Seminar IPMU, U.Tokyo October 11, 2011

# Gamma-ray probes of dark matter annihilation

### **Shin'ichiro Ando** GRAPPA, University of Amsterdam

## Self-introduction



- 2001–2006: Graduate student and JSPS Fellow, University of Tokyo
- 2006–2009: Sherman Fairchild Postdoctoral Scholar, Caltech
- 2009–2011: Senior Postdoctoral Scholar (JSPS Fellowship for Research Abroad), Caltech
- 2011 onward: Assistant Professor, University of Amsterdam

# Introduction

## Nonbaryonic dark matter

Bergstrom, Rep. Prog. Phys. 63, 793 (2000)



Bullet cluster (1E0657-56)



- Many observations indicate presence of nonbaryonic dark matter
  - Galaxy rotation curves, galaxy clusters, gravitational lensing, CMB anisotropy, etc.
- ~80% of total matter in the Universe

# Identity: WIMP?

- Weakly Interacting Massive Particle (WIMP)
- WIMP with weak-scale interactions naturally explains the relic density
- E.g., supersymmetric neutralino

Jungman, Kamionkowski, Griest, *Phys. Rep.* **267**, 195 (1996); Bertone, Hooper, Silk, *Phys. Rep.* **405**, 279 (2005)



## Dark matter annihilation

- WIMPs may annihilate into standard model particles (photons, positrons, neutrinos, etc.)
- Energy of product particles is fractions of WIMP mass (E ~ GeV-TeV)
  - High-energy detectors are necessary
- Ongoing projects
  - Fermi, ACTs (γ, e<sup>±</sup>)
  - PAMELA, ATIC (e<sup>±</sup>)
  - IceCube, ANTARES (V)



## Fermi Gamma-Ray Space Telescope



- Launched in summer 2008
- Collect photons from all sources in the entire sky
- Sensitive to photons between ~20 MeV and 300 GeV
- Angular resolution gets sub-degree for > I GeV

## Where to look for annihilation signature

- Galactic center
- Galactic smooth halo component
- Nearby dwarf galaxies (substructure)
- Galaxy clusters
- Diffuse gamma-ray background

Contributions from both Galactic subhalos and large-scale structure

Dark matter substructure seen by simulations e.g., Diemand, Kuhlen, Madau, Astrophys. J. 657, 262 (2007)

## Search for dark matter in dwarf galaxies

#### Fermi-LAT, Abdo et al., Astrophys. J. 712, 147 (2010)

| Name                                                                                                                                           | Distance<br>(kpc)                                                                                                 | year of discovery                                                                            | M <sub>1/2</sub> /L <sub>1/2</sub><br>ref. 8                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ursa Major II<br>Segue 2<br>Willman 1<br>Coma Berenices<br>Bootes II<br>Bootes I<br>Ursa Minor<br>Sculptor<br>Draco<br>Sextans<br>Ursa Major I | $(kpc)$ $30\pm 5$ $35$ $38\pm 7$ $44\pm 4$ $46$ $62\pm 3$ $66\pm 3$ $79\pm 4$ $76\pm 5$ $86\pm 4$ $97\pm 4$ $122$ | 2006<br>2009<br>2004<br>2006<br>2007<br>2006<br>1954<br>1937<br>1954<br>1990<br>2005<br>2006 | $\begin{array}{r} 4000^{+3700}_{-2100}\\ 650\\ 770^{+930}_{-440}\\ 1100^{+800}_{-500}\\ 18000??\\ 1700^{+1400}_{-700}\\ 290^{+140}_{-90}\\ 18^{+6}_{-5}\\ 200^{+80}_{-60}\\ 120^{+40}_{-35}\\ 1800^{+1300}_{-35}\\ 1800^{+1300}_{-1200}\\ 1400^{+1200}\\ \end{array}$ |
| Hercules                                                                                                                                       | $132 \pm 12$                                                                                                      | 2006                                                                                         | $1400^{+1200}_{-700}$                                                                                                                                                                                                                                                 |
| Fornax                                                                                                                                         | $138\pm 8$                                                                                                        | 1938                                                                                         | $8.7^{+2.8}_{-2.3}$                                                                                                                                                                                                                                                   |
| Leo IV                                                                                                                                         | 160±15                                                                                                            | 2006                                                                                         | $260^{+1000}_{-200}$                                                                                                                                                                                                                                                  |

