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  Introduction: Inflation and CMB fluctuations	
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ds2 = −dt2 + e2 Ht dx2 + dy2 + dz2⎡⎣ ⎤⎦

  
S =

M p
2

2
d 4∫ x −g R − 6H 2⎡⎣ ⎤⎦

  Horizon problem 
  Flatness problem	


de Sitter universe	


  Origin of the large scale structure of the universe 

The exponential expansion can be realized by the vacuum energy	


δφ ≈ H

Quantum fluctuations	
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What did COBE observe?  

  
ζ = δN = Hδt = H δφ

φ
Curvature perturbations 

  ζ (x1)
  ζ (x2 )

initial 

inflation  
end 

CMB angular power spectrum	


COBE 

 

δT
T
 ζgravitational red shift	




Symmetry in inflation	
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   de Sitter spacetime	


   Once the slow roll inflation occurs, the cosmic no-hair conjecture suggests that 
     the exponential expansion erases any classical anisotropy and leads to isotropic universe. 
    This is nothing but the spatial de Sitter symmetry.	


The nature of primordial fluctuations is determined by  symmetry in inflation.	


   First of all, in order to have inflation, we need to assume  initial homogeneity.	


   In addition to this initial condition, we need a sufficiently flat potential 
     to realize the slow roll inflation. Hence, we have shift symmetry 	
 φ →φ + c

  t → t + c , xi → e−2 H cxihas the temporal de Sitter symmetry	




The nature of primordial fluctuations	
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First of all, shift symmetry implies Gaussian statistics 	


Moreover, initial homogeneity implies statistical homogeneity	


And, spatial de Sitter symmetry accounts for statistical isotropy	


Finally, temporal deSitter symmetry yields scale invariant spectrum	


Thus, approximately, we have the following predictions:	


The above predictions are model independent and robust.	




More precise data are now available!	


Cosmic microwave background radiation	


galaxy distribution	


We now have more precise data.  	




Statistical Symmetry Breaking 
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There should be small non-gaussianity of the order of the slow roll parameter 
because the shift symmetry is not exact. 

There should be a slight tilt because the expansion is not exactly deSitter. 
The deviation from deSitter can be characterized by the slow roll parameter. 
Hence, the tilt should be of the order of the slow roll parameter. 

Violation of spatial de Sitter symmetry ?	


Violation of temporal de Sitter symmetry   ->   spectral tilt	


 Violation of shift symmetry  ->  non-Gaussianity  

Precision cosmology forces us to look at fine structures of fluctuations!	


Along the line of this thought,  
                    it is natural to study a deviation from the statistical isotropy.	


In fact, as we will see,  
           the statistical anisotropy is ubiquitous in the framework of supergravity. 

Watanabe, Kanno, Soda, PRL, 2009.	




Gauge kinetic function in the sky	
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Superstring theory	


Kahler potential    K 	


Superpotential     W	


Gauge kinetic function  f	


Supergravity	

low energy	


However, the role of gauge kinetic function f in inflation has been overlooked. 
 Cosmological roles of K and W in inflation has been well discussed so far.	


The main goal of this talk is to show that 

  Anisotropic inflation is naturally realized due to gauge kinetic function.   	


  As a consequence, statistical anisotropy is produced.  	


Namely, gauge kinetic function can be constrained by cosmological observations! 	


  There arises cross correlation between temperature and B-mode polarization.  	




                      Plan of my talk	


1.  Anisotropic Inflation with a gauge kinetic function 
2.  Cosmological perturbation theory  

                           in a simple Bianchi universe 
3.  The nature of primordial fluctuations  

                           in anisotropic inflation 
4.  Summary 	
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Anisotropic Inflation  
            with a gauge kinetic function 



A simple model	


11 

For homogeneous background, the time component  can be eliminated by gauge 
transformation.	

Let the direction of the vector be x - axis	


Action	
 gauge kinetic function	


Then, the metric  should be Bianchi Type-I	


Scale Factor	


Anisotropy	


Plane Symmetry	

The action reduces to 	


const. of integration	


Watanabe, Kanno, Soda, PRL, 2009.	




Basic equations 

Hamiltonian Constraint	


Scale factor	


Anisotropy	


Scalar field	




Isotropic Power-law Inflation	
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φ(t)
M p

= −
2
λ

log t + φ0

,  this solution represents an isotropic power-law inflation.	


Is this a unique exact solution?	


Let us start with a natural choice for potential and gauge kinetic functions.	


In this case, it is well known that there exists a simple solution	


For 	


Here, the gauge kinetic function does not play any role.	


Ratra, 1992.	
Cf.  Primordial magnetic fields	




Anisotropic Power-law inflation	
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E2 f0
−2

M p
2 e−2ρφ0 =

λ2 + 2ρλ − 4( )(−λ2 + 4ρλ +12ρ2 + 8)

2λ2 λ + 2ρ( )2

Apparently, the expansion is anisotropic and its degree of anisotropy is given by	


slow roll parameter	


For the parameter region                               , we found the following new solution	


  

φ(t)
M p

= −
2
λ

log t + φ0

  

V0

M p
2 eλφ0 =

ρλ + 2ρ2 + 2( )(−λ2 + 4ρλ +12ρ2 + 8)

2λ2 λ + 2ρ( )2

Kanno, Watanabe, Soda, JCAP, 2010.	




             Dynamical system analysis	
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Isotropic fixed point	


Anisotropic fixed point	


This exists only for	


Autonomous system	


To see which one is dynamically selected, we move on to	




Linear stability analysis	
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Isotropic power-law inflation is an attractor.	


