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irrelevant interaction

We need to reduce dim h to O
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relevant deformations

marginal

interaction

Scalingg x — b 'x , t—b't, h—h |dimh =0

IR dynamics is determined by terms with 2 derivatives

But higher time derivatives = ghosts
1 1 [ 1 1

- . loss of
Mzp% —p* M3z [p? p?-— MI%] unitarity

(o h) =



The idea:
to get dim /1 = 0 due to higher space derivatives,
keeping the e.o.m. second order in time

» no ghosts



Anisotropic scaling: Lifshitz scalar

<2 z
_ 3. (¥ P(—A)%p B
S — / dt P ( e V(gp))

x—blx, t—b7t, @b
=3 do ¥ is dimensionless

Example: renormalizable 905 interaction

dwd®p ¢ [ d°p
™~ 2 6 /Af4\2 M, | —5
>C < (w2 — pb /M) )




The most general renormalizable action includes
all terms of dum < 0

NB.The number of possible terms can be limited by
symmetries
Example: the shift symmetry

Second order in time derivatives s> no ghosts

“relativistic” dispersion relation

02(0) =c > w? = c*p”in IR



Horava gravity |

Split coordinates in space and time:
ADM decomposition of the metric (in GR -- a gauge choice)

ds® = (N* — N;N")dt* — 2N;dtdz" — %-jda:id:cj

Think of the splitting as physical

{ spacetime =
Lorentzian manifold
equipped with folitation
by spacelike surfaces
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e FDiffs (maximally allowed)

e Restricted FDiffs

Due to reduced gauge symmetry extra d.o.f. compared
to GR - “scalar graviton”

check for the absence
of pathologies



VARIATIONS

Field content
® “projectable™ (compatible with FDiffs)

problematic: scalar graviton develops instability
at finite spatial momenta

Existence of inhomogeneous vacuum ??

® “non-projectable’:



VARIATIONS

Field content

® “non-projectable”: NV = N(,x)



Extended non-projectable HL gravity

Not to overlook: A new object covariant under FDiffs
a; = N"'O;N

The potential must be extended by the terms with a;

dima; =1 o
V][ :V[ — Ozaiai
-+ ]\4*_2 (ClaiAai -+ Cg(aiai)z -+ CgCLZ'CLjRij -+ .. )
+ M4 (DlaiAQal + Dy(a;a)® + DgaiaiajakRjk + .. )



Scalar mode has a healthy dispersion relation:
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Inconvenient to analyse the UV structure (where deviations
from GR are strong)

o introduce
a field o(x,1)
to parametrize
the foliation
surfaces

ADM formulation = the gauge  — o

a> O sets global time KHRONON



Constructing KHRONO-METRIC action

¢ Time reparameterizations in ADM frame

g symmetry 0 — 0 = [(0)

Invariant object -- unit norngal to the foliation surfaces:
. pn9

Y= Jo0)?

® |ow-energy limit = Lagrangian with lowest number of
derivatives

M2
Snm= —TP /d4$\/—g{(4)}3 + BV u, VVul

+ X (V, u)? + autu”V u,V,uf

cf. with Einstein-aether theory (Jacobson & Mattingly,
2001):a LV theory of a unit vector



Alternative way:

identify covariant objects in the ADM frame

Yij P,uv — Guv — Uy Uy, Kz'j = K,ul/ — P:\VAUI/
a; — a, =u'Vyu, , etc.

