Seminar@IPMU, 9th February 2009

Self-similar growth of black holes in the Friedmann universe

Hideki Maeda (CECS)

based on HM, Harada & Carr, arXiv:0901.1153, PRD accepted Kyo, Harada & HM, PRD77, 124036 (2008) HM, Harada & Carr, PRD77, 024023 (2008) Harada, HM & Carr, PRD77, 024022 (2008) Harada, HM & Carr, PRD74, 024024 (2006)

Contents

- (I) Introduction
- (II) Definitions and basic equations
- (III) Numerical results
- (IV) Summary and discussions

Black holes

- Intuitively
 - Spacetime regions from which nothing can escape"
- A definition: a black-hole event horizon
 - Future boundary of the past causal set of the future null infinity
 - A global concept
 - Applicable both for stationary (static) and dynamical spacetimes

Stationary black holes

- Stationarity is defined by a timelike Killing vector field
- A Killing horizon
 - A null hypersurface on which a Killing vector becomes null
- Asymptotically flat and stationary black holes
 - A nice model of the final state of gravitational collapse
 - BH event horizon = Killing horizon
 - Strong results
 - BH uniqueness theorem
 - Asymptotically flat electromagnetic BH solution is the Kerr-Newman BH
 - BH thermodynamics
 - A similarity to the thermodynamical system

Cosmological black holes

- Black hole << Cosmological horizon
 - Asymptotically flat BH is a good model
- Black hole ≒ Cosmological horizon
 - Cosmic expansion is important
 - Cosmological black holes
 - Asymptotically expanding universe
 - Dynamical and inhomogeneous with matter (non-vacuum)
 - Properties have been not fully understood yet
 - Subject in this talk: the growth of cosmological black holes

How fast can a BH grow?

- Possibility of the self-similar growth
 - Growth of a primordial black holes as the same rate of the universe (Zel'dovich-Novikov `67)
 - Still under discussions for 40 years
- Primordial black holes (PBHs) (Hawking '71)
 - Formed in the very early universe
 - Formed with the particle horizon scale (Carr '75)
 - Large range of the initial mass
 - Candidate for dark matter and the source of Hawking radiation
- Self-similar growth of PBHs
 - An attractive scenario to explain the origin of giant black holes in galactic nuclei

Self-similar growth of PBHs

• Small BHs can be formed only in the early universe

- $R_{h} = 2GM/c^{2} \sim 3(M/M_{s})[km] = \rho_{s} \sim 10^{18}(M/M_{s})^{-2}[g/cm^{3}]$
- $\rho_{FRW} = 1/(Gt)^2 \sim 10^6 (t/s)^{-2} [g/cm^3]$

• PBHs form with the particle horizon scale (Carr `75)

- $M_{PBH} = c^3 t/G$
 - 10⁻⁵[g] at 10⁻⁴³[s] (Planck)
 - 10¹⁵[g] at 10⁻²³[s] (now evaporating)
 - 1M_s at 10⁻⁵ [s] (solar mass)
- Zel'dovich-Novikov's argument (`67)
 - PBHs grow in a self-similar manner in the radiation era
 - Final mass~ $10^{15}M_s >>$ galactic nuclei (~ $10^6-10^9M_s$)
 - No such giant BHs by observation=>No PBH formed

Zel'dovich-Novikov's argument (1)

• Bondi accretion with the density of the FRW universe

$$\frac{dM}{dt} = 4\pi r_{\rm A}^2 \left(\frac{\rho_{\rm FRW}}{c^2}\right) c_s \qquad r_{\rm A} := \frac{2GM}{c_s^2}$$

- Sound velocity: $c_s = c/\sqrt{3}$ - Energy density of the Friedmann universe: $\rho_{\rm F}$

$$F_{\rm RW} = \frac{3c^2}{32\pi Gt^2}$$

• (Semi-Newtonian) basic equation for the accretion

$$\frac{dM}{dt} = \frac{KGM^2}{t^2} \quad \text{where} \quad K := \frac{9\sqrt{3}G}{2c^3}$$

Zel'dovich-Novikov's argument (2)

- Accretion equation: $\frac{dM}{dt} = \frac{KGM^2}{t^2}$ where $K := \frac{9\sqrt{3}G}{2c^3}$ • Solution: $M(t) = \frac{M_0}{1 - \frac{KM_0}{t_0} \left(1 - \frac{t_0}{t}\right)}$ where $M(t_0) = M_0$
- Self-similar growth of PBHs with the horizon mass

Not conclusive yet

- Effect of the cosmic expansion is neglected in the Z-N argument
 - Full GR analysis is needed
 - Problem ``Is the self-similar black-hole solution which is asymptotically Friedmann universe?"
- 2 types of asymptotically Friedmann spacetime without a massive thin shell
 - 1) Smooth asymptotically Friedmann universe
 - 2) Attachment to the exterior exact Friedmann universe at some particular hypersurface
 - at a sonic horizon or a similarity horizon

