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This is a strong-weak duality.

We can use weakly coupled M-theory (classical gravity) to

obtain non-trivial results for the strongly coupled gauge
theory.

[Gaugetheory ] _ [ Classical gravity ]

This duality has not been proved, and it is important to
collect non-trivial evidences.



In this talk, we focus on the symmetry of the systems.

Gravity side
isometry G of M, is a symmetry of the system.

Gauge theory side
we have an internal symmetry H which keep the
action S[Y] invariant.

In general, only a part of G is manifest on the gauge theory side.

[symmetryH C isometry G ]

In this case, the duality implies that the true symmetry of the
systems is G, and the manifest symmetry H of the gauge theory
is enhanced to G.



Simple example: D. Martelliand J. Sparks, arXiv:0909.2036

A certain CS theory w/
U(N)xU(N) gauge group

4 )
Symmetry of S[Y]

SU(2)e x U(1),, x U(1);

N\ J

Symmetry enhancement

SU(2): x U(1),, - SO(5)
is predicted by AdS/CFT.

M-theory in AdS,xV>2

4 )
V>2=50(5)/SO(3)

Isometry = SO(5) x U(1)

N J

pu—




SU(2) . : rotates elementary fields
U(1),, : magnetic charge of monopoles.

The enhanced symmetry SO(5) mixes elementary
fields and solitonic objects.

This symmetry enhancement is non-perturbative.

We want to perform a non-trivial check of this
symmetry enhancement by computing an index on
the gauge theory side.

I(z1,z2,w)—tr[z1 22 20(z)]

F,: SU(2); Cartan generator
F,: U(1), generator



SO(5) contains elements exchanging F, and F,.

If the symmetry is actually enhanced to SO(5), the index
should satisfy the relation

[(21, 22, z) = (22, 21, %)
We can compute the index as the path integral
I(z1,22,2) = / DUe S

We define the theory on S%xS?, and the parameters z, and
Z, are introduced as holonomies around S!.



In general, it is difficult to perform the path integral.

The theory we consider here is supersymmetric, and we
can use localization to perform the path integral exactly.

/I.ocalization theorem:

If the system has a fermionic symmetry 6, and
6S[W]=6%V[P]=0, the path integral

f Do~ S¥—t6V ¥

Does not depend on the deformation parameter
t, and in the t—><< limit, the integral localizes at

\ the fixed points of 62.

~

/




We can rewrite the integral as a summation over fixed points.

(Duistermaat-Heckman formula)

We derived a general formula for the index which is
applicable to N=2 supersymmetric theories even when
fields have large anomalous dimensions.

arXiv:1101.0557, Y.l. and S. Yokoyama

(In the derivation of the formula, we did not use the DH
formula. We perform the path integral directly after
deforming the theory by &-exact term. This is easy in the case
of 3d theory. This may not be the orthodox’ localization.)



Result: N=1 case ( Gauge group is U(N)xU(N) )

In the case of U(1)xU(1) gauge group, we can perform the
integral completely.

I(zh %2, .’.B) = PE [f(zlz?a .’L') + f(zlzglax)

+ flo7 2g,x) + F27 1257 2)

+2f(1,2)].
where
gz? — g 'zt
f(QS .’B) = 1 _ 3:2
=1
— il m .m _m
PEQ(thz,a«') = &XPp [mz=1 mg(zl 172 1 X )]

This is indeed symmetric under z,<z,.

This strongly suggests the symmetry enhancement.



Large N limit

We also computed the index for large N gauge group as a
series expansion with respect to x.

We confirmed that it is symmetric under z, <> z, at least
for the first few terms in the expansion.

arXiv:1102.0621, Y.l.,, D. Yokoyama, and S. Yokoyama

I’'m going to explain details in part Il.



Introduction

Duality
-equivalence of two theories, which usually look very
different .

4 )
dual
Theoryl <4==) Theory?2

- _/

Many dualities are proposed in string/M-theory.
In general it is difficult to prove them.

How can we obtain non-trivial evidences?



If we could determine the energy spectrum (eigenvalues) of two
systems and could show that they agree, it would provide a
strong evidence for the duality.