Isotropic power-law inflation is a saddle point.	


Anisotropic power-law inflation is an attractor.	


Anisotropic fixed point does not exist.	




The whole picture	
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Isotropic inflation	


Anisotropic inflation	


After  a transient isotropic inflationary phase,  
the universe enter into an anisotropic inflationary phase.	


Kanno, Watanabe, Soda, JCAP, 2010.	
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In order for the vector contribution to increase, we need the condition	


 opposite to the potential force 	


At this saturating point, Inflation continues	


The vector energy density saturates at	


Generality of anisotropic inflation	


Once the vector contributes the dynamics of the inflaton field,   
the  ratio does not increase any more	


Consider the slow roll phase	


Because of this vector contribution, we have anisotropy of the order of	


Kanno, Watanabe, Soda, JCAP, 2009.	




Example : chaotic inflation   

grows fast 

becomes constant 

  f (φ) = ecκ 2φ2 / 2

We find that the degree of anisotropy is written by the slow-roll parameter.	


: A universal relation	


A simple choice is	


Watanabe, Kanno, Soda, PRL, 2009.	




COSMOLOGICAL PERTURBATION THEORY 
 IN A SIMPLE BIANCHI UNIVERSE 
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Watanabe, Kanno, Soda, PTP, 2010.	


Tomita, Den,  1986.	

Dunsby,  1993.	


Noh, Hwang  1995.	


Gumrukcuoglu, Contaldi, Peloso,  2007.	


Pitrou, Pereira, Uzan,  2007, 2008.	


Cf .	




Flat slicing gauge in anisotropic universe	
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δgµν = Γ, G

  
δ Aµ = D, J

In our case, we have only 2-dimensional rotational symmetry	


Perturbations are defined  in a special frame 	


   
Σ
H

=
1
3

IεH 1

We take the flat slicing gauge:	
 graviton	


photon	


inflaton	


Here, theta is the angle between the wavenumber vector and the preferred direction x.	


k = kx
2 + ky

2

However, since the anisotropy is quite small	


we can treat the effect of anisotropy perturbatively	




　　　　　　　Unconventional couplings 	
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vector-tensor	


vector-scalar	


scalar-tensor	


  fv ' ≈ IεH

  
fφv ' ≈

fφ
f

fv ' ≈ I

  
fφv '2 ≈ I εH

   

−ggµα gνβ f 2 (φ)
ffφδφ
 Fµν

v '


Fαβ

   

−ggµα gνβ f 2 (φ)
ffφδφ
 Fµν Fαβ

v '2


The main features of the action can be understood by looking at the following term	


Now, we take variations	


Notice the following relations	
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Reduced Quadratic Action: Slow roll Approximation	


  

S = S free Γ, D( ) + dηd 3k
6IεH

2
−η( )−1

sinθ ′Γ D* + ′Γ *D( ) − 6IεH

2
−η( )−2

sinθ ΓD* + Γ*D( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫

vector-tensor	


  
+S free G, J ,δφ( )

scalar-tensor	


vector-scalar	
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The nature of primordial fluctuations  
                          in anisotropic inflation 



 Perturbative estimation of statistical anisotropy	
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Mode functions	


Interaction Hamiltonian	


Assuming that I is small, we can calculate corrections to the power spectrum	


In the isotropic limit, we have	


Here, N(k)  is the e-folding number from the horizon exit of the mode with wavenumber k 
 to the end of the inflation.	
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Predictions of anisotropic inflation  

statistical anisotropy in curvature perturbations 	


cross correlation between curvature perturbations and primordial GWs 

 small linear polarization in primordial GWs 

statistical anisotropy in primordial GWs	


TB correlation in CMB	


Thus, we found the following nature of primodordial fluctuations in anisotropic inflation.	


These results give consistency relations between observables.	


Watanabe, Kanno, Soda, PTP, 2010.	


Dulaney, Gresham, PRD, 2010.	

Gumrukcuoglu, et al., PRD, 2010.	


Ackerman et al,  2007.	
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WMAP constraint	
 Pullen & Kamionkowski  2007	


Now, suppose we detected	


 Then we could expect	


•  statistical anisotropy in GWs	


•  cross correlation between curvature perturbations and GWs	


If these predictions are proved, it must be an evidence of anisotropic inflation!	


How to test the anisotropic inflation?  

The current observational constraint is given by	




How does the anisotropy appear in the CMB spectrum?	
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The off-diagonal part of the angular power spectrum tells us 
 if the gauge kinetic function plays a role in inflation.	


For isotropic spectrum, 	
 , we have	


Angular power spectrum  of  X and Y reads	


For anisotropic spectrum, there are off-diagonal components.	


For example, 	




We should look for the following signals in PLANCK data! 	
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When we assume the tensor to the scalar ratio	


and scalar anisotropy	


The off-diagonal spectrum becomes	


cross	


scalar	

tensor	


linear	


The anisotropic inflation can be tested through the CMB observation!	


Watanabe, Kanno, Soda, MNRAS Letters, 2011.	




Summary  
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 　We have shown that anisotropic inflation can be realized 
　　　once we take into account a gauge kinetic function.	


 　Off-diagonal angular power spectrum can be used to prove or disprove our scenario.	


We have given the predictions: 

 　As a by-product, we found a counter example to the cosmic no-hair conjecture.	


 　Our analysis gives a first cosmological constraint on gauge kinetic functions.	


 the statistical anisotropy in scalar and tensor fluctuations 
 the cross correlation between scalar and tensor 
 the linear polarization of tensor fluctuations	


The main message of this talk is that 
           the statistical isotropy needs a serious observational check!	



