SN Explosions inside C-O Circumstellar Shell

Elena Sorokina¹, Sergei Blinnikov²

¹Sternberg Astronomical Institute, Moscow

² Institute for Theoretical and Experimental Physics, Moscow

SN classification

Turrato 2003

SN Light Curves

Extremely bright Type Ic SNe

Quasi-bolometric light curves (Young et al. 2010)

Extremely bright Type Ic SNe

R-band light curves (Young et al. 2010)

Extremely bright Type IIn SNe

Extremely bright Type IIn SNe

IPMU – February 10, 2011 – p. 7

Very bright Type Ib SNe with narrow lines

Type Ibn

Quasi-bolometric (optical+NIR) (Pastorello et al. 2008)

Very bright Type Ib SNe with narrow lines

Pastorello et al. 2008

IPMU – February 10, 2011 – p. 9

Windy models for type Ic SNe

Ejecta: politropic mass distribution; Wind: $\rho \sim r^{-p}$

Models (all masses M and radii R are in solar units)

Model	$M_{\rm ej}$	$R_{\rm ej}$	$M_{\rm Ni}$	p	$M_{\mathbf{w}}$	$R_{ m w}$	<i>E</i> , foe
shallowIb	1	10	0	2.5	2.9	10^{5}	3
standardIb	0.2	10	0	2	3.5	$8 \cdot 10^4$	3
brightIb	0.2	10	0	1.8	4.8	$9 \cdot 10^4$	1, 2, 4

Composition: uniform; 0.5 C + 0.5 O + 1% heavier elements of Solar abundance; no 56 Ni – to check the influence of the pure shock

Initial models

Initial models

Light curves for different wind structure

Light curves for different explosion energies

 $p = 1.8, M_w = 4.8 M_{\odot}$

⁵⁶Ni vs. Shock wave heating

⁵⁶Ni vs. Shock wave heating

Best models for SN 2010gx

Expansion opacity enhanced

Opacity is taken as for dv/dr = 1/t = 1/1day

The light curve for the last model

Conclusions

- The shock wave which runs through rather dense matter surrounding an exploding star can produce enough light to explain very luminous SN events. No ⁵⁶Ni is needed in this case to explain the light curve near maximum light (some amount is of course needed to explain light curve tails).
 - We need the explosion energy of only 2-3 Bethe for the shell with $M = 3 5M_{\odot}$ and $R < 10^{16}$ cm.
 - The brightness and the duration of the light curve maximum strongly depends on the mass and structure of the envelope.

Conclusions

- Questions on the latest phases of star evolution arise:
 - Is it possible to form so big and dense envelopes? And how?
 - Time scale for such a formation
 - How far can the envelope extend?
 - Density and temperature profiles inside the envelope right before the explosion

 Question to observetions: try to find traces of such shells for bright explosions.
 (There are spectral evidence of circumstellar shells for type IIn and Ibn SNe. Is it possible to find C–O envelopes as well?)

Conclusions

- Many technical problems in light curve calculations:
 - line opacities;
 - dimensionality: 3D is preferable, since the envelope can most probably be clumpy;
 - NLTE spectra