## Interactions during propagation to the Earth

#### Interactions



### GZK mechanism

- photopion production
  - ✓ I<sub>att</sub>~10Mpc @ z=0
  - $\checkmark$  ~30% of  $E_{\rm p}$  is lost per reaction

### Predictions are :

- 1. a spectral cutoff @~7x10<sup>19</sup>eV
- 2. The origin of the highest energy cosmic rays is within ~50Mpc.



## **Detection of UHECRs**

UHECRs are indirectly detected through the properties of extensive air showers.



# **UHECR** Arrival Distribution

Pierre Auger (PAO)

### AGASA



#### Takeda et al. 1999

- Ground-based detector
- Exposure~1300 km<sup>2</sup> sr
- Akeno (Japan)
- Ang. Resolution  $\sim 2^{\circ}$
- Ene. Resolution ~ 30%
- E>4x10<sup>19</sup>eV 57 events
- Small-scale anisotropy
- Super-GZK events



#### Abraham et al. 2008

- Hybrid detector
- Exposure~9000 km<sup>2</sup> sr
- Pampa Amarilla (Argentina)
- Ang. Resolution  $\sim 1^{\circ}$
- Ene. Resolution ~ 22%
- E>5.7x10<sup>19</sup>eV, 27 events
- Small-scale anisotropy
- Correlation with AGNs
- GZK steepening



#### Abbasi et al. 2008

- Fluorescence detector
- Exposure<850 km<sup>2</sup> sr
- Utah (USA)
- Ang. Resolution  $\sim 0.8^{\circ}$
- Ene. Resolution ~ 30%
- E>5.6x10<sup>19</sup>eV, 13 events
- No small-scale anisotropy
- No Super-GZK events
- No Correlation



<u>Question</u>

> What is really the origin of UHECRs?

UHECRs themselves and their secondary neutrinos are used for probes.

> Anisotropic distribution of arriving UHECRs indicates the local number density of UHECR sources of  $10^{-4\pm1}$ Mpc<sup>-3</sup>, which is much larger than the number density of several plausible source candidates.

> Estimating upper/lower bounds of bursting UHECR sources as  $0.1 \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1} \lesssim \rho_0 \lesssim (60 - 3000) \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1}$ 

> Cosmogenic neutrinos enable us to obtain information on not only the origin of cosmic rays above the spectral knee but also UHECR sources at high-redshift universe ( $z \sim 1$ ).



- 1. Introduction (~20min)
- 2. Constraining Persistent UHECR Sources
- 3. Constraining the Rate of Transient UHECR Sources
- 4. Secondary Neutrinos
- 5. Conclusion



## Source Model

d>100Mpc  $\rightarrow$  isotropic



# Our IGMF model

Constructed from the IRAS PSCz catalog of galaxies



HT, Yoshiguchi, Sato 2006

- Observed structure is reflected
- > B∝ $\rho^{2/3}$ , normalized at Virgo cluster, as B=0.0, 0.1, 0.4, 1.0µG
- > Assuming isotropic distribution of galaxies in the IRAS mask
- ightarrow d>100Mpc  $\rightarrow$  uniform turbulent field with 1nG

## Galactic Magnetic Field



Magnetic field is Galactic disk

✓ Axisymmetric (AS) / Bisymmetric (BS)

 $\checkmark$  BS has field reversals, while AS does not.

Magnetic field in Galactic halo: much less known

 $\checkmark$  Spiral field with exponential decay in the z direction

 ✓ Classified by parity about Galactic plane: symmetric(S) or anti-symmetric (A)

Symmetric(S) of anti-symmetric (A) (A)

 $\checkmark$  A dipole field at Galactic center is also assumed.



Seminar @ IPMU Apr. 30, 2009

## A calculation method

Emitted cosmic rays rarely reach the Earth in simulation due to magnetic deflections.



- Many particles (2,500,000) with charges of -1 are ejected isotropically from the earth, and calculated their trajectories.
- If a trajectory passes a source, the particle has a certain contribution shown below to the "real" positive arriving CRs.
- 3. We regard the contribution factor of each CR as the probability that the CR is a "real" event observed at the earth.
- 4. We select trajectories corresponding to the probabilities.



#### HT, Yoshiguchi, Sato 2006

## 

An example of UHECR arrival distribution



EGMF



GMF







10<sup>19.6</sup> eV < E

~10<sup>-6</sup>Mpc<sup>-3</sup>

 $10^{19.0} \text{ eV} < \text{E} < 10^{19.1} \text{ eV}$   $10^{19.1} \text{ eV} < \text{E} < 10^{19.2} \text{ eV}$   $10^{19.2} \text{ eV} < \text{E} < 10^{19.4} \text{ eV}$  $10^{19.4} \text{ eV} < \text{E} < 10^{19.6} \text{ eV}$ 

## An example of UHECR arrival distribution



GMF

GMF + EGMF





~10<sup>-5</sup>Mpc<sup>-3</sup>

EGMF























## An example of UHECR arrival distribution

## GMF

An example of UHECR arrival distribution









~10<sup>-4</sup>Mpc<sup>-3</sup>







Source (d < 100 Mpc)









GMF

![](_page_14_Figure_6.jpeg)

![](_page_14_Figure_7.jpeg)

