Trans-series representation of Hofstadter's butterfly from non-perturbative topological strings

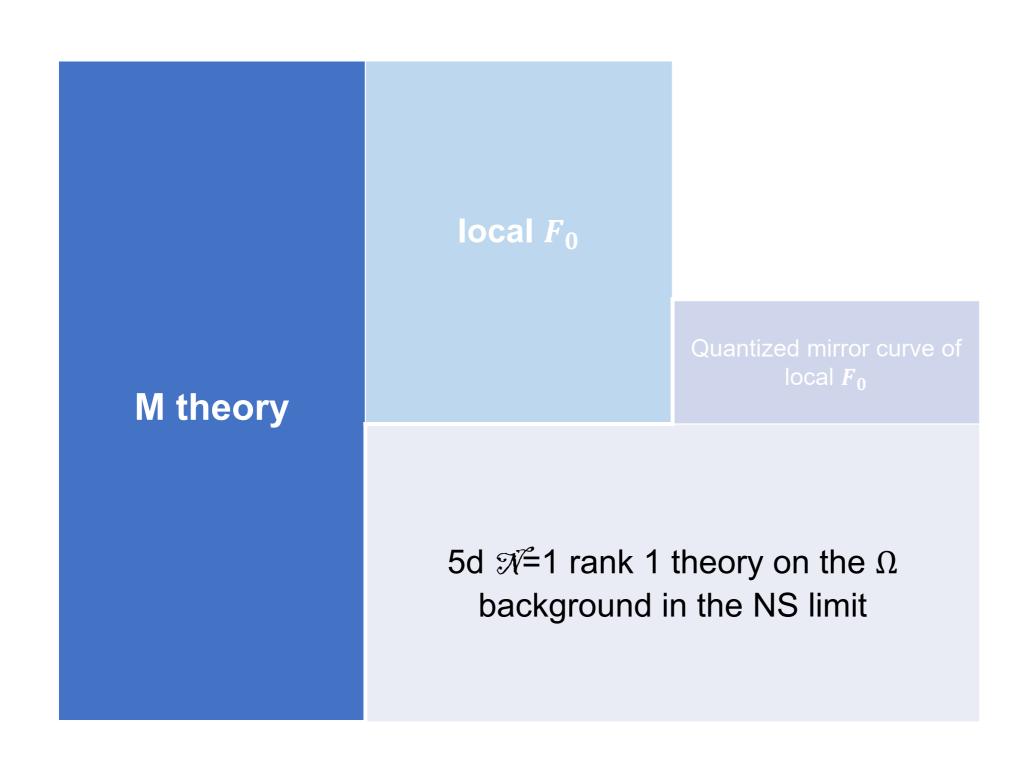
Zhaojie Xu (Southeast University Yau Center)

徐兆杰/徐兆傑

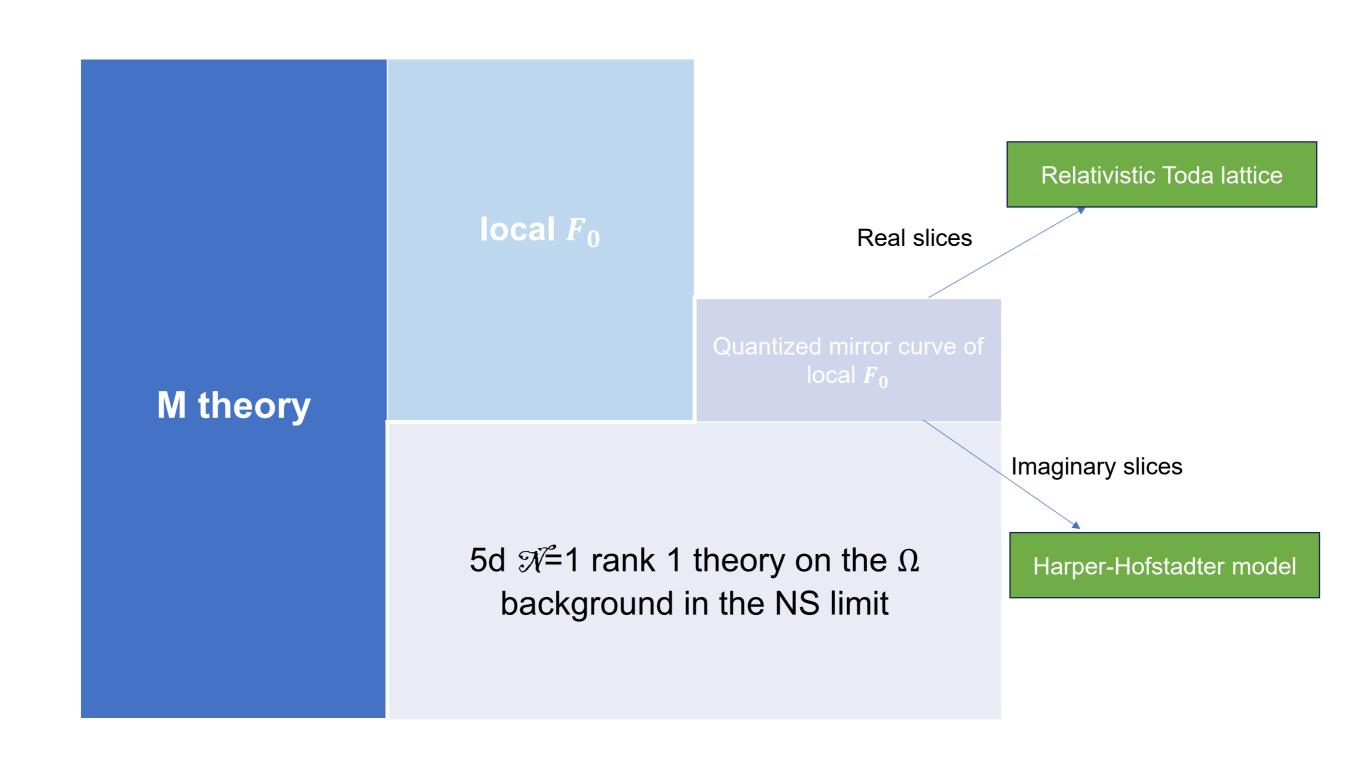
based on 2406.18098 w/ Jie Gu and work in progress

Roadmap to Harper-Hofstadter model

Roadmap to Harper-Hofstadter model



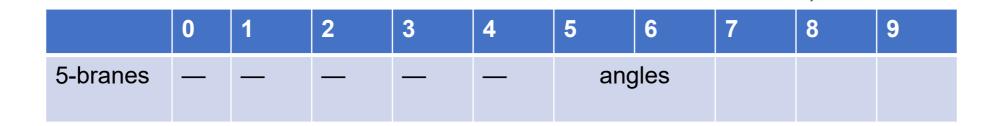
Roadmap to Harper-Hofstadter model



5d SYM from M theory on local F_0

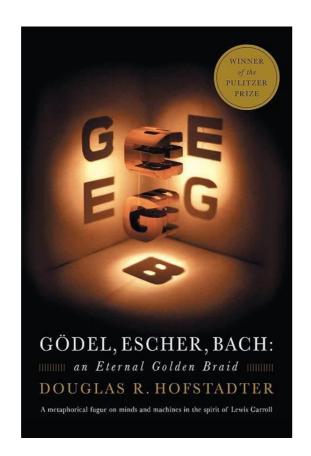
• 5d pure SU(2) SYM can be obtained from M theory on local F_0 /local $\mathbb{P}^1 \times \mathbb{P}^1$

• Under toric duality [Leung, Vafa' 97], it's also equivalent to Type IIB theory with (p,q) 5-brane web which has the same configuration as the toric diagram of local F_0

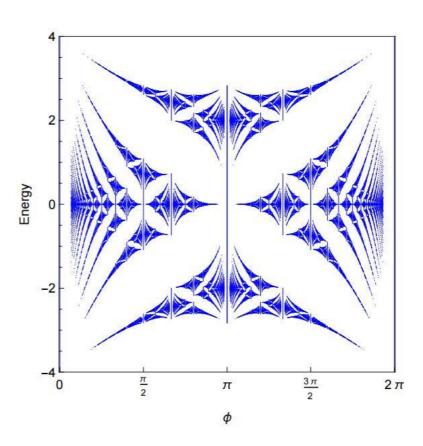


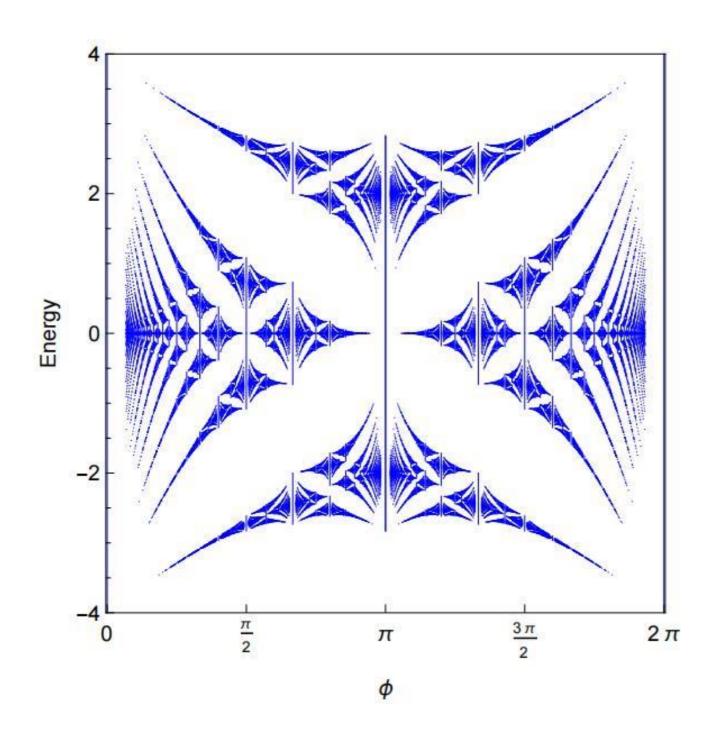
 The form of the mirror curve can be read off from the dual grid diagram

In 1976, Douglas Hofstadter (cognitive scientist, author of a famous popular science book *Gödel*, *Escher*, *Bach* and son of the Nobel laureate Robert Hofstadter) discovered a mesmerizing fractal pattern by studying the energy spectrum of the Harper model for rational flux/ (2π) . The name of that energy spectrum is the famous Hofstadter's butterfly.

