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Real World Supersymmetry

® | ow energy supersymmetry is a compelling candidate for
physics beyond the Standard Model.

® The simplest scenario is the Minimal Supersymmetric
Standard Model (MSSM). Among its virtues are:

® Solution to the gauge hierarchy problem
® Gauge coupling unification

® Dark matter candidates

® (alculable framework

® Distinctive phenomenology



Soft SUSY Breaking

Superpartners have not been observed, so SUSY must be
spontaneously broken.

In the MSSM, this breaking occurs through explicit soft
(dimensional) termes.

Naturalness puts the scale of soft terms at the TeV scale --
should observe the superpartners at the LHC!
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SUSY Flavor Problem

® The soft Lagrangian of the MSSM contains 100+ new
parameters. A generic point in this parameter space is
ruled out by stringent experimental constraints:

® Precision tests of flavor-violation
® Precision tests of CP violation

® Non-observation of superpartners

5 b
% )
\“:c.
\
X
/
™)
’\/’T;Lk
D
n|
¢
| &»
|
b
e
Iz
S
=W

g}

-~

— / et \ e, ! s 5 )
& L B | € d b dp SR} g




Gauge Mediation

® (Gauge mediation provides an attractive solution to the
MSSM flavor problem.

® |n gauge mediation, MSSM soft terms generated only via SM
gauge interactions. Guarantees flavor-diagonal soft masses!

® Many models of gauge mediation have been constructed over
the past 20 years. Most have been some variant of minimal
gauge mediation.
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Minimal gauge mediation

X is a singlet spurion for hidden sector SUSY-breaking.
(X) =M + 6*F
¢ are messengers in real representations of Gg,s (e.8. 5% 5)
Through their coupling to X:
L= )\/dQHX(b2 + c.c.

they receive tree-level SUSY-breaking mass splittings:

M 0 , (M? F
o= (o ) 2=(F i)

Loops of the messengers and SM gauge fields communicate
SUSY-breaking to the MSSM.
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MGM Soft Masses

In MGM, all the soft masses are determined by a single scale, F/M.

| -loop gaugino masses:

(Fs)
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MGM Bias

The focus on MGM and MGM-like models has led to a biased
picture of the phenomenology of gauge mediation.

This bias has had pronounced effects on the experimental
searches for gauge mediation.

Recently, gauge mediation was reformulated in a general,
model-independent way.

This provides a useful framework for the study of general
signatures of gauge mediation.
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General Gauge Mediation

(Meade, Seiberg, DS)

® Hidden sector:

® spontaneously breaks SUSY at a scale M
® has a weakly-gauged global symmetry G containing SU(3)xSU(2)xU(1)

® includes messengers, if present

® Theory decouples into separate hidden and visible sectors in
g->0 limit.

® Work exactly in the hidden sector but to leading order in g.
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Current two-point functions

® By current conservation and Lorentz invariance, the nonzero
two-point functions are:

(J()J(0)) = Co(x)

® |f SUSY is unbroken, can show:

Co=Chjs=C1, B=0
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® Weakly gauge G:

Lo = g / 10TV + O(g?)
= g(JD + X%y + Aag® + 7"V,) + O(g?)

® |ntegrate out hidden sector exactly. Effective theory for the
gauge supermultiplet:
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® Soft terms can be written in terms of the current-current
correlators.
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® Gaugino mass: ardA ey My = g? M By /5(0)
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Gaugino and sfermion masses are given by the same formulas
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Five MSSM sfermion masses f=Q,U,D,L,E are given in terms of 3
parameters A; 2 3.So there must be 2 relations.

These take the form:

TerQZmé—Zm%]+m%—m%+m2E:O

Tr(B—L)m2:2mé—m%—m%—2m%+m%20

Sum rules true at the scale M. (Small) corrections from RG and
EVVSB.

These relations were known before in specific models
.Here we
learn that they are completely general.
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Parameter space

® The GGM parameter space consists of 9 real parameters:

A123, |Bi23], arg(Bi2;3)

® Comments:

® SUSY CP problem in general
® Gauge coupling unification not tied to gaugino unification
® Parameter space much larger than minimal gauge mediation

® “Existence proof model” was constructed which covers the entire
parameter space

® The entire parameter space is physical! Should use it to study the
general phenomenology of gauge mediation!
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Gauge Mediation

® The phenomenology of gauge mediation is distinctive:
gravitino is the lightest superpartner (LSP).

F
mea = M—pl < Myeak

® |ightest MSSM sparticle becomes the next-to-lightest
superpartner (NLSP). It decays to the gravitino plus its SM

superpartnetr.
. - F2
Xnpsp = G+ X, TnpLsp~ —%
Myrsp

® Decays can be prompt or delayed. We will focus on prompt
case. This corresponds to low-scale SUSY breaking.
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Gauge Mediation

® All SUSY cascade decays pass through the NLSP.

