Kozai-Lidov oscillations

- Kozai (1962 - asteroids); Lidov (1962 - artificial satellites)

- arise most simply in restricted three-body problem (two massive bodies
on a Kepler orbit + a test particle)

* e.g., wide binary star + planet orbiting one member of the binary

-in Kepler potential = -GM/r, eccentric orbits have a fixed orientation

generic axisymmetric potential Kepler potential
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Kozai-Lidov oscillations

* now subject the Kepler orbit to a weak, time-independent external
force F from the companion star

* because the orbit orientation is fixed even weak external forces
act for a long time in a fixed direction relative to the orbit and
therefore change the angular momentum or eccentricity

- if F ~ £ then timescale for evolution ~ 1/¢llbut nature of evolution
is independent of ¢

\FA
companion star

*
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Kozai-Lidov oscillations

Consider a planet orbiting one member of a
binary star system:

* because the force from the companion star is
weak we can average over both planetary and
binary star orbits

* keep only the quadrupole term from the
companion

- because of averaging the gravitational potential
from the companion is fixed, so energy E is
conserved (E=-GM-~/2a so semi-major axis a is
conserved)

» for circular companion orbit the potential is
axisymmetric so J; is conserved

- accidentally, it furns out that J. is conserved
even if companion orbit is eccentric

planet

Xstial body

pericenter

E,c\'\?“c
T
True anomaly /

Argument of perihelion v

N

Longitude of the ascending node Vernal point

binary star orbital plane
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Averaged Hamiltonian is

H = e[5e?sin® isin® w — (1 — €?) cos? i — 2¢?]

where
. 3G M, a?
~ 8(1-e2)%a
Action-angle variables are z-angular momentum longitude of node
Ji = [GM,a(l —e?))|Y2, Jy=Jicosi, 0 =w, 0;=0Q.
angular momentum argument of pericenter

Hamiltonian is independent of €2 so J; is conserved. Remaining motion has one
degree of freedom and follows H = constant contours.

an __oH db _oH

Celestial body

it  ow’' dt oJ,
Ec\'\?('\,c

T
True anomaly
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Argument of perihelion

Q) Inclination

Ascending node
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Let j point in the direction of the angular momentum vector with magnitude
j| = (1 — €?)1/2. Let e point towards pericenter with magnitude e. Then

H = €[5(e-n)? — (j- n)? — 2¢?]

where n is the normal to the companion orbit. The equations of motion are

dj :
L —ex VeH+jx ViH
d
2 o jxV.H+exViH
dr J .
. Celestial body
where 7 = t/(GM,a)'/?. J

Q) Inclination

Ascending node
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Kozai-Lidov oscillations

+ initially circular orbits remain
circular if and only if the initial
inclination is < 39°= cos(3/5)Y2

» for larger initial inclinations the
phase plane contains a separatrix

» circular orbits cannot remain
circular, and are excited to high
inclination and eccentricity -- not a
rigid hoop (surprise # 1)

-circular orbits are chaotic
(surprise # 2)

(&)

x =

circular
. _‘\«"ff

0.75

0.25
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Kozai-Lidov oscillations

« circular orbits cannot remain circular
circular, and are excited to high —— “‘\Jf’r
inclination and eccentricity (surprise
#1)

-circular orbits are chaotic (surprise  0.75
# 2)

x = (1-€2)

* as the initial inclination approaches
90", the maximum eccentricity
achieved in a Kozai oscillation
approaches unity = tidal dissipation

or collision (surprise # 3)

* mass and separation of companion 0.25
affect period of Kozai oscillations,
but not the amplitude (surprise # 4)
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eccentricity
oscillations of a
planet in a binary

star system

=25 AU

plane‘r

companion has
inclination 75°, semi-
major axis 750 AU,
mass 0.08 M (solid) or

0.9 M, (dotted)

(Takeda & Rasio 2005)
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Kozai-Lidov oscillations

« circular orbits are excited to high

inclination and eccentricity (surprise #1) 1

-circular orbits are chaotic (surprise # 2)

- as the initial inclination approaches 90°,
the maximum eccentricity approaches  0.75
unity = tidal dissipation or collision

(1-e2)

(surprise # 3)

x =

» mass and separation of companion
affect period of Kozai oscillations, but
not the amplitude (surprise # 4)

- small additional effects such as general
relativity or octupole tidal potential can ©-=°

strongly affect the oscillations (surprise
# D)

circular

‘\J?