P2 Sy = Sin_.m + higher derivatives

/

N=XA-1-8



No-ghost theorem

Action contains higher derivatives

1 VHPoVVo
pN2 (o —
Vi)™= G2 |77~ (a0)2

2

V,V,o

No problem: there is a preferred frame where e.o.m.
are second order in time

Theorem Consider linear perturbations

In the frame where background is in ADM gauge,

e.o.m. for X is second order in time



Around Minkowski background

Skh = MTI% /d4ﬂf [04(3@'5()2 — (B + X)(AX)Q]

o Alax — (B+N)Ax| =0

NB.The r.h.s. does not vanish when khronon is
coupled to sources

* Instantaneous interaction



Towards phenomenology: coupling to matter

Experimental fact: matter sector is Lorentz invariant
at low energies

>direct coupling of the khronon to SM fields is
forbidden

a mechanism to suppress these couplings is
required, see below



Observational constraints

Exploit known bounds for Einstein - aether (beware: in our
case there are no helicity-1 modes)

e Absence of gravitational Cherenkov losses by UHECR

s _ R

® Newton law vs Friedman equation
1 1

Gy = Gcosm —
Y STME(1 — a/2) 7 8TMZ(1+ /24 3N /2)
H2 — 8?ﬂ-cycosw@p
BBN bound:

Goosm/CGn — 1] < 0.13

-



PPN parameters

Spherically symmetric solutions the same as in
Einstein-aether

.

all PPN parameters the same as in GR

except ,

A/_/

measure preferred
frame effects



Definition of a7 5

Solar system bounds:

ag 7Y 107

)

PPN

o N 107



oy = —4(a —20)

PPN _ (a—28)(a— XN —30)
’ 2(\ + )

e vanish if & = 2/J (hidden symmetry ?)

° ozgpNvanishes when 7 =0, \' = a (¢, = ¢, = 1)

® barring cancellations

a, B, N <1007=107°



Upper bound on the scale of quantum gravity
Khrono-metric theory -- a sigma model with the scale
M ~ Mp+v/a ~ 10°GeV

would enter into strong coupling unless cut off by higher

derivatives A
11-----=-=-=--- n==-=---

UPPER bound: M, <10'° = 10'°GeV

NB. Lower bound can be taken from the constraints on UV
modifications of photon dispersion relation: /. —~ 10" GeV

mY
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Lorentz invariance from supersymmetry
Bolokhov, Nibbelink, Pospelov (2005)

Given SUSY, Lorentz invariance emerges as accidental
symmetry at low energies

It is impossible to write any LV operator in MSSM of
dim < 5

Dim 5 operators are CPT odd =B can be forbidden
> LV starts from dim 6

SUSY breaking generates dim 4 LV operators

suppressed by ( /M ) .
Mso ft *
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LI from SUSY: example of SQED

e SUSY algebra without boosts is closed:
[Qom Qéz]+ — Zo-gdpﬂ

Enough to generate superspace

o field content: ¢ . & I/

Kahler potential: /d49 e’V o, - no Lorentz indices

dim W, = 3/2

superpotentiaM - antisymmetric in ., [J
M - not gauge invariant



Prospects for cosmology

Can we address the dark energy /

cosmological constant problem ?




Yes! Add a scalar with shift symmetry
with dim 2 coupling to the khronon

102

/

stable under RC: breaks ® — —®

81G [ ®?
H2: ma
o > : (2 v t)
d

o (@3@ + uz)) =0 o

NB.There is a Minkowski solution p,,,; =0, ® =0
unstable = “self-acceleration”

Observational signatures: growth of perturbations ?
DE-DM interaction !



CONCLUSIONS

3% Extended non-projectable Horava--Lifshitz model provides
a power counting renormalizable setup for quantum gravity
without obvious pathologies

2K lts low-energy limit is described by the khrono-metric
model: a theory of GR interacting with a scalar having
time-dependent VEV

2% The model possesses predictive power and leads to
interesting phenomenology. Existing data constrain the
parameters of the model but do not rule it out

x A simple modification of the model provides a technically
natural explanation of dark energy giving rise to self-
accelerated cosmology



OUTLOOK

Actual proof of renormalizability. Complications: gauge
invariance, instantaneous modes

Emergence of Lorentz invariance at low energies

Constraints from strongly bound gravitational systems
(binary pulsars, black holes)

Implications for CMB and LSS
Phenomenology of instantaneous interaction

Inflation