Instead of treating eigenvalues directly, it is convenient
to use the partition function

Z(B) = tr exp (—BH).
If the partition function of two theories agree as functions of 3

Zl(B) = Zz(B);

two theories have the same energy spectra.



We can generalize the partition function by introducing

chemical potentials” p, for generators Q, of global
symmetries of the systems.

Z(B,u) = tr exp(—BH—, Q)

This gives more information than the original function Z(B).

In general, it is difficult (impossible) to compute these

partition functions analytically due to large quantum
corrections.



In supersymmetric theories, however, we can compute the
partition function exactly if we tune the chemical potentials

appropriately.

Such partition functions have in general the form

(B, 1) = tr [(-1)" exp(—BH— Q).

Due to the factor (-1)F, bosonic and fermionic contributions
partially cancel each other, and quantum corrections
become milder. This kind of quantities are called indices.”



Recently, we derived a general formula for the
superconformal index for 3d N=2 gauge theories.

In this talk, | will explain how we can derive the formula,
and then use it to obtain a non-trivial evidence for
AdS,/CFT, duality.

»AdS,/CFT,

» Localization and Index

» A non-trivial check of duality
»Summary
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AdS,/CFT, is a duality between a 3d Chern-Simons theory
and M-theory in a background AdS, xM,

a )

. .S
Squelzg gnesrzn >Imons =) M-theoryin AdS,xM,
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This is a strong-weak duality.

We consider strongly coupled gauge theories and weakly
coupled M-theory.



Gauge theory side

N=2 superconformal Quiver Chern-Simons theory

Gaugegroup: G =U(N H U(N

Matter fields : bi-fundamental representatlons

Described by a quiver diagram

circles: U(N) gauge groups
/ \ (vector multiplets)
/ arrows: bi-fundamental rep.

(chiral multiplets)



For each U(N) gauge group we can introduce the Chern-Simons
coupling

n k 2-
Scg = Z 4—Af (AAdAA — EZAAAAAA)
a=1 ="

kyEZ are called Chern-Simons levels.

The theory is specified by giving a quiver diagram, Chern-
Simons levels, and the superpotential.

4 . )




Gravity side

The gravity side of the duality is M-theory in AdS,xM,.
AdS,: 4-dim anti-de Sitter space

M.: 7-dim Sasaki-Einstein space

In this talk we consider only weakly coupled M-theory
= 11-dim supergravity

For various Sasaki-Einstein manifolds M-, dual Quiver
Chern-Simons theories are proposed.



The simplest example of AdS,/CFT,

O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, arXiv:0806.1218

ABJM model
ALA, dual
+k ‘ p— ‘ -k
B,,B,
W = tr (A,B,A,B,-A,B,A,B,)

-

M-theory in
AdS,x S’/Z,

~

The ABJM model has N=6 supersymmetry



Since the discovery of the ABJM model, many examples of
AdS,/CFT, duality have been proposed.

In particular, in the case with N=2 supersymmetry, there
exists a simple prescription to obtain dual quiver CS theory
for a large class of M, (toric Sasaki-Einstein manifold).

(brane tilings)

In many cases, however, only agreement of the moduli space
(vacuum structure) has been confirmed.



If we can compute the superconformal index

I(‘.’B, h@) = tr (_1)FqD_R_J.TR+2J thi

L % -

on both sides, we can obtain information about excitations.

The interpretation of trace on each side of the duality is as
follows.

Gauge theory side
The trace is taken over all states in the Hilbert space of
the gauge theory defined in S2.

Gravity side

The trace is taken over all Kaluza-Klein excitations In M.,
Because we consider weak coupling limit on this side, this
computation is straightforward (but tedious).




For the ABJM model and its duai theory, the superconformal
index has been computed, and the complete agreement has
been confirmed.

J. Bhattacharya and S.Minwalla, arXiv:0806.3251[hep-th]
S. Kim, arXiv:0903.4172[hep-th]

This fact means that there exists one-to-one correspondence
between spectra of BPS states on both sides of the duality.

This one-to-one correspondence is highly non-trivial.



When k=1, the dual geometry is S, and the KK excitations
belong to representations of SO(8).

On the other hand, the manifest global symmetry of ABJM
Lagrangian is SU(4)xU(1), a subgroup of SO(8).

To obtain SO(8) representations on the gauge theory side, we

need to combine monopole operators and operators consisting
of elementary fields.