® 5o all events contain high pT objects determined by the
NLSP type, plus missing energy.



Minimal Gauge Mediation
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® |n the early days of GMSB, the collider signatures of “Minimal

Gauge Mediation” were extensively studied.
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Minimal Gauge Mediation
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® |n the early days of GMSB, the collider signatures of “Minimal

Gauge Mediation” were extensively studied.
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Minimal Gauge Mediation

2 (B EY
9 A M )

® |n the early days of GMSB, the collider signatures of “Minimal

Gauge Mediation” were extensively studied.
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Beyond MGM?

Additionally, a variety of different signatures beyond MGM
were catalogued and studied by many authors.

However, experimental searches for GMSB have focused
almost entirely on MGM signatures and parameter space.

e diphoton+MET (bino NLSP)

® J|ong-lived stau NLSP

displaced photons+MET (bino NLSP)

10%E
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Heavy squarks & gluinos => EWV production only...
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NLSPs in GGM

® |n GGM parameter space, the NLSP can be nearly anything:

general neutralino NLSP (more than just bino!)
right-handed slepton NLSP

sneutrino NLSP

gluino NLSP

squark NLSP

® Squarks and gluinos can be light, and can have significant
production cross sections at Tevatron and LHC.

® Phenomenological possibilities go far beyond MGM!



GGM Zoology



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?

® Goals:



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?

® Goals:

® (Categorize minimal inclusive signatures for early LHC discovery. Not
necessary to include every particle from every possible decay chain.



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?

® Goals:

® (Categorize minimal inclusive signatures for early LHC discovery. Not
necessary to include every particle from every possible decay chain.

= Inclusive signatures primarily controlled by NLSP type



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?

® Goals:

® (Categorize minimal inclusive signatures for early LHC discovery. Not
necessary to include every particle from every possible decay chain.

= Inclusive signatures primarily controlled by NLSP type

= Include minimal particle content for production and signature



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?

® Goals:

® (Categorize minimal inclusive signatures for early LHC discovery. Not
necessary to include every particle from every possible decay chain.

= Inclusive signatures primarily controlled by NLSP type
= Include minimal particle content for production and signature

® Provide simple benchmark spaces to experimentalists for search
optimization and limit-setting. These should be carefully chosen to be
as comprehensive and bias-free as possible.



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?

® Goals:

® (Categorize minimal inclusive signatures for early LHC discovery. Not
necessary to include every particle from every possible decay chain.

= Inclusive signatures primarily controlled by NLSP type
= Include minimal particle content for production and signature

® Provide simple benchmark spaces to experimentalists for search
optimization and limit-setting. These should be carefully chosen to be
as comprehensive and bias-free as possible.

= Formulate benchmark spaces in terms of physical masses



GGM Zoology

® Huge space, bewildering zoo of possibilities. VWhat to do!?

® Goals:

® (Categorize minimal inclusive signatures for early LHC discovery. Not
necessary to include every particle from every possible decay chain.

= Inclusive signatures primarily controlled by NLSP type
= Include minimal particle content for production and signature

® Provide simple benchmark spaces to experimentalists for search
optimization and limit-setting. These should be carefully chosen to be
as comprehensive and bias-free as possible.

= Formulate benchmark spaces in terms of physical masses

® Understand existing constraints and potential reach in these parameter
spaces to help guide future searches.
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Our approach: simple 2D spaces, parametrized by NLSP mass
and production mode mass.

At LHC, focus on colored production (gluinos for simplicity).
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signal acceptance.
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parameter spaces.VWell suited for inclusive searches.
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General Neutralino NLSPs

® |n the MSSM, superpartners of the photon, Z and Higgses
consist of four neutralinos and two charginos

(O X2 X3 x8) (G5 x3)
® General neutralino NLSPs have three possible decays:
X§ — (v, Z, h)+G
® Focus on simplifying gauge eigenstate limits:
® Bino NLSP

® Wino NLSP

® Higgsino NLSP
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Example #1: Bino NLSP

This is the classic MGM signature. Here we will revisit it in
the model-independent fashion advocated above.

Minimal LHC spectrum for bino NLSP:
mg = M3 > @ @

mp = M TRIOTE - - - > - - - BAAAAT—>

Signature: vy + jets + MET

CDF and DO have searched for diphotons+MET. Their null
results set a lower limit on the gluino mass.



