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Real World Supersymmetry

• Low energy supersymmetry is a compelling candidate for 
physics beyond the Standard Model. 

• The simplest scenario is the Minimal Supersymmetric 
Standard Model (MSSM).  Among its virtues are:

• Solution to the gauge hierarchy problem

• Gauge coupling unification

• Dark matter candidates

• Calculable framework

• Distinctive phenomenology



Soft SUSY Breaking

• Superpartners have not been observed, so SUSY must be 
spontaneously broken. 

• In the MSSM, this breaking occurs through explicit soft 
(dimensional) terms. 

• Naturalness puts the scale of soft terms at the TeV scale -- 
should observe the superpartners at the LHC!
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SUSY Flavor Problem

• The soft Lagrangian of the MSSM contains 100+ new 
parameters.  A generic point in this parameter space is 
ruled out by stringent experimental constraints:

• Precision tests of flavor-violation

• Precision tests of CP violation

• Non-observation of superpartners



Gauge Mediation

• Gauge mediation provides an attractive solution to the 
MSSM flavor problem. 

• In gauge mediation, MSSM soft terms generated only via SM 
gauge interactions. Guarantees flavor-diagonal soft masses!

• Many models of gauge mediation have been constructed over 
the past 20 years. Most have been some variant of minimal 
gauge mediation.
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• X is a singlet spurion for hidden sector SUSY-breaking.

•    are messengers in real representations of          (e.g.          )

• Through their coupling to X:

• they receive tree-level SUSY-breaking mass splittings:

• Loops of the messengers and SM gauge fields communicate 
SUSY-breaking to the MSSM.
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• In MGM, all the soft masses are determined by a single scale, F/M. 
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• In MGM, all the soft masses are determined by a single scale, F/M. 

• 1-loop gaugino masses:

Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

Replacing S and FS by their VEVs, one finds quadratic mass terms in the potential for the messenger
scalar leptons:

V = |y2〈S〉|2(|!|2 + |!|2) + |y3〈S〉|2(|q|2 + |q|2)
−

(
y2〈FS〉!! + y3〈FS〉qq + c.c.

)

+ quartic terms. (6.49)

The first line in eq. (6.49) represents supersymmetric mass terms that go along with eq. (6.44), while
the second line consists of soft supersymmetry-breaking masses. The complex scalar messengers !, !
thus obtain a squared-mass matrix equal to:

( |y2〈S〉|2 −y∗2〈F ∗
S〉

−y2〈FS〉 |y2〈S〉|2
)

(6.50)

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (6.51)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (6.52)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 $= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 6.3. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 6.3 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [142] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (6.53)

in the normalization for αa discussed in section 5.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (6.54)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (6.53) holds for the running gaugino masses at an RG
scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly of
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• In MGM, all the soft masses are determined by a single scale, F/M. 

• 1-loop gaugino masses:

• 2-loop sfermion mass-squareds:

Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.
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Figure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(

α2

4π

)2

C2(i) +
(

α1

4π

)2

C1(i)

]

, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [143] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
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MGM Bias

• The focus on MGM and MGM-like models has led to a biased 
picture of the phenomenology of gauge mediation.

• This bias has had pronounced effects on the experimental 
searches for gauge mediation.

• Recently, gauge mediation was reformulated in a general, 
model-independent way.  

• This provides a useful framework for the study of general 
signatures of gauge mediation.



General Gauge 
Mediation
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General Gauge Mediation
(Meade, Seiberg, DS)

• Hidden sector:

• spontaneously breaks SUSY at a scale M

• has a weakly-gauged global symmetry G containing SU(3)xSU(2)xU(1)

• includes messengers, if present

• Theory decouples into separate hidden and visible sectors in 
g->0 limit.

• Work exactly in the hidden sector but to leading order in g.

Hidden sector
SUSY+...

Visible sector:
MSSM+...



• All the information we need about the hidden sector is 
encoded in the currents of G and their correlation functions.

• The current belongs to a supermultiplet:

• In superspace, the SUSY generalization of current 
conservation is 

Current Supermultiplet

jµ → (J, jα, j̄α̇, jµ)

D2J = 0

J = J + iθj − iθ̄j̄ − θ̄σµθjµ + . . .



• All the information we need about the hidden sector is 
encoded in the currents of G and their correlation functions.

