Constraints on modified gravity from future SZ surveys

DAISY MAK (USC) NICOLO' MACELLARI (USC) ELENA PIERPAOLI (USC) FABIAN SCHMIDT (CALTECH)

Outline

- Modified gravity vs LambdaCDM
- Modified gravity f(R) model
- Phenomenology of f(R) model
- Observational constraints

Challenge to General Relativity + Dark energy ?

Excess of high redshift/ high mass clusters abundances provide argument for alternatives theory

Mortonson, Hu, Huterer (2009)

Pink Elephant

Mortonson, Hu, Huterer (2009)

What should be changed ?

• Einstein equation by General Relativity

Modifications of Gravity

$$F(g_{\nu\mu}) + G_{\nu\mu} = 8\pi G T_{\nu\mu}$$

DGP braneworld
acceleration (Dvali et al. 00,
Khoury & Weltman 04,
etc....)

of(R) modified action (Capzziello 02, Beans et. al. 05, Amendola et al. 08....)

0.....

Modfied Gravity vs Dark Energy

• Einstein equation by General Relativity

Modifications of Gravity

New energy sources

$$G_{\nu\mu} = 8\pi G T_{\nu\mu}$$

DGP braneworld
acceleration
of(R) modified
action

QuintessenceK-essenceDE

0.....

Both scenarios are lacking compelling models Can only study illustrative toy models with generalized features

Good Modified Gravity Models ?

- Models are already constrained by data:
 - Linear regime: CMB, SN, ISW, BAO
 - Model independent constraints, but limited constraining power
 - Non-linear regime: weak lensing, cluster abundance
 - High S/N observables, but model dependent
- Looking for models which
 - Reduce gravity to GR in high density/curvature
 - Contains freedom to reproduce cosmological expansion history

Modified Action *f*(*R*) Model

• Modified action in *f*(*R*) gravity

$$S_G = \int d^4x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} \right]$$

- Effect:
 - Gravitation force on scales is enhanced below range (Compton length)
 - Chameleon mechanism: Compton length shrink in region with deep gravitational potential
- Our *f*(*R*) model:

$$f(R) = -16\pi G\rho_{\Lambda} - f_{R0} \frac{\bar{R_o}^2}{R} \propto \frac{1}{R}$$

Simulating Modified Gravity

• The f_R field equation:

$$\nabla^2 \delta f_R = \frac{a^2}{3} [\delta R(f_R) - 8\pi G \delta \rho_m]$$

• Modified Poisson equation: $\nabla^2 \Psi = 4\pi G a^2 \delta a$ $\nabla^2 \Psi = 4\pi G a^2 \delta a$

$$\nabla^2 \Psi = 4\pi G a^2 \delta \rho_m - \frac{1}{2} \nabla^2 \delta f_R$$

- Matter falls in Newtonian potential, modification to gravity are completely contained in ψ
- The field is sourced by deviation from GR relation between curvature R and density ρ

Chameleon Effect

- To satisfy local test of gravity, e.g. Solar System Test
- Today value: $\lambda_{C0} \approx 32 \sqrt{\frac{|f_{R0}|}{10^{-4}}} \approx 32 \text{Mpc}$ The Compton length separates two regime:

$$\lambda_c \ll \lambda$$

- $\delta R \ll 8\pi G \delta \rho_m$
- Curvature is small
- Dynamical potential is enhanced by 4/3

$$\delta R \approx 8\pi G \delta \rho_m$$

- Deep gravitational potential
- •Chameleon operate and shut down the fR field

Forecast the uncertainty of f_{Ro}

- f_{Ro} : Control the strength and range of the force modification
- To satisfy solar system test, the background field should be comparable to gravitational potential

$$|f_{R0}| < |\Psi| \sim 10^{-6} - 10^{-5}$$

• Excess is max at group mass scale

Schidmt et. al. (2008)

Local cluster abundance (*Chandra X-ray*) gives $|f_{R0}| < (1.3^{+1.7}_{-0.6}) \times 10^{-4}$ at 95.8% C.L.

Can we do better ?

Parameters: cosmology + f_{Ro} + survey parameter Observables:

Cluster abundance (dN/dz) + 3D power spectrum (P(k))

Goal: Push down the limits to $f_{Ro} \sim 10^{-6}$ or 10^{-7}

Fisher Matrix Forecast

- **Predict the error** of cosmological parameters in a given model from future experiments
- Project the 68% CL contour on the parameter plane centered on the fiducial values

Fisher Matrix Forecast

Cosmological parameter (WMAP5)		
n _s	Primordial spectral index	0.963
σ_8	Normalization of P(k)	0.8
$\mathbf{\Omega}_{\mathbf{\Lambda}}$	Dark Energy density	0.7
$\mathbf{\Omega}_{\mathrm{M}}\mathbf{h^{2}}$	Dark matter density	0.15
$\Omega_{ m b}{ m h}^2$	Baryon density	0.023
$f(R)$ parameter (fixed to Λ CDM)		
λ_{Co}	Current compton length	0
Cluster Survey parameter		
B _{mo}	Mass bias: Normalization	-0.15
α	Mass bias: slope	0
σ_{mo}	Mass scatter: Normalization	0.1
1110		
β	Mass scatter: slope	0

Current Constraints

Schidmt et. al. (2008)

Local cluster abundance (*Chandra X-ray*) gives $|f_{R0}| < (1.3^{+1.7}_{-0.6}) \times 10^{-4}$ at 95.8% C.L.

Future Constraints

(SPT, SPTpol) 148, 218, 277 GHz

South Pole Telescope Atacama Cosmology Telescope Polarization survey (ACTpol) 150 GHz

Planck Satellite 30-857 GHz

Future Constraints

18µK/arcmin² Ω~2500 sq degrees 1000 clusters

4µK/arcmin²

 Ω ~625 sq degrees

5000 clusters

20µK/arcmin² Ω~4000 sq degrees 1000 clusters 1µK/arcmin² Ω~30,000 sq degrees 2500 clusters

South Pole Telescope (SPT, SPTpol) 148, 218, 277 GHz Atacama Cosmology Telescope Polarization survey (ACTpol) 150 GHz

Planck Satellite 30-857 GHz

<u>Cluster Abundances</u>

TABLE II: Marginalized errors on λ_{C0} and f_{R0}

Conclusion

- With latest N-body simulation of *f*(*R*) modified gravity, good constraints that push down to solar-system limit can be obtained
- Power spectrum overpower number count and give $\sigma_{fRo} \approx 10^{-6}$
- Higher sensitivity surveys, such as SPTpol, that include lower m clusters are more powerful to probe $|f_{Ro}|$

