbb{Z}_2 toric code	Kitaev chain	$\mathbb{Z}_2^{(0)}$
IIB on $AdS_5 imes S^5$	4d $\mathcal{N}=4$ $SU(N)$ SYM	$\mathbb{Z}_{N}^{(1)}$
		(Witten 98')
4d TQFT	3d $\mathcal{N}=6$ ABJM	1,0-form sym.
		(Bergman, Tachikawa, Zafrir 20')
		(Beest,Gould,Schafer-Nameki,YNW 22')
7d TQFT	6d (2,0)& (1,0) SCFTs	2,1,0-form sym.
		(Hubner, Morrison, Schafer-Nameki, YNW 22
		(Apruzzi 22')
		(Tian, YNW 24')
		(Apruzzi, Schafer-Nameki, Warman 24')
		(Bonetti, del Zotto, Minasian 24')

Topological Holography/SymTFT

- In the CMT/topological order community (categorical language), typically only tackle finite symmetries, e.g. \mathbb{Z}_N , D_4 etc.
- What about continuous symmetries e.g. U(1), SU(2) which appear more frequently in high energy physics?
- Should be more careful about gauging & dual symmetries
- In our work, realize the SymTFT of non-abelian continuous symmetry G as a non-abelian BF theory, and derived the relevant symmetry operators

$$S_{BF} = \int_{M_{d+1}} \operatorname{Tr}(B \wedge F).$$

4/32

p-form symmetry

• A *p*-form symmetry with symmetry group *G* is generated by (d-p-1)-dimensional topological operators $U(g,M^{(d-p-1)})$ $(g \in G)$:

$$U(g_1, M^{(d-p-1)})U(g_2, M^{(d-p-1)}) = U(g_1g_2, M^{(d-p-1)}).$$

and acts on *p*-dimensional object(operator) $V^{i}(\mathcal{C}^{(p)})$.

• $U(g, M^{(d-p-1)})$ has non-trivial action on $V^i(\mathcal{C}^{(p)})$ when $M^{(d-p-1)}$ and $\mathcal{C}^{(p)}$ are non-trivially linked.

$$U(g, M^{(d-p-1)})V^{i}(\mathcal{C}^{(p)}) = R^{i}_{j}(g)V^{j}(\mathcal{C}^{(p)}).$$

• (p > 0)-form symmetry is abelian

Gauging of *p*-form symmetry

- Gauging finite abelian p-form symmetry $G^{(p)}$:
- Flat connections $A_{(p+1)} \in C^{p+1}(M_d, G^{(p)})$, equivalent classes mod out gauge transformation: $[A_{(p+1)}] \in H^{p+1}(M_d, G^{(p)})$, p = 0 example:

$$A_{ij}A_{jk}=A_{ik}$$

Gauging: (1) coupling $\sim A \wedge J$

(2) summing over all configurations of $[A_{(p+1)}]$, i.e. the holonomies

Gauging of p-form symmetry

• Dual symmetry after the gauging $G^{(p)}$:

$$\widehat{G}^{(d-p-2)} = \operatorname{Hom}(G^{(p)},U(1)) \sim \widehat{G}^{(d-p-2)} = \operatorname{Rep}(G^{(p)})$$

 \bullet (d-p-2)-form symmetry generated by the topological operator

$$W_{\mathbf{R}}(C^{(p+1)}) = \exp\left(i \int_{C^{(p+1)}} A_{(p+1),\mathbf{R}}\right) , \ \mathbf{R} \in \text{Rep}(G^{(p)})$$

• Example: $G^{(p)} = \mathbb{Z}_N$, $\widehat{G}^{(d-p-2)} = \mathbb{Z}_N$

$$W_{\hat{g}}(\textit{C}^{(p+1)}) = \hat{g}^{\int_{\textit{C}^{(p+1)}}\textit{A}_{(p+1)}} \ , \ \hat{g} = e^{\frac{2\pi i \hat{n}}{N}} \ \big(\hat{n} \in \{0,1,\dots,N-1\} \big)$$

• (Representation symmetry $Rep(G^{(0)})$ also appears after gauging a non-abelian $G^{(0)}$)

Gauging of *p*-form symmetry

• Partition function of the theory after gauging w/ new background gauge field $[\widehat{A}^{(d-p-1)}] \in H^{d-p-1}(M_d, \widehat{G}^{(d-p-2)})$

$$\widehat{Z}(\widehat{A}^{(d-p-1)}) = \frac{1}{|H^{p+1}(M_d, G^{(p)})|} \sum_{[A_{(p+1)}]} Z(A^{(p+1)}) e^{i \int_{M_d} \langle \widehat{A}^{(d-p-1)}, \cup A^{(p+1)} \rangle}$$