• The current belongs to a supermultiplet:

• In superspace, the SUSY generalization of current 
conservation is 

Current Supermultiplet

(Assume G=U(1) 
for simplicity)

jµ → (J, jα, j̄α̇, jµ)

D2J = 0

J = J + iθj − iθ̄j̄ − θ̄σµθjµ + . . .



Current two-point functions

• By current conservation and Lorentz invariance, the nonzero 
two-point functions are:

• If SUSY is unbroken, can show:

Real

Complex

}�J(x)J(0)� → C0(x)
�jα(x)j̄α̇(0)� → C1/2(x)
�jµ(x)jν(0)� → C1(x)
�jα(x)jβ(0)� → B(x)

C0 = C1/2 = C1, B = 0
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• Soft terms can be written in terms of the current-current 
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Coupling to visible sector

• Gaugino mass: Mλ = g2MB̃1/2(0)

db c

a

e
Fig. 1: The graphical description of the contributions of the two point functions
to the soft masses. (a) represents the gaugino mass contribution from 〈jαjβ〉. In

(b)-(e) the various contributions to the soft scalar masses are given: (b) 〈J〉, (c)
〈JJ〉, (d) 〈jαjα̇〉, and (e) 〈jµjν〉. It should be stressed that the blobs in the figures

represent hidden sector correlation functions. The leading contribution in theories

with messengers arises from one loop of the messengers, but in general when there
are no messengers, it is more complicated.

So far we have discussed the simpler case of a single U(1) gauge group here, in the

case of the actual MSSM one has to consider the separate SU(3), SU(2) and U(1) gauge

groups. We will label the gauge groups by r = 3, 2, 1, respectively. If we want the gauge

couplings to unify, then the value of c(r) = c must be independent of r (assuming SU(5)

normalization of the U(1) factor of course) and we want the thresholds C̃(r)
a (0) to depend

weakly on r. Moreover, if we want perturbative unification, then there is an upper bound

on the magnitude of c. These are examples of some completely general constraints on the

SUSY breaking sector that can be derived using our formalism.

Now, it is straightforward to find the sfermion and gaugino masses of the MSSM.

In Figure 1 we show the diagrams involving the current correlation functions which are

responsible for the MSSM soft masses.

The gaugino masses arise at tree level in the effective theory (3.2); to leading order
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• These take the form:

• Sum rules true at the scale M. (Small) corrections from RG and 
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• The GGM parameter space consists of 9 real parameters: 

• Comments:

• SUSY CP problem in general

• Gauge coupling unification not tied to gaugino unification

• Parameter space much larger than minimal gauge mediation

• “Existence proof model” was constructed which covers the entire 
parameter space (Buican, Meade, Seiberg, DS). 

• The entire parameter space is physical! Should use it to study the 
general phenomenology of gauge mediation!
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• The phenomenology of gauge mediation is distinctive: 
gravitino is the lightest superpartner (LSP).                        

• Lightest MSSM sparticle becomes the next-to-lightest 
superpartner (NLSP).  It decays to the gravitino plus its SM 
superpartner.

• Decays can be prompt or delayed.  We will focus on prompt 
case.  This corresponds to low-scale SUSY breaking.

X̃NLSP → G̃ + X, τNLSP ∼
F 2
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Figure 4: Feynman diagrams for two-photon processes arising from neutralino and chargino production. At

left, the typical process in MGM, where χ̃±1 are mostly wino and decay through sleptons to the mostly-bino

χ̃0
1. The final state includes energetic tau leptons. At right, a typical process with mostly-Higgsino NLSPs,

which are produced directly. The small splitting between χ̃±1 and χ̃0
1 leads to a three-body decay through

off-shell W with very little phase space, so there are relatively soft leptons or jets in the final state.

much softer, and the event could contain little additional activity beyond γγ+ �ET. Examples

of the different decay chains are shown in fig. 4.

Various other Tevatron searches involving energetic photons and missing ET exist [52–

54]. We have analyzed them in some detail; while some parts of parameter space can be

excluded with these results, we find that the limit from γγ + �ET is always much stronger,

and so we will not discuss them in detail.

5 Searches Relevant to wino co-NLSPs

5.1 Searches for γ + W + �ET

CDF has published a search for γ + � + �ET with 0.93 fb−1 of data [55]. They selected for

at least one isolated photon and at least one isolated lepton (e or µ) with pT > 25 GeV

and |η| < 1. They also required �ET > 25 GeV. They found 163 events with an expected

background of 150.6± 13.0. This null result sets a 95% confidence limit on the cross section

times branching fraction for general neutralino NLSPs:

σ × Br× ε < 40 fb (5.1)

With 10 fb−1, the projected bound is

σ × Br× ε < 8 fb (5.2)
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Gauge Mediation

• All SUSY cascade decays pass through the NLSP.