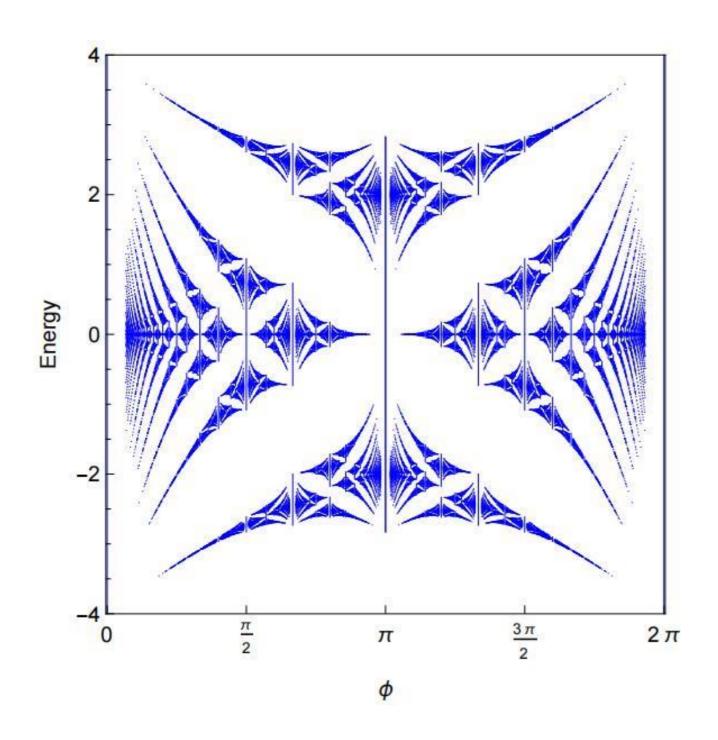


Credit: Basic Books

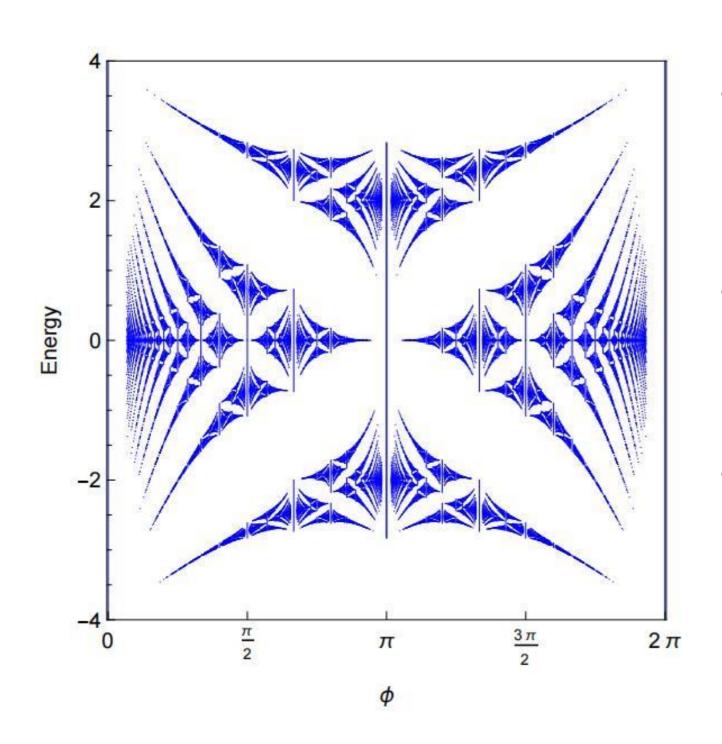




• For flux $\phi = 2\pi \frac{P}{Q}$, there are Q bands determined by the secular equation



- For flux $\phi = 2\pi \frac{P}{Q}$, there are Q bands determined by the secular equation
- The same figure also shows up in quantum geometry of local F₀
 [Hatsuda, Katsura, Tachikawa' 16]



- For flux $\phi = 2\pi \frac{P}{Q}$, there are Q bands determined by the secular equation
- The same figure also shows up in quantum geometry of local F₀
 [Hatsuda, Katsura, Tachikawa' 16]
- Unification of high energy physics, condensed matter theory, spectral theory and fractal art, highly interdisciplinary!

 The dictionary between the topological string side and condensed matter side is summarized as follows

Topological String	Condensed Matter
Quantum mirror curve (Imaginary slices) $H = e^{x} + e^{-x} + e^{y} + e^{-y}$	Hamiltonian $H = e^{i\Pi_X} + e^{-i\Pi_X} + e^{i\Pi_Y} + e^{-i\Pi_Y}$
Quantum deformation parameter \hbar	Magnetic flux $-\phi$
Mass parameters	Hopping parameters
Imaginary part of $\frac{1}{2\pi} \frac{\partial t(\mathcal{E}; \hbar = \frac{2\pi a}{b})}{\partial \mathcal{E}}$	Density of States $\rho(\mathcal{E}; \phi = \frac{2\pi a}{b})$
Branch cut structure of $t\left(\mathcal{E}; \hbar = \frac{2\pi a}{b}\right)$ (large radius frame)	Band Spectrum (Hofstadter's butterfly)

Vev of ½-BPS Wilson loop wrapping S¹ and located at the origin is given by

$$W_r = \langle W_r \rangle, W_r = \operatorname{Tr}_r \exp \oint_{S^1} d\tau \left(A_0(\tau) - \phi(\tau) \right)$$

Vev of ½-BPS Wilson loop wrapping S¹ and located at the origin is given by

$$W_r = , W_r = Tr_r \exp \oint_{S^1} d\tau (A_0(\tau) - \phi(\tau))$$

$$W_{\square} = \sum_{n \geq 0} W_n(t) \hbar^{2n}$$

Vev of ½-BPS Wilson loop wrapping S¹ and located at the origin is given by

$$W_r = \langle W_r \rangle, W_r = \operatorname{Tr}_r \exp \oint_{S^1} d\tau \left(A_0(\tau) - \phi(\tau) \right)$$

$$W_{\square} = \sum_{n \ge 0} W_n(t) \hbar^{2n}$$

 Equivalent to the inverse quantum mirror map [Gaiotto, Kim' 14; Bullimore, Kim, Koroteev' 14], can be calculated by the HAE [Huang, Lee, Wang' 22; Wang' 23] efficiently

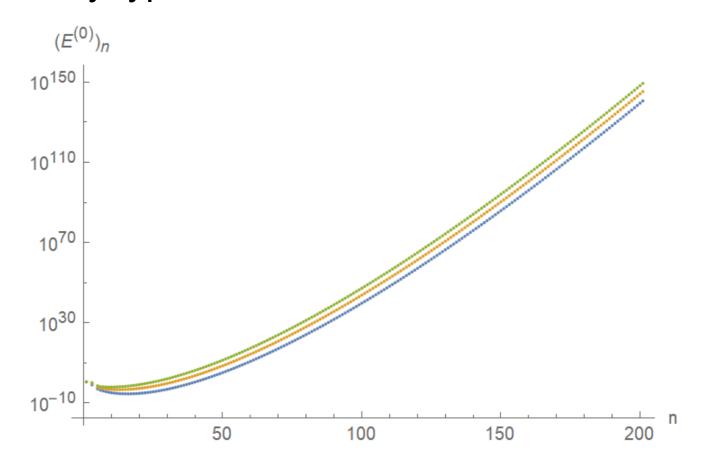
 The perturbative energy of Harper-Hofstadter model corresponds exactly to the Wilson loop vev [A. Sciarappa' 16] with the identification

$$\hbar \to -\phi, t_c \to -\phi(N + \frac{1}{2})$$

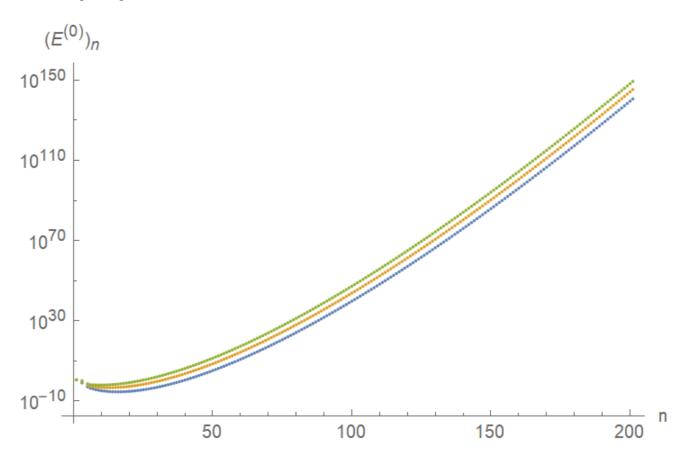
 The Bender-Wu algorithm can help us compute the perturbative expansion in a parallel line [Sulejmanpasic, Ünsal' 16, Gu, Sulejmanpasic' 17].

E (N;
$$\phi$$
) = 4 - (1 + 2 N) ϕ + $\frac{1}{8}$ (1 + 2 N + 2 N²) ϕ ² - $\frac{1}{192}$ (1 + 3 N + 3 N² + 2 N³) ϕ ³ + $\frac{(2 + 5 N + 6 N^2 + 2 N^3 + N^4) \phi^4}{1536}$ + $\frac{(67 + 215 N + 250 N^2 + 190 N^3 + 35 N^4 + 14 N^5) \phi^5}{245760}$ + ... + $(4.970153 \times 10^{140} + 5.91148 \times 10^{141} N + ...) \phi^{200}$ + ...

 Although we can compute the perturbative expansion up to at least 200 orders efficiently, the series coefficients grow factorially, say of 1-Gevrey type



 Although we can compute the perturbative expansion up to at least 200 orders efficiently, the series coefficients grow factorially, say of 1-Gevrey type



This is when resurgence techniques come into play

Consider a general series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \qquad a_n \sim n!$$

The idea of Borel summation is inserting the identity

 $1 = \frac{\Gamma(n+1)}{n!}$ to the summand and rewrite the Gamma function with its integral representation, i.e.

$$f(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} \int_0^{\infty} (z\zeta)^n e^{-\zeta} d\zeta$$
$$= \sum_{n=0}^{\infty} \frac{1}{z} \int_0^{\infty} \left(\frac{a_n}{n!} \zeta^n\right) e^{-\zeta/z} d\zeta$$

and then interchange the order of summation and integration.

