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Introduction

Aims
To test the AGN unification scheme and investigate AGN

selection methods using a well selected sample of local
galaxies using X-ray and optical spectroscopy.

Galaxy sample: IRAS 12 micron galaxy sample (12MGS) of
Rush, Spinoglio & Malkan (1993)

Telescope: XMM-Newton



Introduction: Active Galactic Nuclei
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* AGN unification supported by the discovery
of polarised broad lines in Sy2s (Antonucci &
Miller 1985)

1 Extended Corona
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* Accretion disk emits thermally, peaking
in UV

* Hot corona inverse-Compton scatters
these photons up to X-ray energies



~AGN Spectral Energy Distribution
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Introduction
Why 12 microns?

Corresponds to peak of torus dust emission in AGN (Rowan-
Robinson & Crawford 1989)

[s isotropic (Nenkova+2008)
[s relatively unbiased against absorption (Horst+ 2008)

Representative — all active galaxies emit a constant fraction of
their bolometric flux in the 12 micron band (Spinoglio+ 1995)

The IRAS 12 micron galaxy sample (12MGS, Rush, Malkan &
Spinoglio 1993) contains a large fraction of AGN and has

coverage at all wavelengths.
893 galaxies, 13% AGN fraction, z<o.1, F (12um)>0.22 Jy
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Monte-Carlo modelling of X-ray reprocessing

Absorption along the line of sight is often seen in the X-ray
spectra of AGN, the column density (N, ) of which is sometimes
measured to be in excess of 10 2 cm~2, especially in Seyfert 2
galaxies.

At Ny = 1.5 x 10*4 cm™2, 1, =1 (Compton thick) = Compton
scattering by electrons becomes increasingly important.

At these high N, the calculations for modelling the
transmission spectrum become non-linear due to multiple
scatterings so models describing simple attenuation of the
spectrum by absorption and scattering become invalid.

Monte-Carlo methods are ideal for this purpose.

New models by Murphy & Yaqoob (2009) and Ikeda+ (2009) do
this for toroidal geometries

Results presented here for both spherical and toroidal
geometries.



Monte-Carlo simulations

» An isotropic point source of X-rays
* Fy = ETinput spectrum

* Monte-Carlo simulations of Compton scattering,
photo-electric absorption and iron Ka fluorescence

* Interaction probabilities calculated from cross-
sections, o(E)

* Models include fluorescent emission lines:

Fe Ko (6.4 keV), Fe KB (7.1 keV) + Ka lines from
several other elements

*10*° < N, <10*°cm™ c1=sT'<3

e 0.1 < iron abundance < 10 solar abund.

* 0.1 < elemental abundance < 10 solar abund.

TORUS, additional parameters:
* viewing angle * opening angle




~——Sphere: spectra
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< At extreme Ny, even 10-100 keV emission is very suppressed
< However, Fe Ka emission can still be observed in 2-10 keV band




Z—Torus: spectra
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< At extreme Ny, torus emission becomes reflection-like
<> Emission below 10 keV is still observable




~tron Ka EquiW

Predictions

Spherical geometry
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< Fe Ka line EW heavily dependent on N, and iron
abundance
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tron Ka Equivalent Width
Predictions

Tor0|dal geometry
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=» A maximum Fe Ka equivalent width of 150 eV is possible from unobscured

sightlines
=» Sources with values higher than this are likely to be heavily obscured



~—Flux suppression factors
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=>»n all X-ray bands and at all redshifts, for both geometries, emitted flux is suppressed by
at least a factor of 10 for N >10%> cm™

=>»This may explain biases seen in hard X-ray surveys against Compton thick AGN (e.g.
Beckman+ 2009)
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X-ray Spectral Analysis

Sample selection

All galaxies of the 12MGS with XMM-Newton observation (as of Dec

2008) for which a meaningful spectrum is produced having filtered for
flares and background is subtracted.

126 galaxies in total.

X-ray subsample conserves parent sample optical type proportions
Spectral fitting

¥ fitting to background subtracted spectra with at least 20 counts per

bin.

Fit to 0.2-10 keV spectrum with a power-law model, adding

absorption, reflection and/or heavily obscured transmission (new
model!) if required. (Ay? constraints)

Also including thermal plasma, scattered power-law or soft excess
components if required



Eﬁnple spectra
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~ Resu ItS What can we determine from the torus model?

