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0 Introduction
@ Importance of Supernovae
@ Type la SNe as Distance Indicators

@ First CSP Sample of Type la SNe
@ Light Curve Analysis
@ Color Analysis

e Distance Measurement Precision
@ Host-Galaxy Reddening
@ SNe la as Standardized Candles
@ SNe la as Standard Candles in the NIR
@ Hubble Diagram
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Importance of Supernovae

Astrophysical relevance
@ Death of a star — Stellar evolution

@ Chemical enrichment of the ISM
@ Energetics of the ISM — Trigger of star formation
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Importance of Supernovae

Astrophysical relevance
@ Death of a star — Stellar evolution

@ Chemical enrichment of the ISM
@ Energetics of the ISM — Trigger of star formation

Cosmology

@ Powerful distance indicators (SNe la)
@ Discovery of dark energy

@ Theory still has to explain this

@ What is the equation of state of dark energy?
@ Does it vary with cosmic time?
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Type la SNe as Distance Indicators

@ Standard candle — Luminosity distance

d
F, =

d 2 d2
- (2)

@ Requires an external calibration of the luminosity

G. Folatelli (IPMU) SNe la Distances January 6th 2011



Type la SNe as Distance Indicators

@ Standard candle — Luminosity distance

d
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@ Requires an external calibration of the luminosity
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Type la SNe as Distance Indicators

Physical picture of SNe la
@ Binary system with a CO white dwarf
@ Mass transfer

@ Thermonuclear runaway at Chandrasekhar mass
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Type la SNe as Distance Indicators

Physical picture of SNe la
@ Binary system with a CO white dwarf
@ Mass transfer

@ Thermonuclear runaway at Chandrasekhar mass

Pending questions
@ What is the companion star?

@ What is the explosion mechanism?
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Type la SNe as Distance Indicators

Advantages of SNe la as distance indicators
@ Luminous
@ Ubiquitous
@ Identifiable

@ Homogeneous
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Type la SNe as Distance Indicators

Advantages of SNe la as distance indicators
@ Luminous

@ Ubiquitous
@ |dentifiable
@ Homogeneous

Calibration of SNe la as Standardized Candles

@ Brighter SNe evolve more slowly
@ Mass and distribution of radioactive isotopes
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Luminosity — Decline Rate Relation

@ B-band decline rate, Am;5(B)

0 wider = more luminous
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Luminosity — Decline Rate Relation

@ B- band decllne rate, Amls(B)
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SN la Cosmology

| MLCS17

Hubble diagram

@ Low- and high-z SNe

@ Fit for cosmological i
parameters (Qu, Q) 34f
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Hicken et al. (2009)
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SN la Cosmology

46 F
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Hubble diagram i
@ Low- and high-z SNe R
@ Fit for cosmological ; Z:
parameters (Qu, Q2a) 34f
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Hicken et al. (2009)
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SN la Cosmology

Possible hindrances e

@ Extinction wf o]

@ Evolution / metallicity
@ Photometric calibration
@ K-corrections

@ Gravitational lensing 15 ? |
> L] * cia3 |

Distance Modulus
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Residual

0.01 0.10 1.00
Redshift

Hicken et al. (2009)
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SN la Cosmology

Possible hindrances §
sy |

@ Extinction 4t
@ Evolution / metallicity

@ Photometric calibration
@ K-corrections

@ Gravitational lensing s :—‘ ‘ E
Possible solutions 5

@ Large local sample
@ Multi-band observations
@ Controled photometric system

Distance Modulus
a2

Residual

0.01 0.10 1.00

@ Spectroscopic studies Redshift

Hicken et al. (2009)
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SN la Cosmology

Possible hindrances §
sy |

@ Extinction “p
@ Evolution / metallicity
@ Photometric calibration
@ K-corrections

@ Gravitational lensing s :—‘ ‘ E
Possible solutions 5

@ Large local sample

Distance Modulus
a2

Residual

@ Multi-band observations

@ Controled photometric system

0.01 0.10 1.00

@ Spectroscopic studies Redshift

Hicken et al. (2009)
The Carnegie Supernova

Project
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The Carnegie Supernova Project
(low redshift)

Swope 1-m du Pont 2.5-m Magellan 6.5-m

Between 2004 — 2009 followed:

la_| Il | Iblc
SNe | 130 | 93 | 26
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CSP L|ght Curves (Contreras et al. 2010)

Data set (first release)

@ 35 Type la SNe

@ Well-understood, uniform photometric system
@ Optical: u’g’r’i" and BV

o NIR: YIH(Ks)

@ Excellent coverage and sampling
@ Complemented with spectroscopy (Folatelli et al. in prep.)
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CSP L|ght Curves (Contreras et al. 2010)

Data set (first release)

@ 35 Type la SNe

@ Well-understood, uniform photometric system
@ Optical: u’g’r’i" and BV

o NIR: YIH(Ks)