• Gauging \equiv Fourier transform, between sets of functions, i.e. moduli space of flat connections $H^{p+1}(M_d, G^{(p)})$ and $H^{d-p-1}(M_d, \widehat{G}^{(d-p-2)})!$

$$L^2(H^{p+1}(M_d,G^{(p)})) \overset{T}{\sim} L^2(H^{d-p-1}(M_d,\widehat{G}^{(d-p-2)})) \, .$$

8/32

Gauging with SymTFT

• SymTFT of $G^{(p)} = \mathbb{Z}_N$, without anomaly has a form of BF-theory

$$S_{sym} = \frac{2\pi}{N} \int_{M_{d+1}} a^{(p+1)} \cup \delta \hat{a}^{(d-p-1)}$$

- $a, \hat{a} \in \{0, 1, \dots, N-1\}$
- Gauge invariant topological operators

$$\begin{split} U_g(\Sigma_{d-p-1}) &= g^{\int_{\Sigma_{d-p-1}} \hat{a}^{(d-p-1)}} \;,\; g = e^{\frac{2\pi i n}{N}} \\ W_{\hat{g}}(C_{p+1}) &= \hat{g}^{\int_{C_{p+1}} a^{(p+1)}} \;,\; \hat{g} = e^{\frac{2\pi i \hat{n}}{N}} \end{split}$$

Linking correlation function:

$$\langle U_g(\Sigma_{d-p-1})W_{\hat{g}}(C_{p+1})\rangle = \exp\left(rac{2\pi in\hat{n}}{N}\langle\Sigma_{d-p-1},C_{p+1}
angle
ight)$$

Topological boundary conditions

(1) Neumann b.c. for U_g , $\hat{a}^{(d-p-1)}$, Dirichlet b.c. for $W_{\hat{g}}$, $a^{(p+1)}$

(Bhardwaj, Bottini, Fraser-Taliente, Gladden, Gould, Platschorre, Tillim 23')

Topological boundary conditions

(1) Neumann b.c. for U_g , $\hat{a}^{(d-p-1)}$, Dirichlet b.c. for $W_{\hat{g}}$, $a^{(p+1)}$ $W_{\hat{g}}(C_{p+1})$ can be attached to the boundary, no longer gauge invariant. Should attach a charged operator $\psi_{\hat{g}}(\partial C_{p+1})$ on the physical boundary

$$U_{g}(\Sigma_{d-p-1})W_{\hat{g}}(C_{p+1})\psi_{\hat{g}} = \exp\left(\frac{2\pi i n \hat{n}}{N} \langle \Sigma_{d-p-1}, C_{p+1} \rangle_{M_{d+1}}\right) \psi_{\hat{g}}$$

• After squeezing

$$U_{\mathbf{g}}(\Sigma_{d-p-1})\psi_{\hat{\mathbf{g}}} = \exp\left(\frac{2\pi i n \hat{\mathbf{n}}}{N} \langle \Sigma_{d-p-1}, \partial C_{p+1} \rangle_{M_d}\right) \psi_{\hat{\mathbf{g}}}$$

• U_g generates p-form symmetry $G^{(p)}=\mathbb{Z}_N$ in M_{d_p} acting on $\psi_{\hat{g}}!$

Topological boundary conditions

- (2) Dirichlet b.c. for U_g , $\hat{a}^{(d-p-1)}$, Neumann b.c. for $W_{\hat{g}}$, $a^{(p+1)}$
- $W_{\hat{g}}(C_{p+1})$ generates the dual $\widehat{G}^{(d-p-2)}$ symmetry
- ullet Swapping b.c. \equiv Gauging!
- ullet Dirac quantization: U and W cannot both have Dirichlet b.c.
- Another perspective (x^{d+1}) is perpendicular to the plane

$$= \exp\left(\frac{2\pi i n \hat{n}}{N}\right)$$

• After squeezing to M_d :

• Partition function not well defined when $\exp\left(\frac{2\pi i n \hat{n}}{N}\right) \neq 1!$

Gauging continuous symmetries

- For continuous symmetries G, two types of gauging
- (1) Gauging w/ non-flat gauge field A: new local dynamics (not a SymTFT, see Sym-Th (Apruzzi, Bedogna, Dondi 24')
- (2) Gauging w/ flat connection: SymTFT!
- Proposals for continuous SymTFT: (Brennan, Sun 24')(Bonetti, del Zotto, Minasian 24')(Antinucci, Benini 24')
- No satisfactory construction of operator spectrum, top. b.c. etc for continuous non-abelian 0-form symmetry G!