/ Lagrangian symmetry \
SU(4)xU(1)
dual isometry
enhancement 1 50(8)
SO(8) =
\_

/
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J. Choi, S. Lee, and J. Song, arXiv:0811.2855
Y.l. and S. Yokoyama, arXiv:0908.0988

If we can extend the same analysis to N=2 case, it provides
a strong evidence of the duality for a large class of dual
pairs.

Difficulty:

When N =3, the R-symmetry is non-Abelian, and the R-
charge is protected from the gquantum corrections.

In the case of N=2 theory, the R-symmetry is SO(2)=U(1),
and thus the R-charge can change continuously.
The R-charge are not protected even for BPS operators.

— large anomalous dimension



Until recent, there was no way to treat such theories with
large quantum corrections.

Recently, a formula of S3-partition function was derived for
theories with such quantum corrections.

S3 partition function: 7 = /’D(I)e—s[‘b]

D. L. Jafferis, arXiv:1012.3210
N. Hama, K. Hosomichi, and S. Lee, arXiv:1012.3512

This result was obtained by using localization.”

S. Yokoyama and | showed in arXiv:1101.0557 that the same
method can be used for the superconformal index.



Theory in S2x(time)

The index can be written in a path integral form of the theory
in S?xS*.

The theory on S?x(time) is obtained from the theory on R3

by a Weyl rescaling.
"

e

0 —

~_
|0>
With this map, the operator O is mapped into the

corresponding state |0 >.

The dilatation D becomes the time translation (Hamiltonian).



3-dim N=2 superconformal symmetry

We consider N=2 superconformal field theories in 3d.

3-dim N=2 superconformal group --- OSp(2|4).
Bosonic subgroup --- SO(2); x Sp(4,R) = U(1); x SO(3,2)

Cartan generators
D: dilatation (time translation)
J: 3" component of the spin
R: R-charge

In general, we also have flavor symmetries, which commute
with superconformal group.

F.: Cartan generators of flavor symmetries.



3d N=2 superconformal algebra contains eight supercharges.

le Q2a Q3s Q4a 511 521 633 64'

In the following, we only use anti-holomorphic’ supercharges
with R-charge +1.

The parameter € for @ satisfies the Killing equation.
D, € = vp, (arbitrary spinor)
In the flat R3, there are four linearly independent solutions.
€ = E + $m7mz

SUSY corresponding to € and ¢ are called rigid and
conformal susy.



Transformation laws (anti-holomorphic part)

3d N=2 theory contains vector and chiral multiplets.

Vector multiplets (Am,0,A, D)
o = (€\), A, =—i(ey,)), 6A=0,
6D = i(ev*Dy) + i(Elo, ) + 5 (DuerN),

_ 0 e 2 _
o\ = —E'y””EFm, — y*eDyo +1De — §7”Dpea.
Chiral multiplets with weight A (¢, v, F)
bol = V2(&)), 6¢=0, o =2ieFt, GFT =0,

3 _ 02
b = V2ead — V2yHED 6 — \?{_ﬁﬂ’?’?“l}pﬁ

— V2i(ey* D) + V2i(eo)) + 2i(eN) o +

2v/2i
3

1

A— =

2

) (Dyey"v).



Localization and Index

Localization

Let us consider path integral

Z = f Dde 512

Usually, it is difficult to perform the path integral analytically.

Let us assume the existence of the fermionic symmetry Q, and
consider the following deformation

Z(t) = f DPe~51#I-1QV



If Q?V=0, this does not depend on the parameter t.
d ' _S[®]—tQV
~2(t) = [ DB(-QV)e

- f D3 - Q [Ve SV —

If we can find appropreate Q and V, we can perform the
path integral in the weak coupling limit t - o=,

In N=2 theory, we can use one of the supercharges as Q.



qD — ¢—BD  Time translation
@) = q—R—JwR'*'szf'i Chemical potentials

One can easily show that this does not depend on q, and
only states saturating the BPS bound

{,Q}=D-R-J>0 (@=Qy)
contribute to the index.
oL _  (—1F (00" + O
15, = [(=17(QQT+Q'Q)( )]

=tr [(-1)7(-Q'Q +Q'Q)(--+)] =0




To use the localization, we rewrite the definition of the index in
the path integral form.