One can define

Borel transform

$$\mathcal{B}f(\zeta) := \sum_{n=0}^{\infty} \frac{a_n}{n!} \zeta^n$$

Borel summation

$$Sf(z) = \frac{1}{z} \int_0^\infty d\zeta \ e^{-\zeta/z} \ \mathcal{B}f(\zeta)$$

One can define

Borel transform

$$\mathcal{B}f(\zeta) := \sum_{n=0}^{\infty} \frac{a_n}{n!} \zeta^n$$

Borel summation

$$Sf(z) = \frac{1}{z} \int_0^\infty d\zeta \ e^{-\zeta/z} \ \mathcal{B}f(\zeta)$$

 These definitions need to be modified when applied to perturbative series in physics

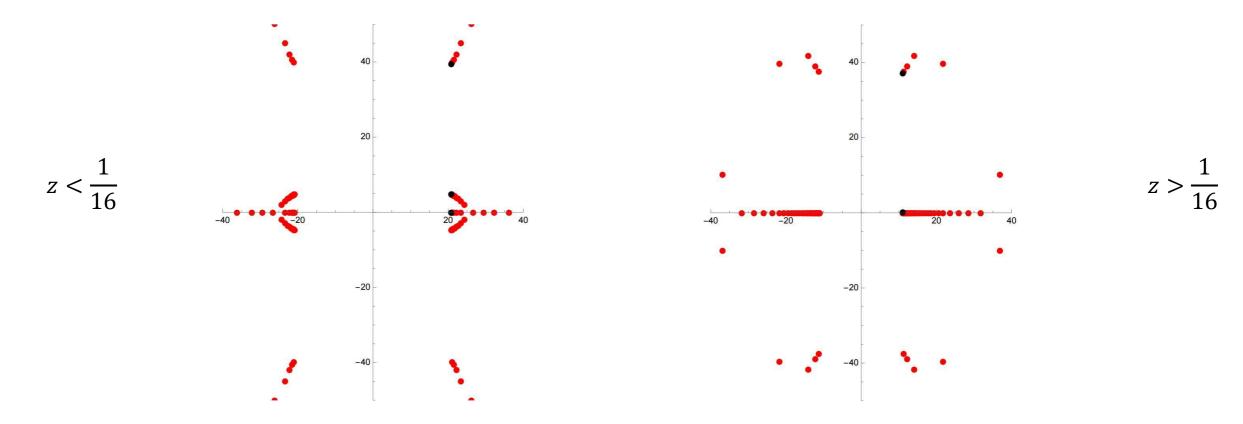
Borel-(Pade) transform

$$\mathcal{B}E^{(0)}(\zeta) = \sum_{n=0}^{2n_{max}} \frac{a_n^{(0)}}{n!} \zeta^n \approx \frac{P_{n_{max}}(\zeta)}{Q_{n_{max}}(\zeta)}$$

Borel-(Pade) transform

$$\mathcal{B}E^{(0)}(\zeta) = \sum_{n=0}^{2n_{max}} \frac{a_n^{(0)}}{n!} \zeta^n \approx \frac{P_{n_{max}}(\zeta)}{Q_{n_{max}}(\zeta)}$$

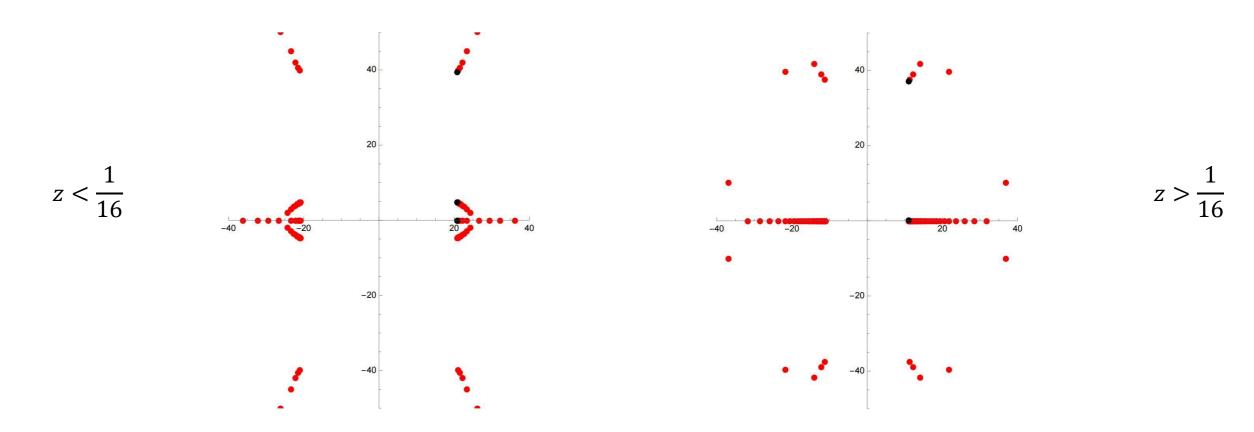
Borel plane of Wilson loop vev [Mariño, Schwick' 24; Gu, ZX' 24]



The resurgence/BPS dictionary [Grassi, Gu, Mariño' 19]

Resurgence	BPS
$t_a^{(0)}$	Z_{γ_a}
1-cycles γ_a	EM charges γ_a
Borel singularities	BPS spectrum
Stokes constant S_{γ}	BPS invariant $\Omega_{\gamma} < \gamma_d$, $\gamma >$
DDP formula	KS morphism

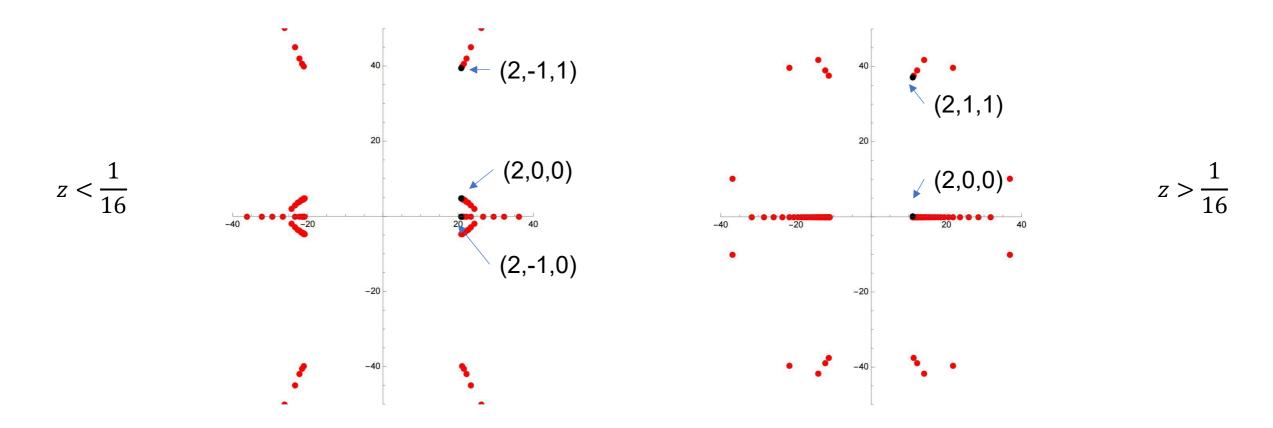
Borel plane of Wilson loop vev [Mariño, Schwick' 24; Gu, ZX' 24]



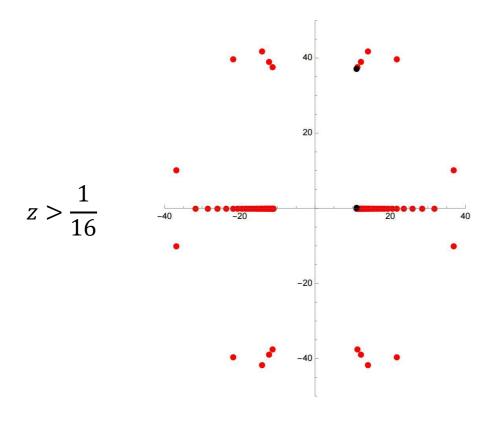
The resurgence/BPS dictionary [Grassi, Gu, Mariño' 19]

Resurgence	BPS
$t_a^{(0)}$	Z_{γ_a}
1-cycles γ_a	EM charges γ_a
Borel singularities	BPS spectrum
Stokes constant S_{γ}	BPS invariant $\Omega_{\gamma} < \gamma_d$, $\gamma >$
DDP formula	KS morphism

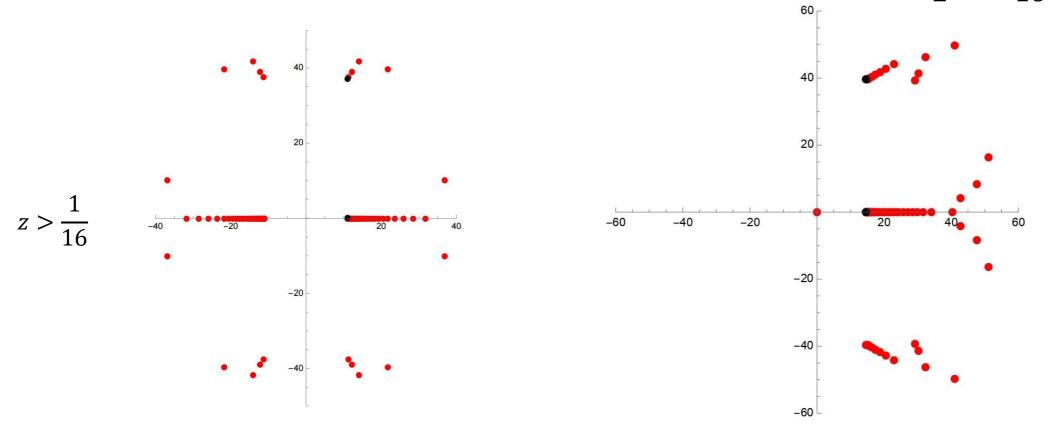
Borel plane of Wilson loop vev [Mariño, Schwick' 24; Gu, ZX' 24]



• The energy for finite magnetic flux is bounded by -4 < E < 4, which corresponds to the strong coupling regime $z = \frac{1}{E^2} > \frac{1}{16}$