Example #1: Bino NLSP

Yy Early LHC Reach (7 TeV)
- oX Br [pb] f 1000 _________ 1fbt
W — i 800 100pb”
, ' = .
600 ¢ & 600- 10pb— LHC
7 IV S 10 fb~! Tevatron
4008 : 400~ 261"
(Gluino NLSP) | | (Gluino NLSP)
f 200+
200 i
200 400 600 800 1000 200 400 600 800 1000
mg [GeV] mg [GeV]

Tevatron surpassed after less than 10/pb !
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® |n this limit, superpartners of the W and Z are lightest.

® Wino neutralino decays to photons and Z.

® Due to accidental cancellations, wino chargino and neutralino

are extremely degenerate.
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Example #2:Wino co-NLSP

4
55(13 X1
+(v, Z) ) +WE
G

® |n this limit, superpartners of the W and Z are lightest.

® Wino neutralino decays to photons and Z.

® Due to accidental cancellations, wino chargino and neutralino

are extremely degenerate.

4
m

e

® Winos are co-NLSPs! Novel, unexplored phenomenology!
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® Minimal LHC spectrum for wino co-NLSPs:
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® Minimal LHC spectrum for wino co-NLSPs:
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® Minimal LHC spectrum for wino co-NLSPs:

Mo = Myy+ — MQ

@ @ G0 W
§
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ANIVA JANWAN
RO - -+ >+ > TERHOOE - - - > - - - BPASAT—

g a  w (&) AN B S e

Br(§ — W° + jets) ~ 40% Br(g — W= + jets) =~ 60%

® Signatures: 7y + jets + MET



Example #2:Wino co-NLSP

® Minimal LHC spectrum for wino co-NLSPs:

Myiro = Myr+ = Mo
Cap Cap Cap 9y @%

ANIVA JANWAN
RO - -+ >+ > FRRROOE - - - > - - - BAAAAS

g q e (&) g q W

Br(§ — W° + jets) ~ 40% Br(g — W= + jets) =~ 60%

® Signatures: 7y + jets + MET
W(lv)y + jets + MET
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® TJevatron constraints from yy+MET.Also,a CDF search for
¢ + v +MET. Latter was not optimized for GMSB, but (crude)
optimization can be inferred from their paper.
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® TJevatron constraints from yy+MET.Also,a CDF search for
¢ + v +MET. Latter was not optimized for GMSB, but (crude)
optimization can be inferred from their paper.
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Another interesting case is where the right-handed sleptons
are the NLSPs.

In GMSB, right-handed sleptons are flavor degenerate at the
messenger scale. Third generation always becomes lighter due
to RG running and left-right mixing.

Two cases:

o @ton co-N@ Cleaner experimental signatures

® stau NLSP
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Example #3:
Slepton co-NLSPs

® Slepton co-NLSPs are generic in GGM (i.e. fine-tuning not
required).

® E.g they occur in MGM for Nyess > 3, tan 8 S 10

® This scenario gives rise to multilepton signatures. These are
especially nice final states for hadron colliders.

® These signatures have traditionally been studied only in
context of mMSUGRA. Kinematics for gauge mediation are
totally different.
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S
)
=)
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)
)
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500 500+

%050 100 150 200 250 %50 100 150 200 250
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® Minimal LHC spectrum for slepton co-NLSP:

mg > q q / 4
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® Minimal LHC spectrum for slepton co-NLSP:

mg > q q ¢ ¢
mg
B B BT - == CAAAAS - >
Mer — Mpr — Mg g q B lr

® |ntermediate bino included for convenience -- otherwise
gluino decays are 4-body.
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® Minimal LHC spectrum for slepton co-NLSP:

m—y @D P P

mg

Mer = Mpr = Mip >

R

BT -~ - > - - EAPAAG - - > - -
g

® |ntermediate bino included for convenience -- otherwise
gluino decays are 4-body.

® Signatures: up to 4 leptons + jets + MET



Example #3:
Slepton co-NLSPs

® Minimal LHC spectrum for slepton co-NLSP:

m—y @D P P

B B BT - -~ > - - - EAPAA === -
Mer — Mpr — Mg g q B lr

® |ntermediate bino included for convenience -- otherwise
gluino decays are 4-body.

® Signatures: up to 4 leptons + jets + MET

® Tevatron constraints from: trileptons+MET and SS dileptons
+MET.
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Example #3:
Slepton co-NLSPs

Early LHC Reach (7 TeV)
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Conclusions

We are in the process of formulating minimal parameter
spaces for each NLSP type in GGM.

These will characterize all the relevant signatures for early
discovery of GMSB.

These can serve as minimally-biased, model-independent
benchmarks for early LHC searches. VWe hope that
experimentalists will find them useful.

If we are to discover or rule out GMSB at the LHC, we must
move beyond MGM!

Early LHC has excellent reach for colored production;
should surpass Tevatron with only ~10-100/pb!