Gauging continuous symmetries

- Dual symmetry after gauging G w/ flat connection: Wilson loop $W_{\mathbf{R}}(\mathcal{C}) = \operatorname{Tr}_{\mathbf{R}} \mathcal{P} \exp i \oint_{\mathcal{C}} A_{\mathbf{R}}$ is topological, generates a dual $\operatorname{Rep}(G)^{(d-2)}$ symmetry!
- Fourier transformation perspective:
- Moduli space of flat *G*-connection:

$$\widetilde{\mathcal{A}} = \frac{\operatorname{Hom}(\pi_1(M_d), G)}{G}$$

ullet e.g. if $\pi_1(M_d)=\mathbb{Z}$, $\widetilde{\mathcal{A}}=\mathit{Cl}(\mathit{G})$

Gauging continuous symmetries

Tannaka duality between monoidal categories:

$$L^2(CI(G)) \stackrel{\tau}{\cong} L^2(G^{\vee})$$

• G^{\vee} is the isomorphism classes of irreps of G

$$T[f](\lambda) = \frac{1}{d_{\lambda}} \int_{G} f(g) \chi_{\lambda}(g) dg$$

$$T^{-1}: L^{2}(G^{\vee}) \to L^{2}(CI(G))$$
$$\phi \mapsto T^{-1}[\phi]: g \mapsto \sum_{\lambda \in G^{\vee}} \phi(\lambda) \overline{\chi_{\lambda}(g)} d_{\lambda}.$$

Non-abelian SymTFT

Non-abelian BF-theory

$$S_{sym} = \int_{M_{d+1}} \operatorname{Tr}(B \wedge F)$$

- $F = dA iA \wedge A$; $B \in \mathfrak{g}$ is a (d-1)-form, non-compact gauge field
- Gauge transformations:

$$A o gAg^{-1} + igdg^{-1} \;,\; B o gBg^{-1}$$

$$B o B + D_A K$$

• Equation of motions:

$$F = 0$$
, $D_A B = 0$.

• Gauge invariant topological operator generating $Rep(G)^{(d-2)}$ symmetry with Neumann b.c. of A:

$$W_{\mathbf{R}}(\mathcal{C}) = \operatorname{Tr}_{\mathbf{R}} \mathcal{P} \exp \left(i \oint_{\mathcal{C}} A_{\mathbf{R}} \right)$$

Symmetry operator

- Difficulty in constructing non-abelian symmetry generator $U_{\alpha}(\Sigma_{d-1})$ in M_{d+1} :
- A topological cod-2 operator in M_{d+1} cannot be non-abelian!
- Let's try to write down an operator of the form

$$U_{\alpha}(\Sigma_{d-1}) = \exp\left(i\int_{\Sigma_{d-1}}(\alpha,B)\right)$$

- α , $B \in \mathfrak{g}$; (.,.) is a bilinear inner product
- To prove it's topological

$$d(\alpha, B) = D_A(\alpha, B) = (D_A\alpha, B) + (\alpha, D_AB) = (D_A\alpha, B) = 0$$

• Hence we require $D_A \alpha = 0$, i.e. α is a covariantly constant section of the adjoint bundle $\mathfrak{ad}(P)$ for an A, $U_{\alpha}(\Sigma_{d-1})$ is topological

Symmetry operator

- However, only true at the classical level!
- ullet To compute the linking correlation function ($W_{\mathbf{R}}(\mathcal{C})$ is untraced)

$$\begin{split} &\langle U_{\alpha}(\Sigma)W_{\mathbf{R}}(\mathcal{C})\rangle \\ &= \int [DB][DA] \exp(i\int_{M_{d+1}} \mathrm{Tr}(B \wedge F)) \exp(i\int_{\Sigma} (\alpha, B)) \mathcal{P} \exp(i\int_{\mathcal{C}} A_{\mathbf{R}}) \end{split}$$

Integrate over all flat A where $D_A \alpha = 0$ no longer satisfies!

$$\langle U_{\alpha}(\Sigma)W_{\mathsf{R}}(\ell)\rangle = e^{-i\alpha_{\mathsf{R}}(p)}\langle W_{\mathsf{R}}(\ell)\rangle \quad (r_{\Sigma} \to 0)$$

is dependent on the position of p! $e^{-i\alpha_R(p)}$ is a Lie group element of G in the rep. R

Symmetry operator

• Hence $U_{\alpha}(\Sigma_{d-1})$ is not topological, as expected!