 No detection so fa constrain some SU;



## Plan of this talk

 Gamma rays from dark-matter annihilation from galaxy clusters

 Angular power spectrum of the gamma-ray background from dark matter annihilation

> Ando, Komatsu, *Phys. Rev. D* **73**, 023521 (2006) Ando, Komatsu, Narumoto, Totani, *Phys. Rev. D* **75**, 063519 (2007) Ando, *Phys. Rev. D* **80**, 023520 (2009)

## Gamma rays from dark matter annihilation in galaxy clusters



Work in progress with E. Komatsu & D. Nagai



# Galaxy clusters

- The largest virialized dark-matter structure
  The largest number of dark-matter particles
- The largest rate of annihilation

- Density profile well represented by NFW
- Abundance of subhalos not well known yet

## What we do

#### Theory

- Estimate of gamma-ray flux for 49 large nearby clusters
- Using the latest models of clusters and halos (e.g., mass-concentration relation)
- Analysis
  - 2.8 years of Fermi-LAT data (cf., 11-month data in previous LAT paper)
  - Use updated models of diffuse backgrounds and sources
  - Analyze 49 clusters (cf., 7 clusters analyzed so far)
  - Improve upper limits on cross section with stacking analysis

## Dark matter annihilation in galaxy clusters

Gamma-ray intensity from annihilation

$$I_{\gamma}(\theta, E) = \frac{1}{4\pi} \frac{1}{(1+z)^2} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \frac{dN_{\gamma}((1+z)E)}{dE} \int dl \ \rho^2(r(l,\theta))$$

$$\int dl \ \rho^2(r(l,\theta))$$
Cosmological redshift Particle-physics factor Astrophysical factor

#### • Depends on three factors

- Particle physics: annihilation cross section and dark-matter mass; depends on SUSY models, etc.
- Astrophysics: density profile and subhalos
- Cosmological redshift: straightforward if redshift is measured

## Mass and annihilation cross section



 Mass of WIMP (neutralino) is typically tens of GeV to TeV

 To thermally produce dark matter with correct abundance, the cross section will be <σv> ~ 3×10<sup>-26</sup> cm<sup>3</sup>/s

## Annihilation channel and gamma-ray yields



- Annihilation channel depends on what the neutralino is (i.e., mainly gaugino or higgsino)
- Here, we treat three annihilation channels phenomenologically
- Gamma rays from both hadronic decays and internal bremsstrahlung are included

## Astrophysical factor: density profile

Umetsu et al., *Astrophys. J.* **738**, 41 (2011)



 Numerical simulations imply universal form of density profile: NFW

 $\rho = \frac{\rho_s}{(r/r_s)(r/r_s+1)^2}$ 

- $\rho \sim r^{-1}$  for small radii, and  $\rho \sim r^{-3}$  for large radii
- NFW profile is confirmed with lensing observations

### Recap: gamma-ray intensity

Gamma-ray intensity from annihilation



Gamma-ray spectra per annihilation

$$I_{\gamma}(\theta, E) = \frac{1}{4\pi} \frac{1}{(1+z)^2} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \frac{dN_{\gamma}((1+z)E)}{dE} \int dl \rho^2(r(l,\theta))$$



Mass and annihilation cross section



Density profile: NFW

## Intensity profile



- DM mass: 100 GeV
- Cross section assumed:  $<\sigma_v> = 3 \times 10^{-26} \text{ cm}^3/\text{s}$
- Photon per annihilation:  $N_{\rm Y} = 1$