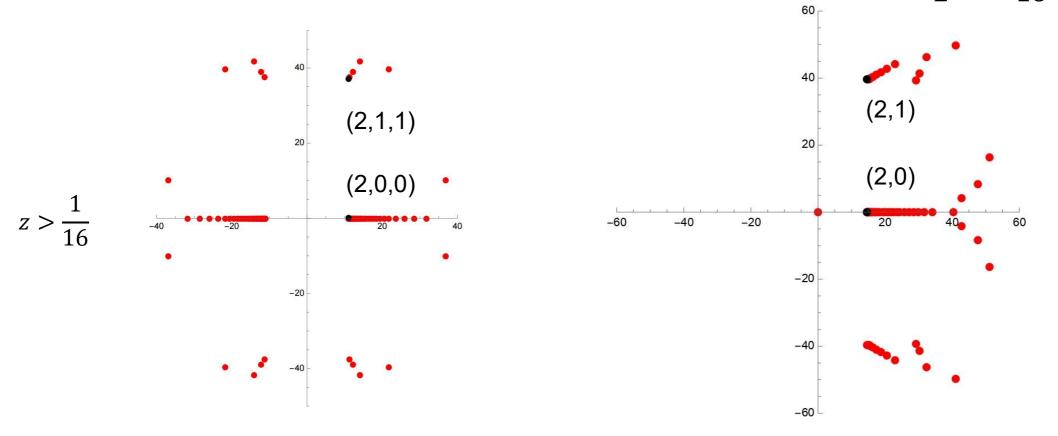


• The energy for finite magnetic flux is bounded by -4 < E < 4, which corresponds to the strong coupling regime $z = \frac{1}{E^2} > \frac{1}{16}$

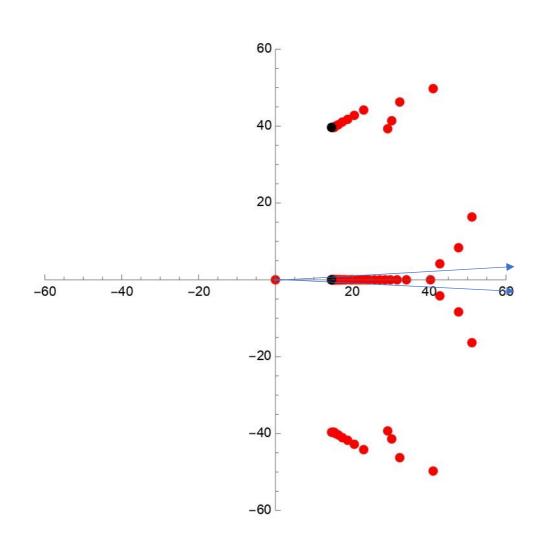


• After the identification $\hbar \to -\phi$, $t_c \to -\phi \left(N + \frac{1}{2}\right)$ and take the limit $\phi \to 0$, BPS states labeled by (p,q,r) gets mapped Borel singularities labeled by (p,r)

• The energy for finite magnetic flux is bounded by -4 < E < 4, which corresponds to the strong coupling regime $z = \frac{1}{E^2} > \frac{1}{16}$



• After the identification $\hbar \to -\phi$, $t_c \to -\phi \left(N + \frac{1}{2}\right)$ and take the limit $\phi \to 0$, BPS states labeled by (p,q,r) gets mapped Borel singularities labeled by (p,r)



Lateral Borel resummation

$$\mathcal{S}_0^{(\pm)} E^{(0)}(\phi) = \frac{1}{\phi} \int_{C_{\pm}} d\zeta \; e^{-\zeta/\phi} \; \mathcal{B} E^{(0)}(\zeta)$$

 The resumed energy has an imaginary ambiguity which can be cancelled by including even instanton corrections whose information is encoded in Stokes discontinuities

$$\left(S_0^{(+)} - S_0^{(-)}\right) E^{(0)}(\phi)$$

= $S_0^{(-)} (\mathfrak{S}_0 - id) E^{(0)}(\phi)$

Alien calculus

• The Stokes automorphism turns series into minimal trans-series

$$\mathfrak{S}_0 E^{(0)} = E^{(0)} + \sum_{n \ge 1} \sum_{m=0}^{n-1} v_{n,m} \sigma^{m+1} E^{(n,m)}$$

 The Stokes automorphism can be decomposed in terms of pointed alien derivatives

$$\mathfrak{S}_0 = \exp\left(\sum_k \dot{\Delta}_{kA}\right)$$

Later we will show that

$$\mathfrak{S}_0 E^{(0)} = \mathfrak{S}_0 E_{min}(\sigma = 0) = E_{min}(\sigma = 4)$$

and

$$\dot{\Delta}_{lA}E^{(0)} = \frac{4}{2\pi i} \frac{(-1)^l}{l} E^{(2l,0)}$$

$$\dot{\Delta}_{lA}E^{(n,m)} = \frac{4}{2\pi i} \frac{(-1)^l}{l} E^{(n+2l,m+1)}$$

• The bands of Hofstadter's butterfly is invisible from perturbative expansion. In addition, the minimal trans-series resurged from perturbative series does not depend on the Bloch angles θ_x , θ_y either.

- The bands of Hofstadter's butterfly is invisible from perturbative expansion. In addition, the minimal trans-series resurged from perturbative series does not depend on the Bloch angles θ_x , θ_y either.
- A preliminary analysis on the full 1-instanton and 2-instanton sector was performed in [Duan, Gu, Hatsuda, Sulejmanpasic' 18] both analytically and numerically

- The bands of Hofstadter's butterfly is invisible from perturbative expansion. In addition, the minimal trans-series resurged from perturbative series does not depend on the Bloch angles θ_x , θ_y either.
- A preliminary analysis on the full 1-instanton and 2-instanton sector was performed in [Duan, Gu, Hatsuda, Sulejmanpasic' 18] both analytically and numerically
- The technical difficulty of extracting higher instanton corrections directly was due to instanton-anti-instanton interaction terms

$$E^{(n)}(N) \sim \mathcal{P}(\phi, N) \left\{ \left[\log \left(\frac{16}{\phi} \right) \right]^{n-1} - (n-1) \left[\log \left(\frac{16}{\phi} \right) \right]^{n-2} \psi^{(0)} \left(N+1 \right) + \cdots \right\} e^{-n \frac{S_c}{\phi}}$$

- The bands of Hofstadter's butterfly is invisible from perturbative expansion. In addition, the minimal trans-series resurged from perturbative series does not depend on the Bloch angles θ_x , θ_y either.
- A preliminary analysis on the full 1-instanton and 2-instanton sector was performed in [Duan, Gu, Hatsuda, Sulejmanpasic' 18] both analytically and numerically
- The technical difficulty of extracting higher instanton corrections directly was due to instanton-anti-instanton interaction terms

$$E^{(n)}(N) \sim \mathcal{P}(\phi, N) \left\{ \left[\log \left(\frac{16}{\phi} \right) \right]^{n-1} - (n-1) \left[\log \left(\frac{16}{\phi} \right) \right]^{n-2} \psi^{(0)} \left(N+1 \right) + \cdots \right\} e^{-n \frac{S_c}{\phi}}$$

To go further, we need insights from exact WKB analysis

Review of cosine potential model

 The quantum SW curve of 4d 𝒴=2 pure SYM can reduce to the Hamiltonian of the cosine potential model

$$H = y^2 + 2\cos x$$

with

$$[x, y] = i\hbar$$

Can be solved alternatively by exact WKB method

$$H\psi(x) = E\psi(x)$$

with

$$\psi_{\pm}(x) = \frac{1}{\sqrt{P_{odd}}} \exp\left(\pm \frac{i}{\hbar} \int^{x} P_{odd}(x', \hbar) dx'\right)$$

satisfying the periodic bc

$$\begin{pmatrix} \psi_{+}(x+2\pi) \\ \psi_{-}(x+2\pi) \end{pmatrix} = M \begin{pmatrix} \psi_{+}(x) \\ \psi_{-}(x) \end{pmatrix} \qquad \det(M - I_{2\times 2}e^{i\theta}) = 0$$

Review of cosine potential model

The exact quantization condition (EQC) for cos potential model is simply the Voros-Silverstone connection formula [Voros' 83, Silverstone' 85] that can be derived by Stokes graphs/spectral network techniques

$$1 + V_A^{\mp} (1 + V_B) - 2\sqrt{V_A^{\mp} V_B} \cos\theta = 0$$

where

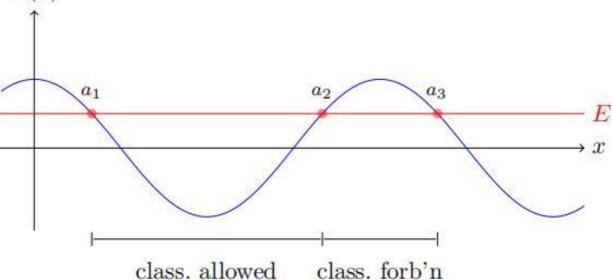
$$V_A = e^{2\pi i \frac{t(E,\hbar)}{\hbar}}, \qquad V_B = e^{-\frac{t_D(E,\hbar)}{\hbar}}$$

$$V_{R} = e^{-\frac{t_{D}(E,\hbar)}{\hbar}}$$

$$V(x)$$

and

$$t = \frac{1}{\pi} \int_{a_1}^{a_2} P_{odd}(x, \hbar) dx$$
$$t_D = -2i \int_{a_2}^{a_3} P_{odd}(x, \hbar) dx$$



Review of cosine potential model

- $t = \left(N + \frac{1}{2}\right)\hbar$ solves the perturbative quantization condition $1 + V_A^{\mp} = 0$
- In order to solve the exact quantization condition

$$1 + V_A^{\mp} (1 + V_B) - 2 \sqrt{V_A^{\mp} V_B} \cos \theta = 0,$$

we have to promote the period to instanton *trans-series*

$$\hat{t} = t + \Delta t$$

• Δt satisfies the implicit equation

$$\Delta t = \mp \frac{\hbar}{\pi} \log \left(\pm i \cos \theta \, \lambda(t + \Delta t) + \sqrt{1 + \sin^2 \theta \, \lambda^2(t + \Delta t)} \right)$$

with
$$\lambda = V_B^{1/2} = e^{-\frac{t_D(E(t),\hbar)}{2\hbar}}$$

Van Spaendonck-Vonk universal trans-series structure

• From the implicit EQC, the full trans-series can be determined by the Lagrange inversion thm [van Spanendonck, Vonk' 23]

$$\hat{E}(N,\hbar) = E^{(0)}(N,\hbar) + \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} u_{n,m}(\theta,\epsilon) E^{(n,m)}(N,\hbar)$$

with

$$E^{(n,m)}(N,\hbar) = \left(\frac{\partial}{\partial N}\right)^m \left(\frac{\partial E^{(0)}}{\partial N}e^{-n\frac{t_D}{2\hbar}}\right)$$
$$u_{n,m}(\theta,\epsilon) = \frac{1}{n!}B_{n,m+1}(1!\,r_1,2!\,r_2,\ldots,(n-m)!\,r_{n-m})$$

where r_i is the series coefficient of Δt in terms of λ

Van Spaendonck-Vonk universal trans-series structure

• From the implicit EQC, the full trans-series can be determined by the Lagrange inversion thm [van $\underset{\infty}{\text{Spanendonck}}$, Vonk' 23]

$$\hat{E}(N,\hbar) = E^{(0)}(N,\hbar) + \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} u_{n,m}(\theta,\epsilon) E^{(n,m)}(N,\hbar)$$

with

$$E^{(n,m)}(N,\hbar) = \left(\frac{\partial}{\partial N}\right)^m \left(\frac{\partial E^{(0)}}{\partial N}e^{-n\frac{t_D}{2\hbar}}\right)$$
$$u_{n,m}(\theta,\epsilon) = \frac{1}{n!}B_{n,m+1}(1!\,r_1,2!\,r_2,\ldots,(n-m)!\,r_{n-m})$$

where r_i is the series coefficient of Δt in terms of λ

 Turns out to be universal for a wide class of 1d QM models (been tested for cubic potential, double well model and cosine potential model)