• After squeezing (taking p = 0), get the non-abelian symmetry action!

$$U_{\alpha}(\Sigma)\psi_{\mathbf{R}}(x) = e^{-i\alpha_{\mathbf{R}}(0)}\psi_{\mathbf{R}}(x)$$

Topological operator

What if we want to construct a topological operator? Define

$$ilde{U}_{ ilde{lpha}}(\Sigma) = \int_{\mathcal{G}} dg \exp\left(i\int_{\Sigma} (ilde{lpha}, B)
ight)$$

Here $\tilde{\alpha}$ is the parallel transport of $g\alpha(p)g^{-1}$ by the holonomy of A:

$$\tilde{\alpha}(p') = e^{i \int_{p}^{p'} A} g \alpha(p) g^{-1} e^{-i \int_{p}^{p'} A}$$

- $\tilde{\alpha}$ lives in the same conjugacy class! $\tilde{\alpha} \in Cl(G)$ labels the $\tilde{U}_{\tilde{\alpha}}(\Sigma)$
- Can prove

$$\langle \tilde{U}_{\tilde{\alpha}}(\Sigma) W_{\mathbf{R}}(\ell) \rangle = \frac{\chi_{\mathbf{R}}(e^{-i\tilde{\alpha}})}{\dim(\mathbf{R})} \langle W_{\mathbf{R}}(\ell) \rangle$$

(Similar to (Cattaneo, Rossi 02'))

Topological operator

$$\widetilde{\mathit{U}}_{\widetilde{\alpha}}(\Sigma) \mathit{W}_{R}(\ell) = \mathcal{P}\left(e^{i\int_{\rho}^{1}\mathit{A}_{R}} \; \left(\int \mathit{d}g \; \mathit{g}e^{-i\alpha_{R}(\rho)}\mathit{g}^{-1}\right) \; e^{i\int_{0}^{\rho}\mathit{A}_{R}}\right)$$

For irreducible R, by Schur's lemma and using normalized Haar measure

$$\int dg \ g e^{-i\alpha_{\mathbf{R}}(p)} g^{-1} = \frac{\chi_{\mathbf{R}}(e^{-i\alpha(p)})}{\dim \mathbf{R}} \times \mathbb{I}_{\dim \mathbf{R} \times \dim \mathbf{R}}$$

After taking VEV:

$$\langle \widetilde{U}_{\widetilde{\alpha}}(\Sigma) W_{\mathbf{R}}(\ell) \rangle = \frac{\chi_{\mathbf{R}}(e^{-i\alpha(p)})}{\dim \mathbf{R}} \langle W_{\mathbf{R}}(\ell) \rangle = \frac{\chi_{\mathbf{R}}(e^{-i\widetilde{\alpha}})}{\dim \mathbf{R}} \langle W_{\mathbf{R}}(\ell) \rangle$$

21/32

Dirac pairing

• Hence in the non-abelian G SymTFT, the Dirac pairing function is the normalized character!

$$(e^{-i\tilde{lpha}},\mathbf{R})=rac{\chi_{\mathbf{R}}(e^{-i\tilde{lpha}})}{\dim(\mathbf{R})}$$

- For example top. b.c. for G = SU(2)
- Top. operators: $W_{\mathbf{R}}$, $\mathbf{R} = j \in \frac{1}{2}\mathbb{Z}$; \tilde{U}_{θ} , $\theta \in Cl(SU(2)) = [0, \pi]$
- 2 × 2 special unitary matrices can be diagonalized into

$$egin{pmatrix} e^{i heta} & 0 \ 0 & e^{-i heta} \end{pmatrix} \quad heta \in \left[0,\pi
ight].$$

Normalized character

$$\frac{\chi_j(e^{-i\theta})}{\dim(\chi_j)} = \frac{\sin(2j+1)\theta}{(2j+1)\sin\theta}.$$

Topological b.c. for G = SU(2)

- ullet All Dirac pairings between Dirichlet b.c. operators =1
- (1) Dirichlet b.c. to all W_j , Neumann b.c. to all $\tilde{U}_{\tilde{\alpha}}$: $SU(2)^{(0)}$ symmetry
- (2) Neumann b.c. to all W_j , Dirichlet b.c. to all $\tilde{U}_{\tilde{\alpha}}$: Rep $(SU(2))^{(d-2)}$ symmetry
- (3) Dirichlet b.c. to all W_j $(j \in \mathbb{Z})$ and \tilde{U}_0 , \tilde{U}_{π} : $SO(3)^{(0)} \times \mathbb{Z}_2^{(d-2)}$ symmetry