Self-similarity in general relativity

• Defined by a homothetic Killing vector

$$\mathcal{L}_{\xi}g_{\mu
u}=2g_{\mu
u},$$

- Profiles of physical quantities are self-similar during the motion
 - Spherical system: $P(at,ar) \propto P(t,r)$
- Mathematically simple
 - Spherical systems: PDEs reduce to ODEs

Past results

- Main issue
 - ``Are there asymptotically FRW self-similar BH solutions in general relativity?''
- Past results in <u>spherically symmetric</u> spacetimes
 - A perfect fluid with non-negative pressure (Carr-Hawking `74, Bicknell-Henriksen `86)
 - Non-existence shown
 - Note: Negative pressure case is still open
 - A scalar field (Harada-HM-Carr `06)
 - Non-existence shown for the case of exact Friedmann exterior
 - Note: asymptotically Friedmann case is still open

The dark energy

- Recent observations suggest the accelerating expansion of the universe
- Strong energy condition is violated for matter fields
 - A quintessential scalar field
 - A perfect-fluid model with $p=(\gamma-1)\mu$
 - Dark energy (0<γ<2/3)
 - Cosmological constant (γ=0)

Self-similar growth with dark energy?

- ``Self-similar growth of a BH is possible with a quintessential scalar field'' (Bean-Magueijo '02)
 - Essentially the same argument as Zel'dovich-Novikov
 - Full GR analysis is needed
- Our subject
 - We find the self-similar asymptotically Friedmann black-hole solutions with a perfect fluid model of the dark energy (quintessence)

(II) Definitions and basic equations

Spherically symmetric self-similar perfect-fluid system

- Matter: $T_{\mu\nu} = pg_{\mu\nu} + (\mu + p)u_{\mu}u_{\nu},$
- Self-similar metric: z=r/t (r is a comoving radius) R:=rS: areal radius $ds^2 = -e^{2\Phi(z)}dt^2 + e^{2\Psi(z)}dr^2 + r^2S^2(z)d\Omega^2.$
- Physical quantities

$$8\pi G\mu = \frac{W(z)}{r^2}, \quad 8\pi Gp = \frac{P(z)}{r^2}, \quad 2Gm = rM(z).$$

• Equation of state:
$$p = (\gamma - 1)\rho$$

Misner-Sharp mass

Basic equations

• Energy-momentum conservation equations give

$$e^{\Phi} = c_0 z^{2(\gamma-1)/\gamma} W^{-(\gamma-1)/\gamma}, \quad e^{\Psi} = c_1 S^{-2} W^{-1/\gamma},$$

- c₀ and c₁ are constants
- One 1st order and one 2nd order ODEs of z:

$$\frac{V^2 - (\gamma - 1)}{\gamma} \frac{W'}{W} = \frac{\gamma c_1^2 W^{(\gamma - 2)/\gamma}}{2S^4} - \frac{2(\gamma - 1)}{\gamma} - 2V^2 \frac{S'}{S},$$
$$S'' = S' \left(\frac{\gamma - 2}{\gamma} - \frac{(\gamma - 1)W'}{\gamma W}\right) - (S + S') \left(\frac{2S'}{S} + \frac{W'}{\gamma W}\right)$$

 $V \equiv d/d \ln |z|$ $V = ze^{\Psi - \Phi}$

• Constraint equation: $M = WS^2(\gamma S' + S)$.

Similarity horizon

- A similarity horizon (=a homothetic Killing horizon)
 - A null hypersurface on which a homothetic Killing vector becomes null

 $= ze^{\Psi - \dot{q}}$

- In our system, it is given by $e^{2\Phi}(1 V^2) = 0$
 - A regular null hypersurface with V²=1
 - Can be an event horizon or a particle horizon

Asymptotically FRW solutions

- Asymptotically FRW at spatial infinity
 - Exist only for $0 < \gamma < 2/3$ (dark energy)
 - Behavior near infinity: $W = W_{FRW}(z)e^{A(z)}, S = S_{FRW}(z)e^{B(z)}$

$$A \approx A_0 z^{(2-\gamma)/\gamma}, \quad B \approx -\frac{1}{6\gamma} A_0 z^{(2-\gamma)/\gamma}$$

- 1-parameter family: A_0
 - A₀=0 gives exact FRW solution
- We obtain numerical solutions by solving from infinity with different values of A₀
 - We set $\gamma = 1/3$ and the gauge choice is $a_0 = b_0 = 1$

t-r plane

(III) Numerical results

Summary of numerical results

A one parameter-family of BH solutions exists

Physical quantities to know the global structure

- Velocity function
 - To identify BH and/or cosmological event horizons
- Mass-area relation
 - A quasi-local definition of a BH (=a future outer TH)
- Energy density
 - Divergence = singularity
- Quasi-local mass
 - Negative mass singularity = naked singularity
- Areal radius and its time derivative
 - To identify spacelike infinity and wormhole throat
 - To know the expanding and collapsing region