The trace is realized by compactifying the time (radial) direction.

I(z, h;) = fD@e_S[‘D] Br

—

The insertion of the operator O is introduced as the
boundary conditions around St

OP(z° + Or) = &(z°)

| can be expressed as




For vector multiplets, we use the following V
— ] —
V=0, (—Ztr)\)\)

Then @V is given by

— 1 ? 1 1 1
_ - mn ~ . mnp - m.. _ _ S
— — 1 — 1 (¢
~ (W"Don) = (N, ) = 52 (V") + 1 | 5970 g + oD%

This contains kinetic terms for vector multiplets.
In the weak coupling limit t—> e the path integral reduces
to Gaussian integral around saddle points.



Saddle points

Saddle points are given by
1 —cosf

A= Amdz™ = adz® + m———ad¢,
D= 0, g = E: A=0.
2r
Labeled by
a --- holonomy around S* i=d A
(flat direction) st
m --- GNO monopole charge. - ij{ F
(quantized) am Js2

Both a and m take values in Lie algebra of the
Cartan subgroup of the gauge group G.



By the Weyl rescaling from S?xR to R3, states with magnetic
flux are mapped to local operators with magnetic charge.
Such operators are called monopole operators.

N/

P xx\

= 17l

~_

Monopole operator Magnetic flux along St



GNO monopole charges

The monopoles arising here are GNO monopoles.

For U(N) gauge theory, the GNO monopoles are Dirac
monopoles for the Cartan subgroup U(1)", whose charge
is specified by N integers.

1 :
o7 Fuo F = diag(m1,...,mn)

We can change the order of the N components of the
magnetic charge by Weyl reflections. We always arrange
the components in discending order.



They are not conserved charges. Only the sum of N
charges (trace) is conserved .

'm=i trkF =mq + -+ mpy.
271' 2

This is often called a topological charge.

For quiver gauge theories with gauge group U(N)",
monopole charge is specified by nN integers, and we
can define n topological charges.

Correspondingly, we have n global U(1) symmetries.
(One of them is decoupled.)



For a chiral multiplet with Weyl Weight A, we adopt
2
and then the deformation Lagrangian is

Q,V =—¢'D,,D™¢ + ¢p'ocd + ¢' D¢ — % (2A — 1) ¢"Dag + leA(l —A)pTp— FTF

1
r

- @y Dv) - Gov) - 1 (A= 3) Bwv) - VB O) - VEGR)e

There is no flat direction for chiral multiplets.

In the large t limit, the path integral for chiral multiplets
completely reduces to Gaussian integrals.



Formula for the index

Gaussian integral gives

/ DPe 51l — Z f [da]e=%0(™) Z . tor(@, m) Zeniral (@, m)

where Z/[da] represents summation over saddle points.

Zvec(aa m) = H T 2|a(m)| (1 _ e‘ia(a)x|a(m)|) |
a€G,a(m)#0
Zch(a, m H e Elp(m”P(G)xg(l A)|p(m)| H h—%|p(m)|p
pER
Hk 0(1 — e—tp(a) plp(m)|+2— A+2k H )

]._.[k 0(1 - e’*P(ﬂ)mlP(m)|+A—|—2k H hF )
(hi — Zi)



Large N limit

In the large N limit, it is convenient to decompose
monopole charges into three parts.

(5)3)3)21010101_1;_3)_4) - (513)3)2) + (O)O)O) + (_11_3)_4)

Correspondingly, the index factorizes into three parts:

I = J(H) r(0) 7 (=)

1#) (16)) includes contribution of only positive(negative)-
charge monopoles.

10) js perturbative factor which does not contain
monopole contributions.



A non-trivial check of AdS/CFT

Simple example D. Martelli and J. Sparks, arXiv:0909.2036
Gravity side
V32 = 80(5)/80(3)

Homogeneous Sasaki-Einstein manifold

Isometry = SO(5) x U(1); (non-toric)

Gauge theory side

Dual Chern-Simons theory (We consider k=1 case)
Ay, Az

o ey

k BB ~
W = tr(@? — 61"‘7.@11‘14,33' + GjiBjA-g(Pg — (I)g)
Manifest global symmetry = SU(2) x U(1),,, x U(1);




We want to confirm the symmetry enhancement by the
monopole operators.