Anomalies

Adding twist terms in the BF-action

$$S_{sym} = \int_{M_{d+1}} \operatorname{Tr}(B \wedge F) + I(A, B)$$

- Obstruct the gauging/ some topological boundary conditions
- e.g. d = 4, adding a Chern-Simons term

$$S_{sym} = \int_{M_5} \operatorname{Tr}(B \wedge F) + CS_5(A),$$

Action is no longer gauge invariant under

$$A \rightarrow gAg^{-1} + igdg^{-1}$$
, $B \rightarrow gBg^{-1}$

- ullet g Gauge variation \to new boundary term, does not vanish when giving A Neumann b.c.
- Hence the Neumann b.c. for A, i.e. gauging G is obstructed!

Interpretation in AdS/CFT

- Justification of BF-action in holography! (U(1) case: (DeWolfe, Higginbotham, 20')
- We start from AdS₅ YM action

$$S_{YM} = \int d^5 x \sqrt{-g} \left(-\frac{1}{4} tr(F_{\mu\nu}F^{\mu\nu}) \right)$$

- ullet AdS metric: $ds^2=rac{L^2}{r^2}dr^2+rac{r^2}{L^2}\eta_{ij}dx^idx^j$
- ullet Expand the solution of e.o.m. for A near the AdS boundary $r o \infty$

$$A_i(x^i, r) = \alpha_i(x^i)L + \gamma_i(x^i)\frac{L^5 \log r}{r^2} + \beta_i(x^i)\frac{L^5}{r^2} + \dots$$

- Define $a_i = \alpha_i L$, and covariant derivative $\mathcal{D}_i = \partial_i i[a_i, \cdot]$,
- e.o.m. for β_i :

$$\mathcal{D}^i \beta_i = 0$$

Interpretation in AdS/CFT

• Evaluate δS_{YM} by expanding A with $\alpha, \beta \dots$

$$\delta S_{YM} = 2L^3 \int d^4x Tr(\delta \alpha_i \beta^i) + (\dots),$$

• response of source α_i at the boundary

$$\langle J^i(x_i)\rangle = \frac{\delta S}{\delta \alpha_i} = 2L^3 \beta^i$$

• e.o.m. for β_i :

$$\mathcal{D}^i\beta_i=0$$

• Covariant conservation eq. for non-abelian current J_i after assigning

(1)
$$a_i \sim \text{source}$$
 (2) $\beta_i \sim J_i = \text{current!}$

Interpretation in AdS/CFT

Same results can be derived starting from the BF action as well!

$$S_{BF} = \int_{M_5} \operatorname{Tr}(B \wedge F)$$

$$\delta S = \delta \left(\int \text{Tr} B \wedge F \right) = \int d^5 x \text{Tr} \left(\delta \widetilde{B}^{\mu\nu} F_{\mu\nu} + \widetilde{B}^{\mu\nu} D_{\mu} \delta A_{\nu} \right)$$
$$= \int d^5 x \text{Tr} \left(\delta \widetilde{B}^{\mu\nu} F_{\mu\nu} - D_{\mu} \widetilde{B}^{\mu\nu} \delta A_{\nu} + \partial_{\mu} (\widetilde{B}^{\mu\nu} \delta A_{\nu}) \right)$$

where $\widetilde{B} = *B$ is the Hodge dual of B.

Applying e.o.m.

$$\delta S = \int d^5 x \; \partial_\mu \mathrm{Tr}(\widetilde{B}^{\mu\nu} \delta A_\nu) = \int d^4 x \mathrm{Tr} \widetilde{B}^{ri} \delta A_i \,.$$

• Source/response relation on M_4 :

$$\langle J^{i}(\vec{x},t)\rangle = \frac{\delta S}{\delta A_{i}} = \widetilde{B}^{ri}, \ D_{i}J^{i} = 0.$$

Outlooks

- We constructed the SymTFT for continuous non-abelian flavor symmetry, with a detailed computation of operators
- Match with categorical language $Z(\operatorname{Vec}_G)$ or $Z(\operatorname{Rep}(G))$? $Z(\operatorname{nVec}_G)$? (ongoing work w/ Jia, Luo, Tian, Zhang)
- Details of anomalies
- Derivation of SymTFT action from string theory/holography
- Find applications in CMT etc.
- Thanks!