• So all events contain high pT objects determined by the 
NLSP type, plus missing energy.
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Minimal Gauge Mediation

• In the early days of GMSB, the collider signatures of “Minimal 
Gauge Mediation” were extensively studied.
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Beyond MGM?

• Additionally, a variety of different signatures beyond MGM 
were catalogued and studied by many authors.

• However, experimental searches for GMSB have focused 
almost entirely on MGM signatures and parameter space.

• diphoton+MET (bino NLSP)

• displaced photons+MET (bino NLSP)

• long-lived stau NLSP

• OS dilepton+MET (slepton NLSP; LEP only) 

• ....

• Heavy squarks & gluinos => EW production only...
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Background events Expected signal events Observed events
Genuine E/T No E/T Physics Total Λ = 75 TeV Λ = 90 TeV

E/T > 30 GeV 0.97±0.12 9.62±1.12 0.19±0.07 10.8±1.1 28.3±4.2 8.7±1.3 16
E/T > 60 GeV 0.11±0.04 1.44±0.43 0.08±0.04 1.6±0.4 18.1±2.7 6.4±1.0 3

TABLE I: Numbers of background events from Wγ, W + jet, and tt̄ (Genuine E/T ), no inherent E/T (No E/T ), Zγγ → ννγγ
and Wγγ → #γγν (Physics) processes; the total number of expected background events; numbers of expected GMSB SUSY
signal events for two values of Λ; and the observed numbers of events for E/T > 30 GeV and 60 GeV. Errors are statistical and
systematic combined.

Λ, TeV mχ̃0
1
, GeV m

χ̃+
1
, GeV σLO, fb k-factor Efficiency

70 93.7 168.2 215 1.21 0.17 ± 0.03
75 101.0 182.3 148 1.20 0.18 ± 0.03
80 108.5 198.1 97.5 1.19 0.18 ± 0.03
85 115.8 212.0 65.4 1.18 0.19 ± 0.03
90 123.0 225.8 41.8 1.17 0.19 ± 0.03
95 130.2 239.7 29.5 1.16 0.20 ± 0.03
100 137.4 253.4 20.6 1.15 0.20 ± 0.03
105 144.5 267.0 14.4 1.14 0.18 ± 0.03
110 151.7 280.7 10.3 1.13 0.19 ± 0.03

TABLE II: Points on the GMSB Snowmass Slope model:
neutralino and chargino masses, cross sections predicted by
PYTHIA, k-factors, and reconstruction efficiencies with total
uncertainty.
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FIG. 2: Predicted cross section for the Snowmass Slope model
versus Λ. The observed and expected 95% C.L. limits are
shown in solid and dash-dotted lines, respectively.

nology Facilities Council (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC
and WestGrid Project (Canada); BMBF and DFG (Ger-
many); SFI (Ireland); The Swedish Research Council
(Sweden); CAS and CNSF (China); Alexander von Hum-
boldt Foundation; and the Marie Curie Program.

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from II. Physikalisches Institut, Georg-August-

University Göttingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Fin-

land.
[f] Visitor from Universität Zürich, Zürich, Switzerland.
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Beyond MGM?

• Additionally, a variety of different signatures beyond MGM 
were catalogued and studied by many authors.

• However, experimental searches for GMSB have focused 
almost entirely on MGM signatures and parameter space.

• diphoton+MET (bino NLSP)

• displaced photons+MET (bino NLSP)

• long-lived stau NLSP

• OS dilepton+MET (slepton NLSP; LEP only) 

• ....

• Heavy squarks & gluinos => EW production only...
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NLSPs in GGM

• In GGM parameter space, the NLSP can be nearly anything:

• general neutralino NLSP (more than just bino!)

• right-handed slepton NLSP

• sneutrino NLSP 

• gluino NLSP

• squark NLSP

• Squarks and gluinos can be light, and can have significant 
production cross sections at Tevatron and LHC.

• Phenomenological possibilities go far beyond MGM! 
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GGM Zoology

• Huge space, bewildering zoo of possibilities.  What to do?

• Goals:

• Categorize minimal inclusive signatures for early LHC discovery. Not 
necessary to include every particle from every possible decay chain.