#### Three representative clusters:

|           | Z     | M <sub>vir</sub><br>(10 <sup>14</sup> h <sup>-1</sup> M <sub>sun</sub> ) | r <sub>vir</sub><br>(h <sup>-1</sup> Mpc) |
|-----------|-------|--------------------------------------------------------------------------|-------------------------------------------|
| Fornax    | 0.005 | 0.8                                                                      | 0.9                                       |
| Coma      | 0.023 | 6.8                                                                      | I.8                                       |
| Centaurus | 0.05  | 62                                                                       | 3.7                                       |

## Uncertainty: substructure



Diemand et al., *Nature* **454**, 735 (2008)

- Numerical simulations find lots of substructure
- This will boost annihilation signals
- Current resolution limits for cluster-like halos are ~5x10<sup>7</sup> M<sub>sun</sub>

## Uncertainty: subhalos

Gao et al., arXiv:1107.1916 [astro-ph.CO]



- Minimum subhalo mass may be as small as Earth mass (10<sup>-6</sup> M<sub>sun</sub>) for the neutralino dark matter
- Currently no simulations can resolve such fine structure
- Simple extrapolation shows that the boost highly depends on the minimum subhalo mass

## Subhalo boost of intensity



- Intensity due to subhalos is much more extended than the smooth component
- Subhalo boost factor is ~1000 for cluster-size halos, if minimum subhalos are of Earth size

## Analysis of Fermi-LAT data

- We analyze data of Fermi-LAT for 2.8 years around 49 relatively large galaxy clusters
  - DIFFUSE and DATACLEAN class of photon data between MET = 239557417 s and 329159098 s
  - 23 clusters from X-ray (Reiprich & H. Boehringer 2002) and 34 from cosmology catalogs (Vikhlinin et al. 2009); 3 are found in both and 5 are at low Galactic latitudes
- We first perform likelihood analysis of the data using the *known* sources (from 2FGL catalog) as well as both Galactic and extragalactic backgrounds
  - Use photons between I GeV and 100 GeV, and divide them into 20 energy bins equally spaced logarithmically
  - Models are convolved with P6\_VII instrumental response functions

### Fermi-LAT data and best-fit model for Fornax



- There is no gamma-ray source at cluster location
- We then add cluster component at the center of the best-fit model map, to put upper limit on that component

## Upper limits on cluster component

#### Analyze

#### With



### Limits on annihilation cross section from Fornax

Ackermann et al., JCAP 1005, 025 (2010)

#### Host halo only



34-month data

## Cross section limits for all clusters



## Cross section limits for all clusters



### Cross section limits from stacking analysis



Limits improve by 10–20% (low masses) to a factor of 2 (high masses)

## Dependence on minimum suhalo mass



- If the minimum subhalo mass is around Earth size, then the canonical value of annihilation cross section is excluded
- This does not depend on annihilation channel that much
- If the minimum mass is around the current resolution limit, then the host-halo component dominates the signal

### Another effect: baryon contraction



Gnedin et al., Astrophys. J. 616, 16 (2004); arXiv:1108.5736 [astro-ph.CO]

- Baryons lose energy and angular momentum due to radiation
- This will *increase* the gravitational potential toward the center
- Dark matter is also dragged toward the center as a result of this
- This affects annihilation flux by a factor of ~2–200 (preliminary)

## Summary: galaxy clusters

- We analyzed 2.8-yr Fermi-LAT data for 49 galaxy clusters
  - Comparison made with the latest source models, diffuse backgrounds, and cluster models
  - Obtain upper limits on annihilation cross section
- Strongest limits are obtained with Fornax for smooth host-halo model, and with Centaurus for clumpy subhalo model
- Stacking clusters will improve limits by ~10–20% (low masses) to a factor of 2 (high masses)
- Astrophysical implications will be discussed (future)

## Plan of this talk

 Gamma rays from dark-matter annihilation from galaxy clusters

 Angular power spectrum of the gamma-ray background from dark matter annihilation

> Ando, Komatsu, *Phys. Rev. D* **73**, 023521 (2006) Ando, Komatsu, Narumoto, Totani, *Phys. Rev. D* **75**, 063519 (2007) Ando, *Phys. Rev. D* **80**, 023520 (2009)