Physical quantities

zS(=R/t): areal radius at constant t

Velocity function

M/S(=2Gm/R)

t-r planes and global structures of the solutions

(a) Flat FRW universe $(0 < \gamma < 2/3)$

dot: singularity, dot-dashed: infinity

(b) Cosmological naked singularity

Timelike singularity with negative mass

(c) Cosmological BH: t-r plane

(c) Cosmological BH: Penrose diagram

Collapsing region exists inside the BH event horizon

(d) FRW-(quasi-)FRW wormhole: t-r plane

(d) FRW-(quasi-)FRW wormhole: Penrose diargam

dot: singularity, dot-dashed: infinity

(e) Cosmological white hole: t-r plane

(e) Cosmological white hole: Penrose diagram

(IV) Summary and discussions

Interpretation of the solutions: Summary

- Exact Friedmann universe (A₀=0)
- Cosmological naked singularity (A₀>0)
- Cosmological black hole (-0.0253<A₀<0)
 - First example of self-similar BH solutions in the Friedmann universe in a physical situation
- FRW-(quasi-)FRW cosmological wormhole (-0.0780<A₀<-0.0253)
 - FRW-FRW cosmological wormhole (A_0 =-0.0404)
- Cosmological white hole (A₀<-0.0780)

Size of a self-similar BH

The value of z for the location of different horizons

A_0	BTH	BEH	CTH	CEH
-0.001	0.0087	0.0089	0.50	1.0
-0.01	0.086	0.099	0.46	0.99
-0.02	0.19	0.24	0.38	0.98
-0.0252	0.26	0.35	0.26	0.98

Black-hole event horizon

Cosmological event horizon

The ratio BEH/CEH is from 0 to about 0.36 Relatively small BHs can grow in a self-similar manner

An application

If the dark-energy dominant era started from a 10 billion years ago (as observations suggest so), which is about 2/3 of the age of the universe, the mass of a black hole which exists at the beginning of this era has been tripled up to now approximately

Summary of this talk

- Asymptotically FRW self-similar solution with dark energy
 - γ=1/3
 - FRW universe is accelerated
 - Numerical solutions
- Black hole solutions exist
 - Self-similar growth of a BH is possible for relatively small BHs
- A bonus: non-trivial solutions
 - Cosmological black (white) holes
 - Cosmological wormholes
 - Cosmological naked singularities

A recent result with a quintessence

- Two dark-energy models
 - Scalar field model
 - Perfect fluid model
- Are they equivalent in the spherical case?
 - Cosmology (homogeneous): Yes
 - Black hole in the universe (inhomogeneous): No (in general)
- Problem: Cosmological BH solutions with a scalar field?
 - Partial answer (Kyo-Harada-HM `08) : asymptotically FRW self-similar solutions exists
 - A scalar field with a quintessential potential
 - An exponential potential (FRW universe is accelerated)
- An important problem: Black hole solutions exist?
 - An important future work

Appendix: More on wormhole solutions

Wormholes

- Spacetime structure with two (or more) different infinities
 - Characterized by a ``throat''
 - Spacelike 2-surface with minimum area on a spacelike hypersurface
- Static case
 - A natural time-slicing exists (associated with a timelike Killing vector)
 - Theorem
 - Null energy condition is violated at the wormhole throat
- How about the dynamical case?

Generalization of the concept of a wormhole throat is not unique

Several definitions of a dynamical wormhole throat

- **Definition** by Hochberg & Visser(1997)
 - $\theta +=0$ and $\partial \theta +/\partial +>0$
- Definition by Hayward(1999)
 - $\theta +=0$ and $\partial \theta +/ \partial -<0$
 - Outer temporal (timelike) trapping horizon
- Definition in terms of a trapping horizon
 - Define a throat on a **null** (not spacelike) hypersurfaces
- Theorem
 - Null energy condition is violated at the wormhole throat

Our definition of a wormhole

- Spherical metric: diag(g_{AB} , $r^2\gamma_{ab}$)
- Definition: <u>a wormhole throat</u>

$$\begin{array}{rcl} A_{,\mu}\zeta^{\mu} &=& 0, \\ (A_{,\mu}\zeta^{\mu})_{,\nu}\zeta^{\nu} &>& 0, \\ & A \equiv& 4\pi r^2 \end{array}$$

- $-\zeta$ is a radial spacelike vector
- Area of S² is minimum on a spacelike hypersurface
- Slice dependent
 - Comoving slice is adopted in our analysis
- Our wormholes are not Hayward or Hochberg-Visser wormholes