Van Spaendonck-Vonk universal trans-series structure

The minimal trans-series can be determined by the DDP formula

[Delabaere, Dillinger, Pham' 97] $_{\infty}$ $_{n-1}$

$$\widehat{E}_{min}(\hbar, \sigma; N) = E^{(0)}(N, \hbar) + \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} v_{n,m}(\theta, \sigma) E^{(2n,m)}(\hbar; N)$$

with

$$E^{(n,m)}(N,\hbar) = \left(\frac{\partial}{\partial N}\right)^m \left(\frac{\partial E^{(0)}}{\partial N} e^{-n\frac{t_D}{2\hbar}}\right)$$
$$v_{n,m}(\theta,\sigma) = \frac{\sigma^{m+1}}{n!} B_{n,m+1}(1! s_1, 2! s_2, \dots, (n-m)! s_{n-m})$$

where

$$s_j = \frac{1}{2\pi i} \frac{(-1)^j}{j}$$

• The energy at van Hove singularity for $\phi = 2\pi/Q$ match with Borel resumed minimal trans-series

$$E^{VHS}(\phi = 2\pi/Q) = \mathcal{S}_0^{(\pm)} E_{min}(\hbar = -\phi, \sigma = \mp 2)$$

Van Spaendonck-Vonk universal trans-series structure

• The full trans-series can be factorized into minimal trans-series and medium trans-series [van Spanendonck, Vonk' 23]

Full transseries \simeq minimal transseries \otimes medium transseires

 for energy trans-series, this tensor factorization is manifested as

$$\widehat{E}(N,\hbar) = E_{\min}(N,\hbar,\sigma) + \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} w_{n,m}(\theta) E_{\min}^{(n,m)}(N,\hbar,\sigma)$$

where $w_{n,m}(\theta)$ are the trans-series coefficients for medium trans-series

Reverse engineering the exact WKB QC for Harper-Hofstadter model

 The WKB QC for 5d SW curve/Harper-Hofstadter model is difficult to derive. For example, it's hard to generalize the success of the ODE/IM correspondence [Dorey, Tateo' 98 ..., Ito, Mariño, Shu' 18] to systems governed by difference equations. Nevertheless, we can still numerically extract the trans-series coefficients from the Hofstadter's butterfly for certain values of the flux

• For $E^{(0)}(\phi, N)$, the BW algorithm is sufficient to extrapolate to $O(\phi^{200})$. For the computation of t_D , we have to rely on refined holomorphic anomaly equation [BCOV 93, Huang, Klemm' 10, Krefl, Walcher' 10]

Holomorphic Anomaly Equations

- The holomorphic anomaly equations are useful tools of calculating quantum free energy $F_{NS}(t_c;\hbar) \coloneqq \sum_n F_n(t_c)\hbar^{2n}$ and the dual period recursively.
- Refined HAE in NS limit for genus-1 curves simplifies to

$$\frac{\partial F_n}{\partial S} = -\frac{1}{2} \sum_{r=1}^{n-1} D_{t_c} F_r D_{t_c} F_{n-r}$$

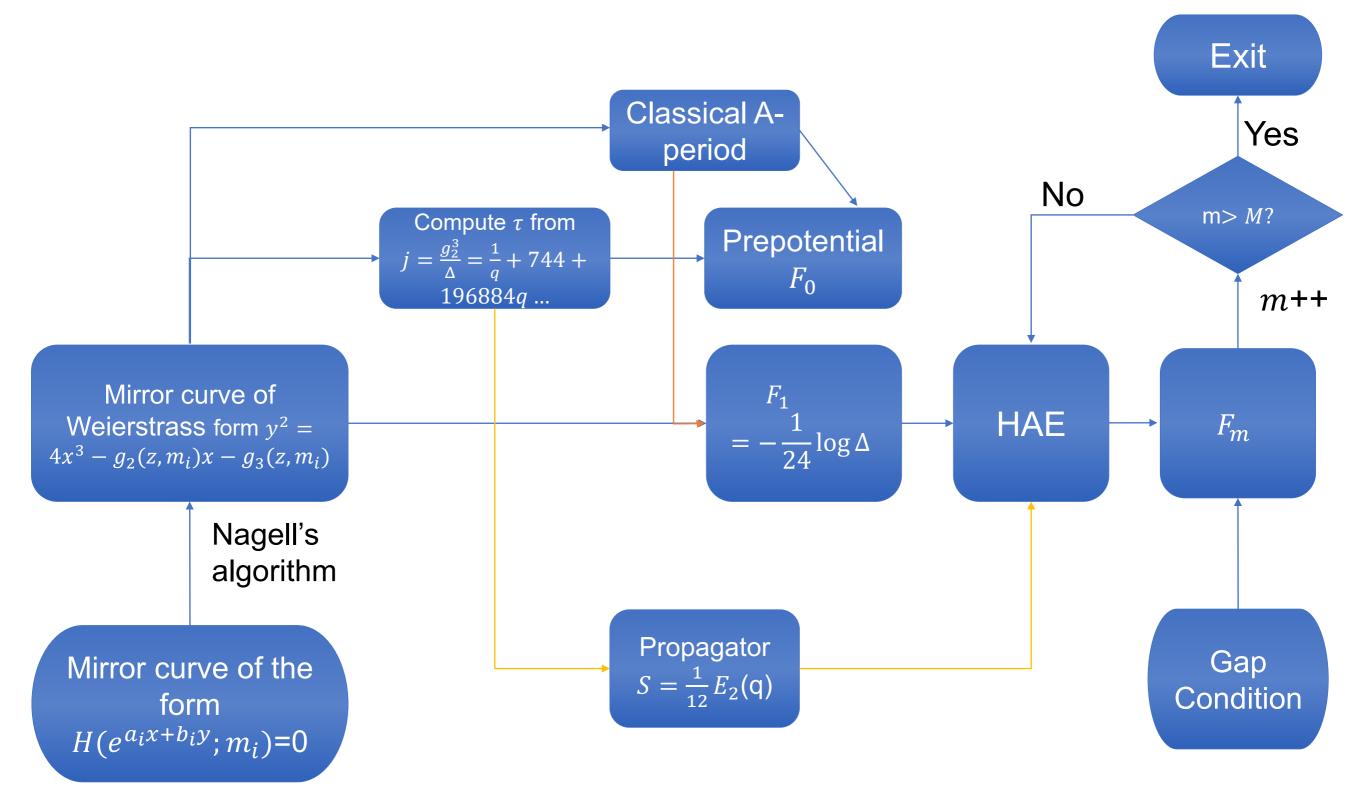
• The algorithm should be implemented by the first level of NS free energy, which for local F_0 is simply

$$F_1 = -\frac{1}{24} \log \Delta$$

The integration constants are fixed by

$$F_n^{sing}(t_c) = \frac{(1 - 2^{1-2n})B_{2n}}{(2n)(2n-1)(2n-2)t_c^{2n-2}}, \qquad n \ge 2$$

Algorithm of calculating F_m up to order M



- With the series expansion of $E^{(0)}$ and t_D ready, we are ready to extract the trans-series coefficients by comparing the spectrum at flux $\phi = \frac{2\pi P}{Q}$, with $\gcd(P,Q) = 1$
- For $\phi = \frac{2\pi}{Q}$, we find the first few coefficients up to 6-instanton orders [Gu, ZX' 24]

m	0	1	2
$W_{1,m}$	$\frac{\Theta}{\pi}$		
$W_{2,m}$	0	$\frac{\Theta^2}{2\pi^2}$	
$W_{3,m}$	$-\frac{\Theta}{\pi} + \frac{\Theta^3}{6\pi}$	0	$\frac{\Theta^3}{6\pi^3}$

with
$$\Theta = (-1)^{N+1} (\cos \theta_{\chi} + \cos \theta_{\nu})$$

- With the series expansion of $E^{(0)}$ and t_D ready, we are ready to extract the trans-series coefficients by comparing the spectrum at flux $\phi = \frac{2\pi P}{Q}$, with $\gcd(P,Q) = 1$
- For $\phi = \frac{2\pi}{Q}$, we find the first few coefficients up to 6-instanton orders [Gu, ZX' 24]

m	0	1	2
$u_{1,m}$	$\frac{\Theta}{\pi}$		
$u_{2,m}$	$\frac{\mathrm{i}\epsilon}{\pi}$	$\frac{\Theta^2}{2\pi^2}$	
$u_{3,m}$	$-\frac{\Theta}{\pi} + \frac{\Theta^3}{6\pi}$	$\frac{\mathrm{i}\epsilon\Theta}{\pi^2}$	$\frac{\Theta^3}{6\pi^3}$

with
$$\Theta = (-1)^{N+1} (\cos \theta_{\chi} + \cos \theta_{\nu})$$

We conjectured a formula for all coefficients

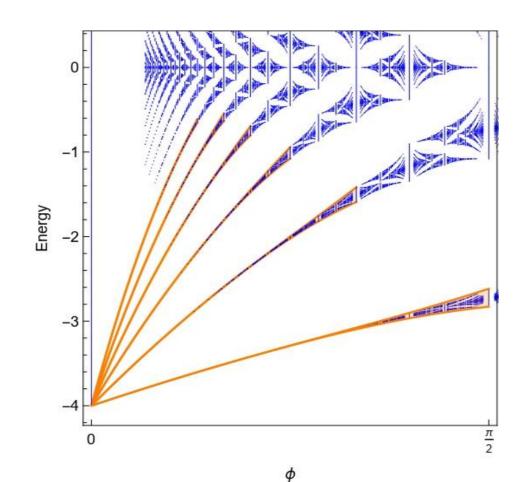
$$u_{n,m}(\theta_{x,y},\epsilon) = \frac{1}{n!} B_{n,m+1}(1! r_1, 2! r_2, ..., (n-m)! r_{n-m})$$

$$\sum_{j\geq 1} r_j \lambda^j = \frac{i}{\epsilon \pi} \log \left(\sqrt{1 + (2 - \Theta^2) \lambda^2 + \lambda^4} - i \epsilon \Theta \lambda \right)$$