€ We fitted our new
‘torus’ model to 19
‘reflection dominated’
spectra to see if we
could constrain the
torus opening angle or
viewing angle.
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€ However, neither
parameter could be
constrained with the
data available
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Resu ItS What can we determine from the torus model?
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=»The intrinsic source luminosity is underestimated by a factor of up to 7 when using
slab geometries rather than toroidal geometries

=> Also found by Murphy & Yaqoob (2009) with their torus model
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onclusions

From the X-ray models:

For torus distributions a maximum Fe Ko EW of ~ 150 eV is
possible for unobscured sightlines. For EW>150 eV, N, > 10 cm—

for N;=10%5 cm~2 , flux suppression in all X-ray bands and at all
redshifts is >10 - important for considering the biases present
against hard X-ray selected, heavily obscured AGN.

using spectral models based on slab geometries (e.g. pexrav) will
underestimate the intrinsic Ly with respect to toroidal geometries
by up to 7, as also found by Murphy & Yagoob (2009).
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Results Properties of the primary emission

14 -
12F

10F

PR T

= < TI' >is consistent with previous works

1.0

L, ) 10* ergs™

PR

€ unobscured AGN

<I'>=1.84%"

pee +0.11
-0.14 Op = 0.32

€ obscured AGN

< I >=1.90%016 _

0.14

Alaa) +0.1
Op = 0.38 *°3 _

-0.08

0.07

2.5 3.0 3.5

(e.g. Nandra & Pounds 1997), but oy is larger
(c.f. 0.15). Important for XRB sysnthesis models

=» We find there to be no dependence of I' on

Ly supporting findings of George+ (2000)

€Populations are statistically
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€ Supports AGN unification
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Results Properties of absorption
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=» Fe Ko EW is a key indicator of
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=» Calculations show unobscured sources
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Results spr activity classification

=» Optical line ratios compiled from the literature for XMM-Newton subsample

=» BPT diagnostics carried out using Kewley, et al (2006) classification scheme. Classes
narrow line galaxies into star forming, LINER, Seyfert 2 or ‘composite’ class.

=» Broad line classification also taken from literature, giving ‘strict’ Sy 1s, and
intermediate type Sy 1.2, 1.5, 1.8 and 1.9.

100.0 g . g 100.0
AGN

10.0E

1.0f

[Ol1I] A5007/Hg
[OIlI) A5007/HB

Composites
0.1f

0.1 1.0 10.0
[NII) A8584/Ha

10.0F

1.0f

0.1f

0.1 1.0
[SHI) A6716,30/Ha

10.0

[OllI) A5007/HB

100.0

10.0f

1.0}

0.1f

001 0.10 1.00
[01] A8300/Ha




(OIlI] A5007/HB

/’ T g
Results spr activity classification

> We compare the optical line diagnostics with X-ray indications for AGN power
(LX>1()42 ergs/s or NH>1023 Cm'z)

=> 40% LINERs exhibit AGN power from X-rays
= 17 % of composites exhibit AGN power from X-rays
=» 0% HII galaxies exhibit AGN power.
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Luminosity characteristics
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Results

Luminosity characteristics
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Results Properties of absorption

=>» Sy 2s show the largest levels of X-ray absorption, and Sy 1s show lower levels

as predicted by

AGN unification

= However a significant number (24%) of sources have X-ray absorption which
does not correspond to the visibility of the broad lines
=>»This is a problem for AGN unification schemes

=>» X-ray absorption in Syis may be due to dust-less gas within the opening of
the torus (BLR?)
=» Unabsorbed Sy2s may be missing the broad line region all together.
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Impiclations

The absence of broad line sources at low X-ray luminosities

The dependence of broad line strength on 12 micron luminosity
(and perhaps dust covering fraction?)

The dependence of X-ray absorption on X-ray luminosity

=>» Suggests some intrinsic link between X-ray
luminosity (and probably accretion rate), the broad
line region and the torus

=» BLR and torus could disappear at low luminosity
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Conclusions

On AGN unification:

Finding that the X-ray spectral index for obscured and unobscured sources are
statistically the same, supports the idea that the central engines in these sources
are the same - the cornerstone of unification

However there appears to be some intrinsic link between X-ray luminosity, the
broad line region and the torus, requiring a luminosity dependence modification
to the unification scheme

On AGN selection:

Compton thick fraction for our X-ray AGN is 18%, which is higher than the
hard X-ray selected samples, supporting MIR AGN selection.

40% of LINERs and 17 % of composite galaxies exhibit AGN power from X-ray
analysis

AGN can be selected in X-rays using a luminosity of of 10# ergs/s, with minimal
contamination from star forming sources.

Low Fy/F,,g sources can be both absorbed AGN OR star forming galaxies!