➡ Inclusive signatures primarily controlled by NLSP type

➡ Include minimal particle content for production and signature

• Provide simple benchmark spaces to experimentalists for search 
optimization and limit-setting.  These should be carefully chosen to be 
as comprehensive and bias-free as possible.

➡ Formulate benchmark spaces in terms of physical masses

• Understand existing constraints and potential reach in these parameter 
spaces to help guide future searches.



Minimal Parameter Spaces

• Our approach: simple 2D spaces, parametrized by NLSP mass 
and production mode mass.

• At LHC, focus on colored production (gluinos for simplicity).

• Characterize kinematical features (squeezing) that affect 
signal acceptance.

• More complicated spectra will contain these minimal 
parameter spaces. Well suited for inclusive searches.
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• Our approach: simple 2D spaces, parametrized by NLSP mass 
and production mode mass.

• At LHC, focus on colored production (gluinos for simplicity).

• Characterize kinematical features (squeezing) that affect 
signal acceptance.

• More complicated spectra will contain these minimal 
parameter spaces. Well suited for inclusive searches.

mcolored

mNLSP

..
.
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General Neutralino NLSPs

• In the MSSM, superpartners of the photon, Z and Higgses 
consist of four neutralinos and two charginos

• General neutralino NLSPs have three possible decays:

• Focus on simplifying gauge eigenstate limits:

• Bino NLSP

• Wino NLSP

• Higgsino NLSP

(χ0
1, χ0

2, χ0
3, χ0

4) (χ±1 , χ±2 )

χ0
1 → (γ, Z, h) + G̃



Example #1: Bino NLSP



Example #1: Bino NLSP

• This is the classic MGM signature. Here we will revisit it in 
the model-independent fashion advocated above. 



Example #1: Bino NLSP

• This is the classic MGM signature. Here we will revisit it in 
the model-independent fashion advocated above. 

• Minimal LHC spectrum for bino NLSP:

mg̃ = M3

mB̃ = M1



Example #1: Bino NLSP

• This is the classic MGM signature. Here we will revisit it in 
the model-independent fashion advocated above. 

• Minimal LHC spectrum for bino NLSP:

mg̃ = M3

mB̃ = M1

g̃ B̃

q

q̃

γ

G̃

q



Example #1: Bino NLSP

• This is the classic MGM signature. Here we will revisit it in 
the model-independent fashion advocated above. 

• Minimal LHC spectrum for bino NLSP:

• Signature:

mg̃ = M3

mB̃ = M1

g̃ B̃

q

q̃

γ

G̃

q

γγ + jets + MET



Example #1: Bino NLSP

• This is the classic MGM signature. Here we will revisit it in 
the model-independent fashion advocated above. 

• Minimal LHC spectrum for bino NLSP:

• Signature:

• CDF and D0 have searched for diphotons+MET.  Their null 
results set a lower limit on the gluino mass.

mg̃ = M3

mB̃ = M1

g̃ B̃

q

q̃

γ

G̃

q

γγ + jets + MET



Example #1: Bino NLSP

Tevatron surpassed after less than 10/pb !
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• Wino neutralino decays to photons and Z.

• Due to accidental cancellations, wino chargino and neutralino 
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Example #2: Wino co-NLSP

• In this limit, superpartners of the W and Z are lightest. 

• Wino neutralino decays to photons and Z.

• Due to accidental cancellations, wino chargino and neutralino 
are extremely degenerate.

• Winos are co-NLSPs! Novel, unexplored phenomenology!

|mχ̃±1
−mχ̃0

1
| ∼ m4

Z

µ3
� GeV

χ̃0
1

χ̃±1

G̃

+(γ, Z) +W±
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• Minimal LHC spectrum for wino co-NLSPs:

• Signatures:

Br(g̃ → W̃ 0 + jets) ≈ 40%

g̃

q

q̃ G̃

q

W̃ 0

γ, Z

g̃

q

q̃ G̃

q

W̃±

W±

Br(g̃ → W̃± + jets) ≈ 60%

mg̃ = M3

mW̃ 0 = mW̃± = M2

γγ + jets + MET

W (�ν)γ + jets + MET
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Example #2: Wino co-NLSP
γγ

� + γ

Reach depends on backgrounds. 
Work in progress...
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Slepton co-NLSPs

• Another interesting case is where the right-handed sleptons 
are the NLSPs. 

• In GMSB, right-handed sleptons are flavor degenerate at the 
messenger scale. Third generation always becomes lighter due 
to RG running and left-right mixing. 