We conjectured a formula for all coefficients

$$w_{n,m}(\theta_{x,y}) = \frac{1}{n!} B_{n,m+1}(1! t_1, 2! t_2, ..., (n-m)! t_{n-m})$$
$$t_i = \frac{1}{\pi} [\lambda^i] \arcsin \frac{\Theta}{\lambda + \lambda^{-1}}$$

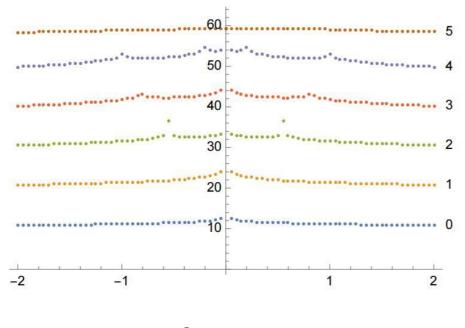
veins of the butterfly and resummed instanton trans-series

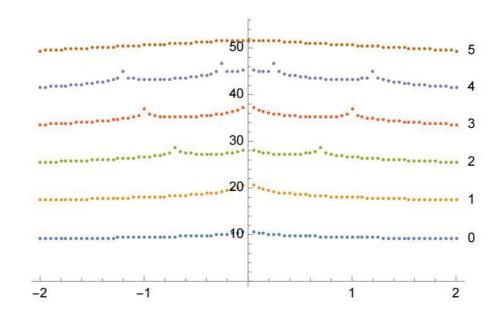


We conjectured a formula for all coefficients

$$w_{n,m}(\theta_{x,y}) = \frac{1}{n!} B_{n,m+1}(1! t_1, 2! t_2, ..., (n-m)! t_{n-m})$$
$$t_i = \frac{1}{\pi} [\lambda^i] \arcsin \frac{\Theta}{\lambda + \lambda^{-1}}$$

of matching digits between exact spectrum and resummed instanton trans-series





$$=\frac{2\pi}{23},\qquad N=0$$

The implied EQC from the generating series

$$D_{\pm}: 1 + V_A^{\mp} (1 + V_B)^2 - 2\sqrt{V_A^{\mp} V_B}\Theta = 0$$

and the two lateral conditions are related by the Stokes automorphism

$$\mathfrak{S}_0 D_+ = D_-$$

which is a consequence of

$$\mathfrak{S}_0 V_A = V_A (1 + V_B)^4$$

The implied EQC from the generating series

$$D_{\pm}: 1 + V_A^{\mp} (1 + V_B)^2 - 2\sqrt{V_A^{\mp} V_B \Theta} = 0$$

and the two lateral conditions are related by the Stokes

automorphism

$$\mathfrak{S}_0 D_+ = D_-$$

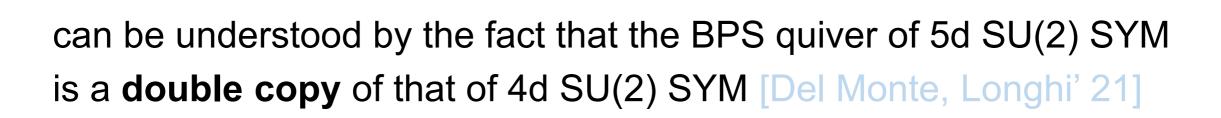
which is a consequence of

$$\mathfrak{S}_0 V_A = V_A (1 + V_B)^4$$

Comparison with 4d case

$$D_{\pm}: 1 + V_A^{\mp}(1 + V_B) - 2\sqrt{V_A^{\mp}V_B}\cos\theta = 0$$

$$\mathfrak{S}_0 V_A = V_A(1 + V_B)^2$$



The implied EQC from the generating series

$$D_{\pm}: 1 + V_A^{\mp} (1 + V_B)^2 - 2\sqrt{V_A^{\mp} V_B} \Theta = 0$$

and the two lateral conditions are related by the Stokes automorphism

$$\mathfrak{S}_0 D_+ = D_-$$

which is a consequence of

$$\mathfrak{S}_0 V_A = V_A (1 + V_B)^4$$

Consistent with the resurgence/BPS dictionary

$$\mathfrak{S}_0 V_A = V_A (1 + V_B)^{\langle \gamma_A, \gamma_B \rangle \Omega_B}$$

with

$$\gamma_A = (0,1,0), \gamma_B = (2,0,0)$$

The implied EQC from the generating series

$$D_{\pm}$$
: $1 + V_A^{\mp} (1 + V_B)^2 - 2 \sqrt{V_A^{\mp} V_B} \Theta = 0$

and the two lateral conditions are related by the Stokes automorphism

$$\mathfrak{S}_0 D_+ = D_-$$

which is a consequence of

$$\mathfrak{S}_0 V_A = V_A (1 + V_B)^4$$

The medium QC looks more symmetric for 5d

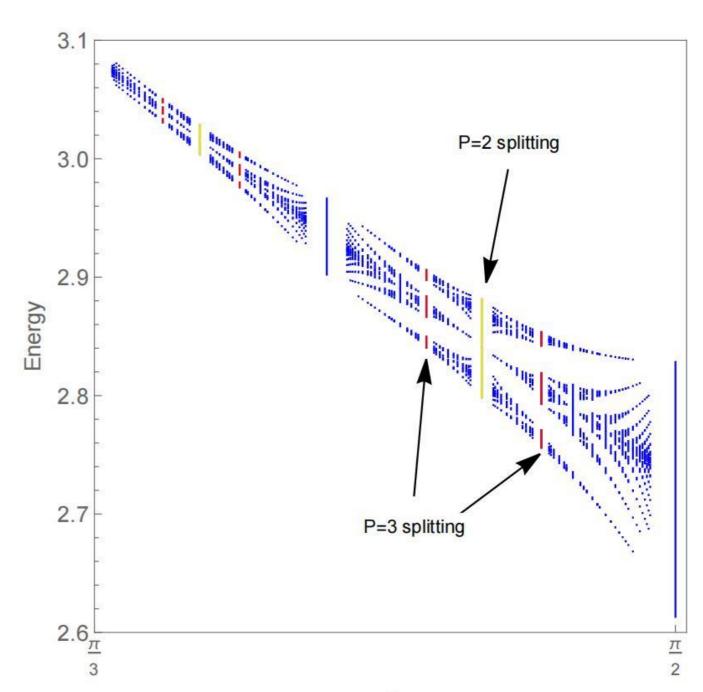
$$D_{med}$$
: $(1 + V_A)(1 + V_B) - 2\sqrt{V_A V_B}\Theta = 0$

which can be obtained by acting on the full QC by "half" Stokes automorphism

$$\mathfrak{S}_0^{\pm 1/2} D_{\pm} = D_{med}$$

Splitting band phenomenon

- For P>1, the trans-series coefficients are much more complicated
- Within each primary Landau level, there are P subbands
- For $\phi=2\pi\frac{P}{Q}$, we found self-similarity relation with $\tilde{\phi}=2\pi\frac{Q}{P}\ mod\ 2\pi\ @$ 1-instanton order [Gu, ZX' 24]



• One can avoid dealing with splitting bands by identifying the proper expansion base point for $\alpha = \frac{\Phi}{2\pi}$ rational

- One can avoid dealing with splitting bands by identifying the proper expansion base point for $\alpha = \frac{\Phi}{2\pi}$ rational
- For any $\alpha \in \mathbb{Q}$, we can express it in terms of the continued fraction

$$\alpha = n_0 + \frac{1}{n_1 + \frac{1}{n_2 + \cdots + \frac{1}{n_l}}}$$

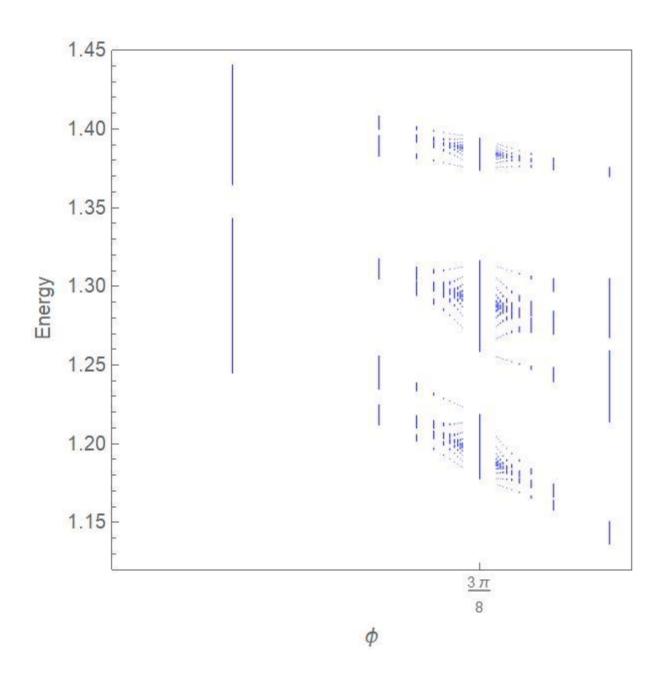
and denote it by $[n_0, n_1, n_2, ..., n_l]$. Here we require $n_i \in \mathbb{Z}$ and $|n_i| \geq 2$.

- One can avoid dealing with splitting bands by identifying the proper expansion base point for $\alpha = \frac{\Phi}{2\pi}$ rational
- For any $\alpha \in \mathbb{Q}$, we can express it in terms of the continued fraction

$$\alpha = n_0 + \frac{1}{n_1 + \frac{1}{n_2 + \cdots + \frac{1}{n_l}}}$$

and denote it by $[n_0, n_1, n_2, ..., n_l]$. Here we require $n_i \in \mathbb{Z}$ and $|n_i| \geq 2$.