~10<sup>-4</sup>Mpc<sup>-3</sup>

## An example of UHECR arrival distribution

----

## UHECR Source Number density (PAO)

Auto-correlation function : a statistic for finding anisotropy in UHECR distribution

![](_page_15_Figure_2.jpeg)

# Comparison with n<sub>s</sub> of known objects

| Objects            | Number Density [Mpc <sup>-3</sup> ] |   |                             |
|--------------------|-------------------------------------|---|-----------------------------|
| Bright galaxy      | 1.3x10 <sup>-2</sup>                | 1 |                             |
| Seyfert galaxy     | 1.25x10 <sup>-2</sup>               |   |                             |
| GRB                | 1x10 <sup>-4</sup>                  | - |                             |
| Dead Quasar        | 5x10 <sup>-4</sup>                  |   | appropriate                 |
| Fanaroff-Reily 1   | 8x10 <sup>-5</sup>                  |   |                             |
| Bright quasers     | 1.4x10 <sup>-6</sup>                |   | too emall                   |
| Colliding galaxies | 7x10 <sup>-7</sup>                  |   |                             |
| BL Lac objects     | 3x10 <sup>-7</sup>                  |   | subdominant<br>contribution |
| Fanaroff-Reily 2   | 3x10 <sup>-8</sup>                  |   |                             |
|                    |                                     |   |                             |

### Several specific types of AGNs or GRBs

Seminar @ IPMU Apr. 30, 2009

![](_page_17_Picture_0.jpeg)

- 1. Introduction (~20min)
- 2. Constraining Persistent UHECR Sources
- 3. Constraining the Rate of Transient UHECR Sources
- 4. Secondary Neutrinos
- 5. Conclusion

# Transient Activity for UHECR generation?

Apparent n<sub>s</sub> depends on the energy of arriving cosmic rays

![](_page_18_Figure_2.jpeg)

 $au(E,d) \simeq 1.5 imes 10^5 \ Z^2 \left(rac{E}{10^{20} \ \mathrm{eV}}
ight)^{-2} \left(rac{d}{100 \ \mathrm{Mpc}}
ight)^2$  $\left(\frac{l_c}{1 \text{ Mpc}}\right) \left(\frac{B}{1 \text{ nG}}\right)$ yr

<u>Setup</u>

- uniform IGMF (1nG), GMF
  - $\succ$  GMF  $\rightarrow$  lower bound
  - > IGMF+GMF  $\rightarrow$  upper bound

| Source               | Typical Rate $\rho_0  [\text{Gpc}^{-3}  \text{yr}^{-1}]$ |  |
|----------------------|----------------------------------------------------------|--|
| HL GRB               | $\sim 0.1$                                               |  |
| LL GRB               | $\sim 400$                                               |  |
| Hypernovae           | $\sim 2000$                                              |  |
| Magnetar             | $\sim 12000$                                             |  |
| Giant Magnetar Flare | $\sim 10000$                                             |  |
| Giant AGN Flare      | $\sim 1000$                                              |  |
| SNe Ibc              | $\sim 20000$                                             |  |
| Core Collapse SNe    | 120000                                                   |  |

#### Murase & HT 2009

![](_page_19_Picture_0.jpeg)

- 1. Introduction (~20min)
- 2. Constraining Persistent UHECR Sources
- 3. Constraining the Rate of Transient UHECR Sources
- 4. Secondary Neutrinos
- 5. Conclusion

## **Transition from GCRs to EGCRs**

Which is a better scenario?

![](_page_20_Figure_2.jpeg)

Seminar @ IPMU Apr. 30, 2009

## Neutrino Fluxes

![](_page_21_Figure_1.jpeg)

Setup for calculations

- $\succ$  IGMF is neglected.
- $\succ$  considering up to z~5.
- UHECR sources are uniformly distributed with some cosmological evolution models
- Neutrino fluxes in both scenarios are obviously different.
  - peak at ~10<sup>16</sup>eV for dip scenario
  - Larger flux at ~10<sup>20</sup>eV for ankle scenario
- Neutrino flux also depends on cosmological evolution of UHECR sources
  - Flux at ~10<sup>18</sup>eV is a good probe which is independent of the transition scenarios

Detectability is realistic!

![](_page_22_Picture_0.jpeg)

> We simulate the arrival distribution of the highest energy protons. The simulated results are compared to observed ones, and we obtain several constraints on the nature of the sources of the highest energy cosmic rays.

 $\succ$  We estimate the fluxes of cosmogenic neutrinos.

> Anisotropic distribution of arriving UHECRs indicates the local number density of UHECR sources of  $10^{-4\pm1}$ Mpc<sup>-3</sup>, which is much larger than the number densities of blazars and FR2 radio galaxies.

► Estimating upper/lower bounds of bursting UHECR sources as  $0.1 \,\mathrm{Gpc^{-3}\,yr^{-1}} \lesssim \rho_0 \lesssim (60 - 3000) \,\mathrm{Gpc^{-3}\,yr^{-1}}$  $(0.3 - 20) \times 10^{50} \,\mathrm{ergs} \lesssim \tilde{\mathcal{E}}_{\mathrm{HECR}}^{\mathrm{iso}} \lesssim 10^{54} \,\mathrm{ergs}$ 

Cosmogenic neutrinos enable us to obtain information on not only the origin of cosmic rays above the spectral knee but also UHECR sources at high-redshift universe.