$$\langle U_{\alpha}(\Sigma) | W_{\mathbf{R}}(\ell) \rangle$$

$$= \int [DB][DA] \exp\left(i \int_{M_{d+1}} \operatorname{Tr}(B \wedge F)\right) \exp\left(i \int_{\Sigma} (\alpha, B)\right) \mathcal{P} \exp\left(i \int_{\ell} A_{\mathbf{R}}\right)$$

$$= \int [DB][DA] \exp\left(i \int_{M_{d+1}} \operatorname{Tr}(B \wedge (F + \alpha \delta_{\Sigma}))\right) \mathcal{P} \exp\left(i \int_{\ell} A_{\mathbf{R}}\right)$$
(1)

We look for a shift $A \rightarrow A - \kappa$ for which:

$$F \rightarrow d(A - \kappa) - i(A - \kappa) \wedge (A - \kappa) = F - (D_A \kappa + i \kappa \wedge \kappa).$$
 (2)

and require $D_A \kappa + i \kappa \wedge \kappa = \alpha \delta_{\Sigma}$

We place p at the center of B^d and define the following differential form with δ -function support:

$$\mathscr{H}(r,\Sigma) = H(r-r_{\Sigma})\delta(z-p)dz, \ H(r-r_{\Sigma}) = \begin{cases} 0, \ r > r_{\Sigma} \\ 1, \ r \le r_{\Sigma} \end{cases}$$
(3)

$$D_A \kappa = (D_A \alpha) \mathcal{H}(r, \Sigma) + \alpha \delta_{\Sigma} \text{ and } \kappa \wedge \kappa \propto dz \wedge dz = 0.$$
 (4)

Thus under $A \rightarrow A - \kappa$ we have:

$$\int_{M_{d+1}} \operatorname{Tr}(B \wedge (F + \alpha \delta_{\Sigma})) \to \int_{M_{d+1}} \operatorname{Tr}(B \wedge (F - (D_{A}\alpha)\mathscr{H}(r, \Sigma)))$$

$$= S_{BF} - \int_{M_{d+1}} \operatorname{Tr}(B \wedge D_{A}\alpha)\mathscr{H}(r, \Sigma)$$

$$= S_{BF} - \int_{M_{d}} \operatorname{Tr}(B \wedge D_{A}\alpha)H(r - r_{\Sigma})$$
(5)

Since $\int_{M_d} \text{Tr}(B \wedge D_A \alpha) H(r - r_{\Sigma}) \propto r_{\Sigma}^d$ (for well-behaved B and α), after $r_{\Sigma} \to 0$ (1) becomes:

$$\begin{split} \langle \mathit{U}_{\alpha}(\Sigma) \; \mathit{W}_{\mathbf{R}}(\ell) \rangle &= \int \mathcal{D} \mathit{B} \; \mathcal{D} \mathit{A} \; \exp \left(i \int_{\mathit{M}_{d+1}} \mathsf{Tr}(\mathit{B} \wedge \mathit{F}) \right) \; \mathcal{P} \exp \left(i \int_{\ell} (\mathit{A}_{\mathbf{R}} - \kappa_{\mathbf{R}}) \right) \\ &= \langle \mathcal{P} \exp \left(i \int_{\ell} (\mathit{A}_{\mathbf{R}} - \kappa_{\mathbf{R}}) \right) \rangle \end{split}$$

(6)

Omitting $\langle \rangle$, using product of 1D δ -functions to simplify

$$U_{\alpha}(\Sigma)W_{R}(\ell)$$

$$= \lim_{\Delta z \to 0} \prod_{z_{i}} \exp\left(i(A_{R}(z_{i}) - \kappa_{R}(z_{i}))\Delta z\right)$$

$$= \lim_{\Delta z \to 0} \prod_{z_{i} > p} \exp\left(iA_{R}(z_{i})\Delta z\right) \exp\left(-i\alpha_{R}(z)\delta(z - p)\Delta z\right) \prod_{z_{i} < p} \exp\left(iA_{R}(z_{i})\Delta z\right)$$

$$= \mathcal{P}\left[\exp\left(i\int_{p}^{1} A_{R}\right) \exp\left(-i\alpha_{R}(p)\right) \exp\left(i\int_{0}^{p} A_{R}\right)\right]$$
(7)

for a partition $\{z_i\}$ of $\ell \cong [0,1]$ and $\Delta z = \max_i |z_{i+1} - z_i|$.