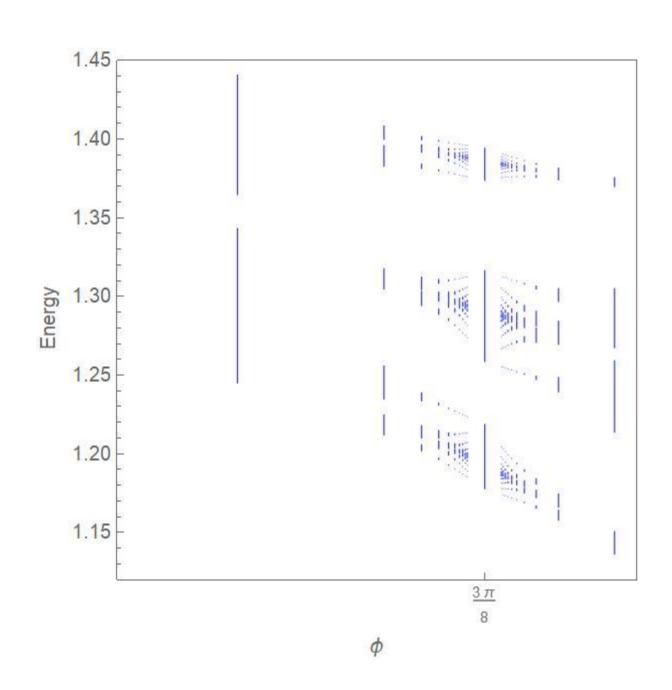
• For the bands at $[n_0, n_1, n_2, ..., n_l]$, their proper expansion base point should be $[n_0, n_1, n_2, ..., n_{l-1}]$.



 The perturbative expansion near general α was worked out by [Wilkinson' 84, Rammal,

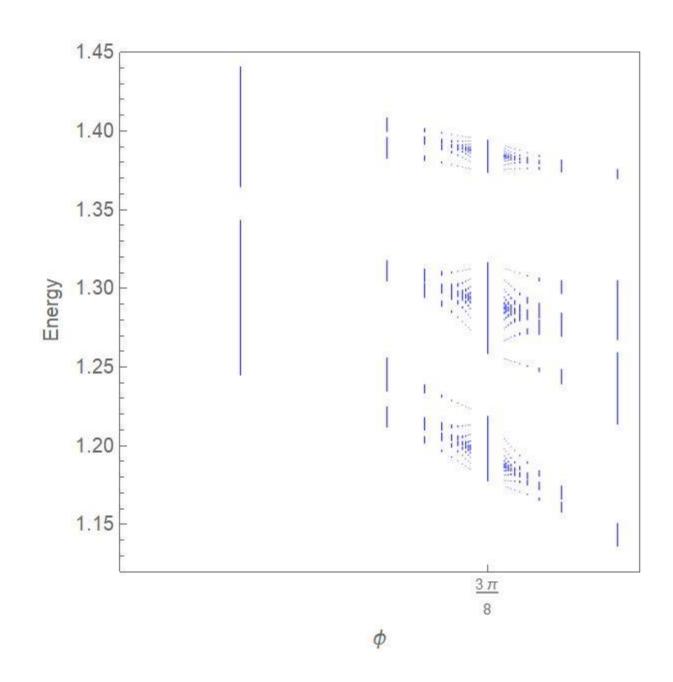
Bellisard' 90]

Bands for $\alpha = [0,5,3, n_3]$ near $\alpha_0 = [0,5,3]$



- The perturbative expansion near general α was worked out by [Wilkinson' 84, Rammal, Bellisard' 90], but only to the first order
- By numerical fitting using Richardson extrapolation, we are able to calculate the perturbative expansion near $\alpha_0 = \frac{1}{2} = [0,2]$ and $\alpha_0 = \frac{1}{3} = [0,3]$ up to the second order

Bands for $\alpha = [0,5,3, n_3]$ near $\alpha_0 = [0,5,3]$



Bands for $\alpha = [0,5,3, n_3]$ near $\alpha_0 = [0,5,3]$

- The perturbative expansion near general α was worked out by [Wilkinson' 84, Rammal, Bellisard' 90], but only to the first order
- By numerical fitting using Richardson extrapolation, we are able to calculate the perturbative expansion near $\alpha_0 = \frac{1}{2} = [0,2]$ and $\alpha_0 = \frac{1}{3} = [0,3]$ up to the second order
- Need to find a way to calculate those expansions systematically (Generalized Bender-Wu?)

• Local \mathbb{P}^2 geometry is the vacuum manifold of the GLSM with the scalar potential

$$U \supset \frac{e^2}{2} (|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 - 3|\phi_0|^2 - r)^2$$

• Local \mathbb{P}^2 geometry is the vacuum manifold of the GLSM with the scalar potential

$$U \supset \frac{e^2}{2} (|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 - 3|\phi_0|^2 - r)^2$$

 Under local mirror symmetry [CKYZ 99, Hori, Vafa' 00], the twisted superpotential subject to the constraint on twisted chiral superfields would give us the mirror curve

$$H = e^{x} + e^{y} + e^{-x-y}$$
 $(m = 1)$

• Local \mathbb{P}^2 geometry is the vacuum manifold of the GLSM with the scalar potential

$$U \supset \frac{e^2}{2} (|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 - 3|\phi_0|^2 - r)^2$$

 Under local mirror symmetry [CKYZ 99, Hori, Vafa' 00], the twisted superpotential subject to the constraint on twisted chiral superfields would give us the mirror curve

$$H = e^{x} + e^{y} + e^{-x-y}$$
 $(m = 1)$

 We are interested in the spectral problem of taking imaginary slices of the curve and study the quantized curve, i.e.

$$H = e^{ix} + e^{iy} + e^{-ix-iy}$$

with

$$[\mathbf{x},\mathbf{y}]=i\phi$$

The resulting difference equation

$$e^{ix}\psi(x) + \psi(x+\phi) + q^{\frac{1}{2}}e^{-ix}\psi(x-\phi) = E\psi(x)$$

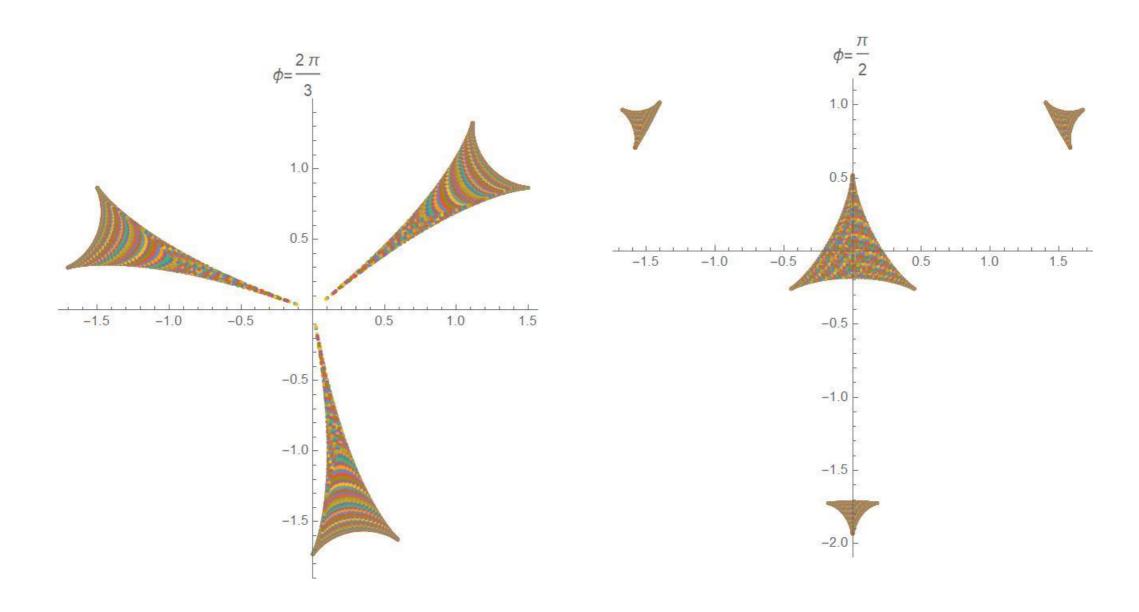
can be simplified into the form

$$\psi(x+\phi) + 2\cos x \,\psi\left(x - \frac{\phi}{2}\right) = E\psi(x)$$

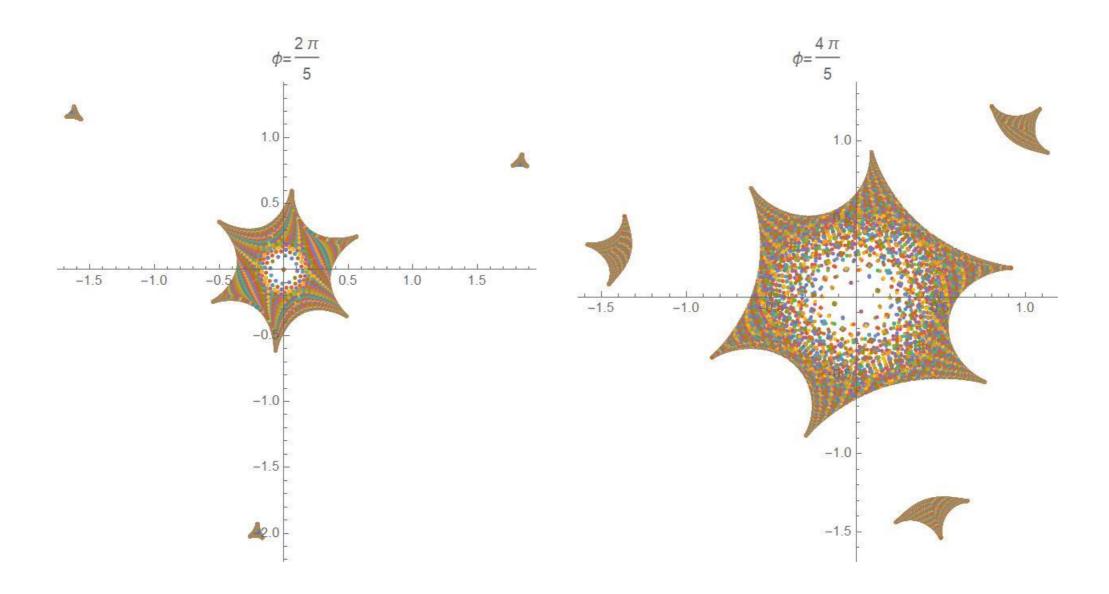
• For $\phi = 2\pi \frac{P}{Q}$, P, $Q \in \mathbb{Z}$, (P,Q) = 1, the secular equation

$$\det\begin{pmatrix} e^{i\theta_x}T_1-E&e^{i\theta_y}&0&\dots&q^{1/2}e^{-i\theta_x-i\theta_y}T_{-1}\\q^{1/2}e^{-i\theta_x-i\theta_y}T_{-2}&e^{i\theta_x}T_2-E&e^{i\theta_y}&\dots&0\\0&q^{1/2}e^{-i\theta_x-i\theta_y}T_{-3}&\ddots&\ddots&\vdots\\\vdots&\ddots&\ddots&\ddots&e^{i\theta_y}\\e^{i\theta_y}&0&0&q^{1/2}e^{-i\theta_x-i\theta_y}T_{-Q}&e^{i\theta_x}T_Q-E\end{pmatrix}=0$$
 with T_j : $=e^{ij\phi}$