### Gamma-ray background from dark matter

Large-scale structure from Millennium Simulation

Millennium Run 10.077.696.000 particles



Diemand et al., *Nature* **454**, 735 (2008)

- Dark matter is annihilating everywhere!
- It gives contribution to the gamma-ray background

### Fermi 1st year result on cosmological annihilation



### Spectrum of "isotropic" gamma-ray background

#### Fermi-LAT, Abdo et al., JCAP **04**, 014 (2010)



## Diffuse gamma-ray background



- What would the gamma-ray background map look like?
- What information on dark matter can we extract from the gamma-ray map, and how?

## 2-point statistics: Angular correlation





 Can Fermi do the same as WMAP in gamma-ray sky?

## Angular power spectrum



- Take spherical harmonic expansion → square of coefficient: power spectrum
- Multipole  $\ell$  is related to  $\theta$ through  $\theta = \pi / \ell$
- We need to know how the halos are distributed, mass function, and density profiles
- We apply "halo model" to compute the power spectrum

Ando, Komatsu, Phys. Rev. D 73, 023521 (2006)

### Detectability of the angular power spectrum



### "Subhalo-dominated"

Dark matter signal Dark matter correlation Blazar background Dark matter-blazar cross correlation

- Dark matter mass: 100 GeV
- At 10 GeV for 2-yr exposure
- Blazar component is easily discriminated
  - Blazar power spectrum is nearly independent of energy

## "No substructure" or "smooth halo" limit



### "Host-halo-dominated"

Dark matter signal Dark matter correlation Blazar background Dark matter-blazar cross correlation

• 
$$M_{\min} = 10^{-6} M_{sun}$$

 Our best estimate: "If DM annihilation contributes > 30% of the mean intensity, Fermi should be able to detect DM anisotropy"

### Anisotropy due to Galactic subhalos

Ando, *Phys. Rev. D* **80**, 023520 (2009)



• 
$$M_{\rm min} = 10^{-6} M_{\rm sum}$$

- Ish term dominates at smaller scales
- Deviation from shot noise is due to spatial extention of subhalos
- Good chance of detection if 50:50 mixture with blazars

## Followup studies



Zavala, Springel, Boylan-Kolchin (2010)

Cuocco et al. (2010)

#### Dark matter annihilation

Cuocco et al. 2007, 2008; Siegal-Gaskins 2008; Zhang, Sigl 2008; Taoso et al. 2008; Fornasa et al. 2009; Siegal-Gaskins, Pavlidou 2009; Zavala et al. 2010; Hensley et al. 2010; Ibarra et al. 2010; Cuocco et al. 2010; Zhang et al. 2010

#### Astrophysical sources

Miniati et al. 2007; Ando, Pavlidou 2009; Siegal-Gaskins et al. 2010

## Analysis ongoing...



From Komatsu's talk at IPMU, 2011

Fermi-LAT Collaboration + Komatsu

- So far the angular power spectrum is consistent with shot noise due to finiteness of the photon counts
- The real difficulty, though, is to remove astrophysical contribution (mainly from blazars)

### Summary: gamma-ray background anisotropy

- Fermi will provide information on the origin of the gamma-ray background through anisotropy
  - This isn't just for dark matter, but anything contributing considerably
- From angular power spectrum, we see that if extragalactic DM component is > 30%, Fermi should discriminate it from blazars' in anisotropy
- Galactic subhalos might give larger power spectrum, and so detection would be more promising
- This series of research is now expanding farther, including energy dependence of power spectrum, I-point PDF (Lee, Ando, Kamionkowski 2009), etc.

## GRAPPA

### GRavitation and AstroParticle Physics Amsterdam

#### Kick-off members

G. Bertone



P. Decowski

**B.** Freivogel

S.Ando



#### Existing members



J. de Boer



S. Bentvelsen



R.Wijers

I amsterdam.

## GRAPPA

• GRavitation and AstroParticle Physics Amsterdam

### Kick-off members



J. de Boer

S. Bentvelsen

**R**.Wijers

I amsterdam