SU(2) x U(1)y, > SO(5)

On the gauge theory side, we define F, and F, as follows.

(I)l (I)z Al Az Bl B2
FF 0 0 3 -3 3 -3
Fo 0 0 0 0 0 0

F, is a topological charge (monopole charge), which does not
act on elementary fields.



SU(2) symmetry

F, is the Cartan generator of the manifest SU(2) global symmetry.
Due to the SU(2) symmetry, the spectrum is symmetric under F,—>-F,.
This implies that the index satisfies

1(x,2,,2,)=I(x,1/z4,2,).

Charge conjugation

The charge conjugation flips the sign of the monopole charge F,.
Due to the charge conjugation symmetry index satisfies

1(x,2,,2,)=I(x,2,,1/2,).

Weyl reflection

If the symmetry is enhanced to SO(5), the index should be invariant
under Weyl reflections of SO(5). This require the index to satisfy

1(x,2,,2,)=1(x,2,,2,).

We want to confirm that the index actually has this symmetry.



Perturbative factor

I =1 4207 + (x1(z1) + 9)2%° + (6 + 2x1(21))2* + - -

Where x is the SU(2) character

zs-l—l — 8

Xs(z)= ~ — 1 =Zs+zs_1+---+z_3,

This does not include monopole contributions, and is
independent of z,.



Monopole contributions

U(N);  U(N);

1 W 2Px(a)a e ()5 + a?xs ()%
2} 2} z*/3x1(21)22 + 2(x1(21) — D2z + -+
1Ly 1 z4/3x1(21)22 + 23 (x1(21) + Dza + -+
Gh B o(xg ()25 +
21 2,1 2(xy(21) + x3(21)25

+) {1,1,1} {1,131} “’2("%("1))23/2"'“'

I =14 23 (21) 2/ + 24/ (x,i,( 1)23'% + 2X1(z1)22)

+ z? (x;(zl)zzl/2 +2x1(21)22 + (3x;(z1) + x%(z1)) zgﬂ) +e



:T
:T
O'CJ
(‘)

njugation giv
I( )(.7: 21,2 )=I(+)(.’L',Z1, 21),

Combining all factors, we obtain the complete index
I =7(Hr©@7C)
=1+ /3 (x% (21)x 1 (22) + 2) +z*/3 (2X1(21)X1(22) +3x 3 (21)x3(22) + 5)

+ z2 (3)(% (Z1)Xg(z2) + X3 (21))(%(22) + X%(fﬂ)x;(zz)
+ 6x1(21)x1(22) + 8 (21)x3 (22) + 10) .

This is invariant under the exchange of z, and z,.
This fact strongly suggests the symmetry enhancement to SO(5).



We also performed similar analysis for the following duali pairs.

Quiver CS theories

Dual manifolds

G  Lagrangiansymmetry | manifold isometry

U(N)*  SURXU(LxU(1)xU(1) | Q! SU(2)xSU(2)xSU(2)xU(1)
U(N)*  SU(2)xSU(2)xU(1)xU(1) | Q222 SU(2)xSU(2)xSU(2)xU(1)
U(N)®  SU(3)xU(1)xU(1) ML SU(3)xSU(2)xU(1)
U(N)2  SU(2)xU(1)xSU(2) NO10 SU(3)xSU(2)

In all cases, the symmetry of the index is consistent with the
symmetry enhancement predicted by AdS/CFT.



:
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We derived a general formula for the superconformal index.

By using it, we computed the index for several large N quiver
Chern-Simons theories which are proposed as dual theories of
M-theory in AdS,xM,.

The obtained indices are consistent with the isometry of the
internal space M.,

(Index is invariant under the Weyl group of the isometry.)



Open questions

Comparison to the index computed on the gravity side.
S. Cheon, H. C. Kim, and S. Kim, arXiv:11011101[hep-th]

Analytic proof of the agreement for N(size of gauge group)=2.
A technical difficulty for chiral theories. (large N limit)

Relations to 2d and 4d theories.
Y. 1., arXiv:1104.4482

Gravity dual of the generalized index.
A. Kapustin, and B. Willett, arXiv:1106.2484