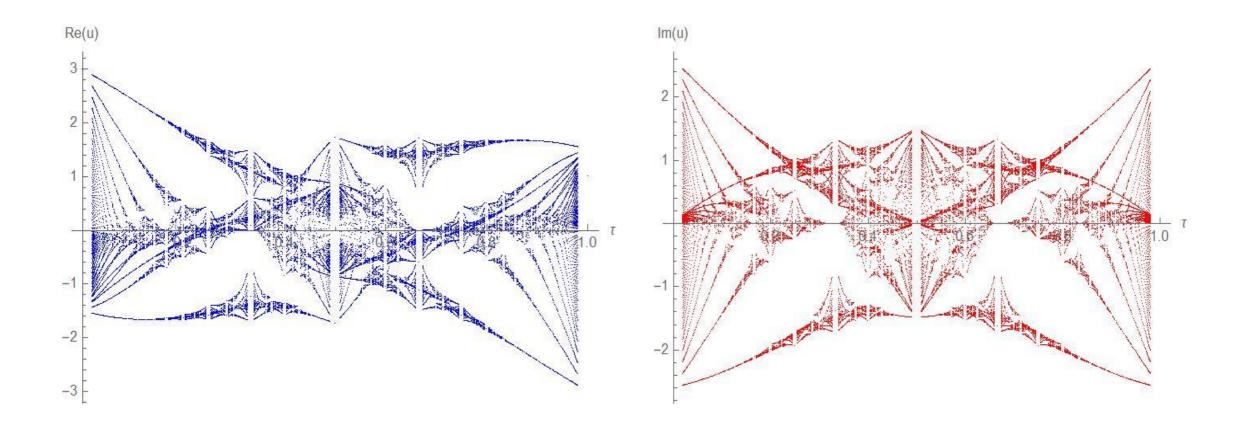
• The spectrum determined from the secular equation is complex and exhibits \mathbb{Z}_3 symmetry, energy bands become "energy blocks"



• The spectrum determined from the secular equation is complex and exhibits \mathbb{Z}_3 symmetry, energy bands become "energy blocks"

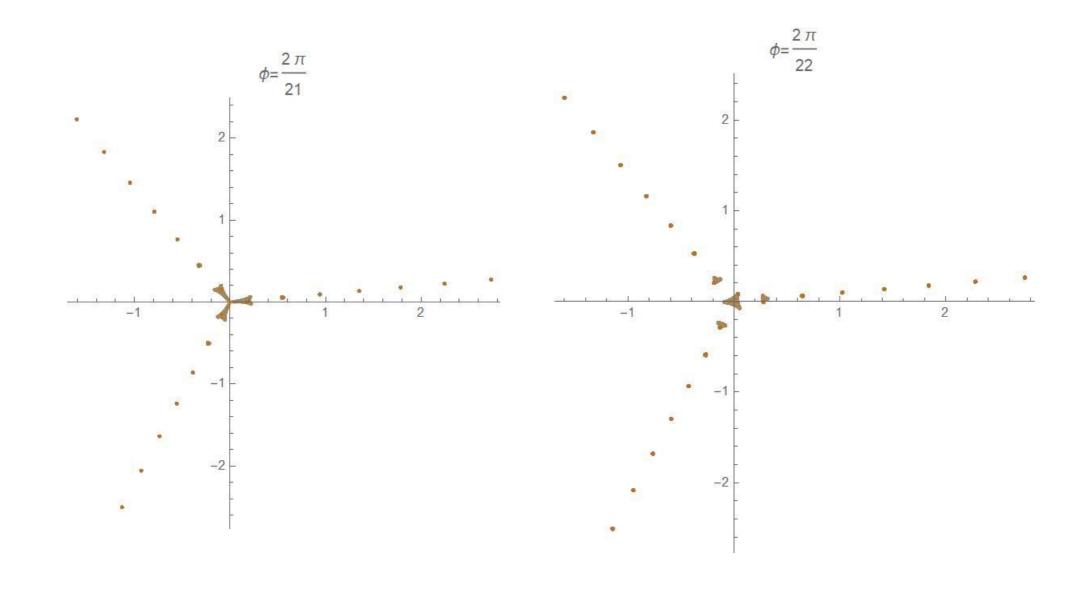


• The spectrum has the symmetry ${\rm Re}(u) \to -{\rm Re}(u)$, ${\rm Im}(u) \to {\rm Im}(u)$ under $\phi \to 2\pi - \phi$



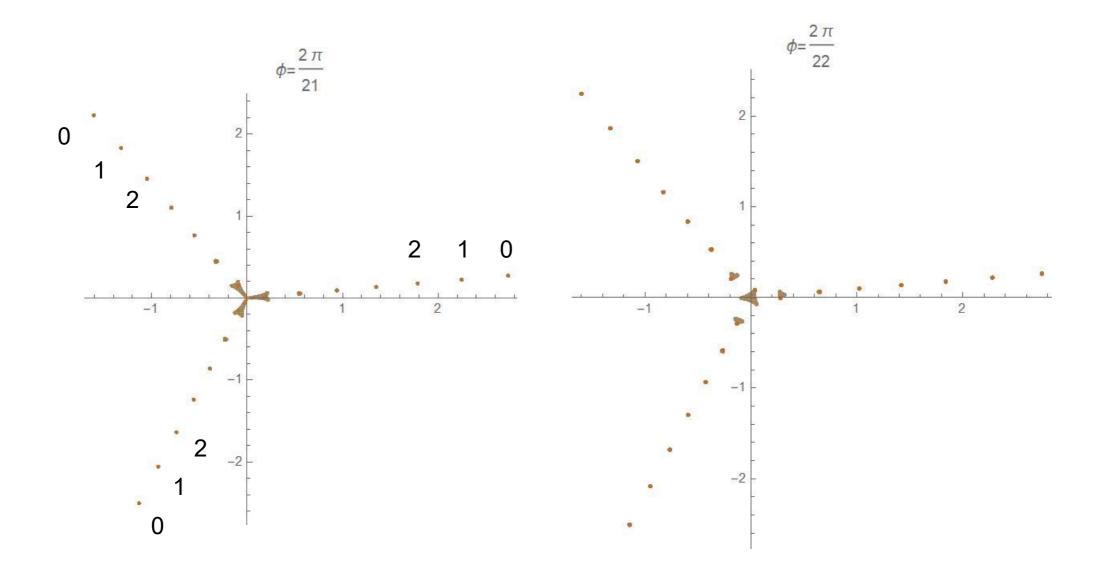
Spectrum of local \mathbb{P}^2 model

 Near the semiclassical regime, Landau levels start to emerge, and each level comes as a triplet



Spectrum of local \mathbb{P}^2 model

 Near the semiclassical regime, Landau levels start to emerge, and each level comes as a triplet



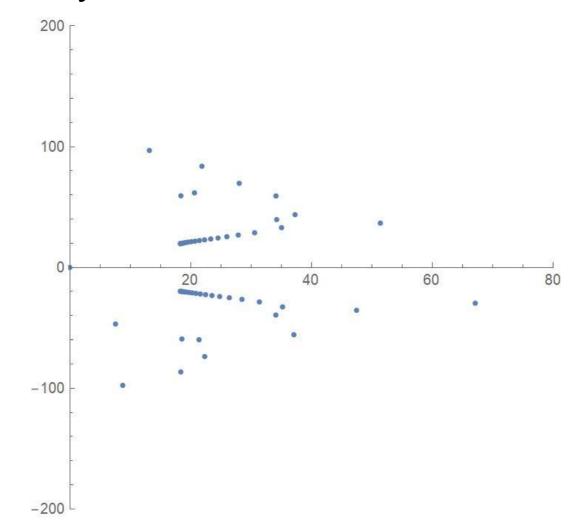
The perturbative series is given by

$$E^{(0)}(\phi; N) = e^{\frac{i\phi}{3}} (3 - \sqrt{3} \left(N + \frac{1}{2} \right) \phi + \cdots)$$

The perturbative series is given by

$$E^{(0)}(\phi; N) = e^{\frac{i\phi}{3}} (3 - \sqrt{3} \left(N + \frac{1}{2} \right) \phi + \cdots)$$

 This series is Borel summable therefore we expect the full transseries is given by the median trans-series



• Use the van Spaendonck-Vonk trans-series structure as an ansatz for numerical fitting, we find for $\phi = 2\pi/Q$

$$E^{(1)}(\phi;N) = \frac{\Theta}{\pi} \frac{\partial E^{(0)}}{\partial N} e^{-\frac{\sqrt{3}t_c^D}{\phi}}$$

$$E^{(2)}(\phi;N) = \frac{\Theta^2}{2\pi^2} \frac{\partial}{\partial N} \left(\frac{\partial E^{(0)}}{\partial N} e^{-\frac{2\sqrt{3}t_c^D}{\phi}} \right)$$

$$E^{(3)}(\phi;N) = \frac{\Theta^3}{6\pi^3} \frac{\partial^2}{\partial N^2} \left(\frac{\partial E^{(0)}}{\partial N} e^{-\frac{3\sqrt{3}t_c^D}{\phi}} \right) + \left(\frac{\Theta^3}{6\pi} - \frac{1}{2\pi} \right) \frac{\partial E^{(0)}}{\partial N} e^{-\frac{3\sqrt{3}t_c^D}{\phi}}$$

where

$$\Theta = (-1)^{N+1} \frac{e^{i\theta_x} + e^{i\theta_y} + (-1)^Q e^{-i\theta_x - i\theta_y}}{2}$$

$$t_c^D(\phi; N) = 2\sqrt{3}\operatorname{Im}\left(\operatorname{Li}_2 e^{\frac{i\pi}{3}}\right) + \left(N + \frac{1}{2}\right)\phi \log \phi + \cdots$$

work in progress for the WKB quantization condition

Open Questions

- Can we find useful tools to obtain the EWKBQC systematically for general SW curves for 5d gauge theories?
- Obtain the exact Wilkinson-Rammal formula from the corresponding EQC
- Further test the universality of van Spaendonck-Vonk transseries structure on other quantum mechanical systems. How does the situation change for the cases where n-parameter trans-series show up?
- Is there other examples of Gevrey-1 series encountered in QM and QFT whose full trans-series structure cannot be determined by resurgence theory alone? If so, what's the extra input needed that goes beyond the minimal transseries?