@ Excellent coverage and sampling
@ Complemented with spectroscopy (Folatelli et al. in prep.)
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CSP L|ght Curves (Contreras et al. 2010)

Background subtraction
@ Images of the host galaxy obtained ~ one year later

@ Alignment, psf matching, flux scaling and subtraction

SN 2004fc in g’

.
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CSP L|ght Curves (Contreras et al. 2010)

Background subtraction
@ Images of the host galaxy obtained ~ one year later
@ Alignment, psf matching, flux scaling and subtraction

@ Significant improvement in signal
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Light-Curve Fits  (rolatelii et al. 2010)

Light curve templates in u'gr'i'BVYJH:

OAHHHHBHHHHHLJHHHH'

5 F

10:
2 12 Light-curve parameters
é 5 @ tmax, Mmax, AM;s5(B)
E* 0 @ Set of template LC’s
P i @ Useful for fitting any
oo other SNe

5 (Burns et al. 2011)

10

15 T T —

bl b bl b b v b L v L 1 g

L L Ll
0 50 100 0 50 100 0 50 100

rest—frame days since B maximum

G. Folatelli (IPMU) SNe la Distances January 6th 2011 9/23



Intrinsic SN Colors

@ Selection of SNe with low reddening

@ SNe in E/SO galaxies or far from S galaxies
@ Absence of interstellar Na | in early-time spectra
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Intrinsic SN Colors

@ Selection of SNe with low reddening
@ SNe in E/SO galaxies or far from S galaxies
@ Absence of interstellar Na | in early-time spectra

@ Uniform late-time evolution Lira (1995) — E(B — V )il

L R B P
—20 0 20 40 60 80 100
rest—frame days since V max
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Intrinsic SN Colors

@ Selection of SNe with low reddening
@ SNe in E/SO galaxies or far from S galaxies
@ Absence of interstellar Na | in early-time spectra

@ Uniform late-time evolution Lira (1995) — E(B — V )il
@ At maximum light — Slight dependence on Am;5(B)

1.5 -

L R B P
—20 0 20 40 60 80 100
rest—frame days since V max
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Color Excesses

Colors at maximum light:
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Color Excesses

Colors at maximum light:
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Color Excesses

E(B — V) at maximum and at tail:
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Extinction Law
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Extinction Law
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Extinction Law

1SE EV; 1 18 @ From optical-NIR colors
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Extinction Law
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Extinction Law

Heavily reddened 4 e
SNe I

@ Two SNe with
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@ Importance of
NIR data

@ Evidence of
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SNe la as Standardized Candles

@ Hubble-flow distances with Hg, Qum, Q4 for SNe with z > 0.01

1

c Q
dL(Z;Ho,QM,Q/\) = H_o |:Z+§ (Q/\ —7M—|-1> 22:|
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SNe la as Standardized Candles

@ Hubble-flow distances with Hg, Qum, Q4 for SNe with z > 0.01

) . C 1 QM 2
dL(Z,Ho,QM,Q/\) = H_o |:Z+§ (Q/\ —7+1> V4 :|
@ Bilinear relation between peak luminosity in any band X,

decline rate Am;5(B), and color excess E(Y — Z)

jix = Mx — Mx (0) — bx[Am35(B) — 1.1] — RY* E(Y — 2)
@ Input data: uy, my, Amys(B) and E(Y — Z) for all SNe
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SNe la as Standardized Candles

@ Hubble-flow distances with Hg, Qum, Q4 for SNe with z > 0.01

) . C 1 QM 2
dL(Z,Ho,QM,Q/\) = H_o |:Z+§ (Q/\ —7+1> V4 :|
@ Bilinear relation between peak luminosity in any band X,

decline rate Am;5(B), and color excess E(Y — Z)

jix = Mx — Mx (0) — bx[Am35(B) — 1.1] — RY* E(Y — 2)
@ Input data: uy, my, Amys(B) and E(Y — Z) for all SNe

® Amy5(B) < 1.7 <— “Normal” SNe la
@ Ry — Ry
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SNe la as Standardized Candles

@ Hubble-flow distances with Hg, Qum, Q4 for SNe with z > 0.01

c 1 Q
dL(Z;Ho,QM,Q/\) = H_o |:Z+§ (Q/\ —7M—|-1> 22:|

@ Bilinear relation between peak luminosity in any band X,
decline rate Am;5(B), and color excess E(Y — Z)

jix = Mx — Mx (0) — bx[Am35(B) — 1.1] — RY* E(Y — 2)
@ Input data: uy, my, Amys(B) and E(Y — Z) for all SNe
® Amy5(B) < 1.7 <— “Normal” SNe la
@ Ry — Ry
@ 2 fit with added instrinsic dispersion ogy