• Two cases: 

• slepton co-NLSP 

• stau NLSP

ẽR, µ̃R τ̃R

G̃
+e, +µ +τ

+� + τ

Cleaner experimental signatures
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• Slepton co-NLSPs are generic in GGM (i.e. fine-tuning not 
required). 

• E.g. they occur in MGM for 

• This scenario gives rise to multilepton signatures. These are 
especially nice final states for hadron colliders.

Nmess ≥ 3, tanβ � 10
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Figure 15: mSUGRA comparison. For mSUGRA we choose a nominal point, tanβ = 3, µ > 0,

A = 0, m0 = 100 GeV and m1/2 = 265 GeV. On the left we show the number of leptons with |η| < 1

and pT > 10 GeV. Comparing with figure 4, we see that GMSB tends to produce more leptons

than mSUGRA. The center and right plots compare the distributions of missing energy and hardest

lepton pT (with 100k events) between mSUGRA (blue) and GGM with wino production (red). For

GGM we match the wino and right-handed slepton masses with mSUGRA, mW̃ � 200 GeV and

mẽR � 150 GeV.

C GGM vs. mSUGRA

We include a brief comparison of the multilepton signals from GMSB with slepton co-NLSP

to those from mSUGRA (for a review with references see [1]). This comparison is useful

because many Tevatron searches for SUSY, such as the trilepton search described above,

were designed with the mSUGRA signal in mind. This has led the searches to be biased in

various ways.

Shown in fig. 15 are the number of leptons, the �ET, and the hardest lepton pT distri-

butions, for a nominal mSUGRA point with tan β = 3, µ > 0, A = 0, m0 = 100 GeV and

m1/2 = 265 GeV. This corresponds to a wino mass of ∼ 200 GeV, a bino mass of ∼ 100 GeV,

and a right-handed slepton mass of ∼ 150 GeV. The left-handed sleptons are heavier than

the wino and are effectively decoupled. The only production mode for multiple leptons here

is χ̃±
1 χ̃2. These states decay with nearly 100% branching fraction (and nearly flavor demo-

cratically) to the right-handed sleptons, which then decay to the bino LSP. So this scenario

is most analogous to our wino production scenario, with the only difference being that the

LSP is 100 GeV here instead of the massless gravitino.

In fig. 15, we have also included for comparison the �ET and pT1 distributions for the

wino production GMSB scenario with the same wino and right-handed slepton mass. We

see that the lepton distribution is quite similar to the that of the wino production scenario

38

Example #3: 
Slepton co-NLSPs

• Slepton co-NLSPs are generic in GGM (i.e. fine-tuning not 
required). 

• E.g. they occur in MGM for 

• This scenario gives rise to multilepton signatures. These are 
especially nice final states for hadron colliders.

• These signatures have traditionally been studied only in 
context of mSUGRA. Kinematics for gauge mediation are 
totally different.

Nmess ≥ 3, tanβ � 10
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• Minimal LHC spectrum for slepton co-NLSP:

• Intermediate bino included for convenience -- otherwise 
gluino decays are 4-body.
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mẽR = mµ̃R = mτ̃R g̃ q̃

q

B̃

�

�̃R G̃

q �



Example #3: 
Slepton co-NLSPs

• Minimal LHC spectrum for slepton co-NLSP:

• Intermediate bino included for convenience -- otherwise 
gluino decays are 4-body.

• Signatures: up to 4 leptons + jets + MET

mg̃

mB̃
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Example #3: 
Slepton co-NLSPs

• Minimal LHC spectrum for slepton co-NLSP:

• Intermediate bino included for convenience -- otherwise 
gluino decays are 4-body.

• Signatures: up to 4 leptons + jets + MET

• Tevatron constraints from: trileptons+MET and SS dileptons
+MET. 

mg̃

mB̃

mẽR = mµ̃R = mτ̃R g̃ q̃
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Slepton co-NLSPs



Conclusions

• We are in the process of formulating minimal parameter 
spaces for each NLSP type in GGM. 

• These will characterize all the relevant signatures for early 
discovery of GMSB.  

• These can serve as minimally-biased, model-independent 
benchmarks for early LHC searches.  We hope that 
experimentalists will find them useful.

• If we are to discover or rule out GMSB at the LHC, we must 
move beyond MGM!

• Early LHC has excellent reach for colored production; 
should surpass Tevatron with only ~10-100/pb!