2 YZ (Mx| - Mx
My (0), by, Ry“; E
X ( x( ) X Ry USN) J USN
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SNe la as Standardized Candles
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SNe la as Standardized Candles
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SNe la as Standardized Candles

R0F o e meseon ] Fit Results
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SNe la as Standardized Candles

Contradiction with color escess analysis

@ Ry is small (~ 1-2) even for moderate reddening
@ This was also found before by other SN teams
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SNe la as Standardized Candles

Contradiction with color escess analysis

@ Ry is small (~ 1-2) even for moderate reddening
@ This was also found before by other SN teams
@ Are we only measuring host-galaxy reddening?
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SNe la as Standardized Candles

Contradiction with color escess analysis

@ Ry is small (~ 1-2) even for moderate reddening
@ This was also found before by other SN teams
@ Are we only measuring host-galaxy reddening?

@ There may a dispersion in SN colors which depends on luminosity
but not on decline rate

v
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SNe la as Standardized Candles

@ Alternative approach Tripp (1998)
@ Luminosity versus decline rate and color (my — m;)

fix = My — My (0) — byx[Amy5(B) — 1.1] — Bx* (my —mz)
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SNe la as Standardized Candles

@ Alternative approach Tripp (1998)
@ Luminosity versus decline rate and color (my — m;)

fix = My — My (0) — byx[Amy5(B) — 1.1] — Bx* (my —mz)

@ All SNe can be used (all Am;5(B) values)

@ No assumption on intrinsic colors

@ However 34 could be associated with Ry

@ This method is widely employed in SN cosmology

G. Folatelli (IPMU) SNe la Distances January 6th 2011 18/23



SNe la as Standardized Candles
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Absolute Magnitudes in NIR

Advantages of NIR

@ Small reddening
correction

-+

@ No correction for
decline rate

Lo e b by v
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Absolute Magnitudes in NIR

Advantages of NIR

@ Small reddening
correction

Absolute Magnitude

@ No correction for
decline rate

Precision at maximum (mag

Y J H
o n k- w @ o » w » 025 024 0.18 019

Days Since Explosion Doys Since Explosion

Absolute Magnitude

Kasen (2006) @ Local NIR minimum as
a good standard candle
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Absolute Magnitudes in NIR

Advantages of NIR
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@ Small reddening
correction
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@ No correction for
decline rate
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NIR Diversity

é :: {//’ \\
% Secondary NIR maximum

@ Theory:
Time and strength of 2nd max
determined by *°Ni mass
and therefore by Am;5(B)

Absolute Magnitude
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Kasen (2006)
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NIR Diversity

Four SNe la with Am15(B) ~ 1.4:

N
B “ LS @ Theory:
i S ] Time and strength of 2nd max
18;171}1111‘HH}}H1}1111}1111}111‘1’}‘1’1‘1“‘@ determined by 56Ni mass
Bt ‘/\\ E and therefore by Am;5(B)
F - ]
Ve R’Ww E @ Data:
e Tt Identical B-band and different
e L I i"-band LCs
::mwﬁ-m ] @ Is this due to
i ‘-‘;«.‘_A& o mixing/metallicity/geometry?
mé - S @ Could this serve to reduce the
= 1é>ays£°3nci°emi° s e scatter in the Hubble diagram?
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Hubble Diagram
Results

g~ T T @ 23 best-observed SNe

a5 L ] with z > 0.01
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Hubble Diagram

Results

05ET e T @ 23 best-observed SNe
R T . .
ST with z > 0.01
odt @ Combined RMS = 0.11
“or mag
05E @ No significant
OF .

205 improvement compared

3 ot with individual bands

605 .

- @ Strong correlation of
- residuals in all bands
o5k @ Probably due to

0.5 0 0o
of peculiar velocities
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Hubble Diagram Results

@ 23 best-observed SNe
0sF P2 with z > 0.01
of ; @ Combined RMS = 0.11
70.5f N i)
y: BARSRE @ No significant
. of & improvement compared
s f with individual bands
n—0.5 3
R : @ Strong correlation of
A residuals in all bands
— 0 —
§ @ Probably due to
72: . peculiar velocities
'05 1 @ Actual precision could
g ] be 0.06-0.09 mag in
08 3 u’g’r’'i’BV (~3%—-4% in
s distance)
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@ Precision cosmology requires high-quality SN samples at low z

@ Superb u’g’r’'i’BVYJHK; light curves of the CSP allow us to:

@ Build LC templates

@ Study intrinsic SN la colors

@ Characterize the host-galaxy extinction law
@ Fit SN la luminosities

@ SNe la as standardized candles are possibly as precise as
3%—-4% in distance

@ Standard candle precision in the NIR may be of ~10%

@ Folatelli+ 2010, AJ, 139, 120; Contreras+ 2010, AJ, 139, 519
@ ~90 SNe la in forthcoming CSP papers
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