Wednesday, November 9, 2011

10




1. Irregular satellites of the giant planets

Hill (or tidal, or Roche) radius

PH = Qp (m/3M®)1/3
represents approximately the maximum radius at which an orbit stays
bound to the planet

* at r < 0.05ry, satellites of the giant planets tend to be on nearly circular,
prograde orbits near the planetary equator ("regular” satellites). Probably
formed from a protoplanetary disk

- at r > 0.05ry the satellites have large eccentricities and inclinations,
including retrograde orbits (irreqular” satellites). Probably captured from
heliocentric orbits

- irregular satellites are much smaller than regular ones but there are a lot
more of them (97). Total satellite count:

Jupiter: 65 Saturn: 62 Uranus: 27 Neptune: 13

Wednesday, November 9, 2011 11
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(O Jovians (31)

Semimajor axis * Sin(Inc)
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2. Exoplanet eccentricities

Kozai-Lidov oscillations may excite eccentricities of planets in some binary
star systems, but probably not all planet eccentricities:

ST le | exoplanets.org | 11/7/2011
* nhot all have stellar ° |l
: 0.8 1 :
companion stars (so far | r
. '.
as we know) : o . oflt
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3. Formation of close binary stars

Binary stars are common: roughly 2/3 of nearby stars are in binaries, with
a wide distribution of periods:

log P/ P,)?
dn o exp [—( ¢ é b) } Fo=170yr, op = 2.3
20%
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2. Formation of close binary stars

Binary stars are common: roughly 2/3 of nearby stars are in binaries, with
a wide distribution of periods:

(log P/ Py)?
20%,

dn o< exp [— :| Fo=170yr, op = 2.3

(Duquennoy & Mayor 1991)

If formation of inner and outer binary in a hierarchical triple star is
independent we expect (1) about (2/3)X(2/3)~0.5 of all systems to be
triple and (2) characteristics of inner and outer binary to be independent
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If formation of inner and outer binary in a hierarchical triple star is
independent we expect (1) about (2/3)X(2/3)~0.5 of all systems to be
triple and (2) characteristics of inner and outer binary to be independent

This is not true: 96% of binaries with P < 3 d are in triples, but only 34% of

binaries with P > 12 d are in triples (Tokovinin et al. 2006)

How can a tertiary companion that is 1000 X further away affect the formation of
a binary star?

How do you form a binary with a separation of a few stellar radii when stars shrink
by orders of magnitude during their formation?

Wednesday, November 9, 2011
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Formation of close binary stars

follow orbit evolution of binary or triple star systems, including:

* secular evolution of orbit due to quadrupole tidal field from a tertiary

- apsidal precession due to rotational distortion of stars in the inner binary

- apsidal precession due to mutual tidal distortion of stars in the inner binary
- stellar spins

- tidal friction (Eggleton & Kiseleva-Eggleton 2001)

- relativistic precession

Fabrycky & Tremaine (2007)
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Py [€] initial

Formation of close
binary stars

number

* choose binary stars at random /

from the Duquennoy & Mayor
(1991) distribution, then evolve
under tidal friction
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Formation of close
binary stars

» choose binary stars at random
from the Duquennoy & Mayor
(1991) distribution, then evolve
under tidal friction

» choose friple stars by sampling
twice from the binary-star
distribution and discard if
unstable, then evolve under tidal
friction
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- combine the distributions

assuming (a) 25% of systems are

triple; (b) period distribution is cut

off at 6 d (radius of dynamically

stable protostars)

- Kozai-Lidov cycles may be

responsible for almost all close

binary stars
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» in this simple model, there is a strong peak
hear 40 and 140 degrees in the mutual
inclinations of systems with 3d<P, <10d

Muterspaugh et al (2007) list five triple
systems in this period range
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4. Blue stragglers iowo__suoo_ro00
I;iellun.\ flash
. .:.{:'é’f:".-f_.
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Blue stragglers are stars in globular torench T (R
clusters that appear to be anomalously g -

young

POSS'ble Or'iginS: Turnoff

point

stragglers

« stellar collision and merger

. White dw;rfs
* mass transfer or coalescence in a l .

primordial binary system
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4. Blue stragglers

Possible origins:

« stellar collision and merger

 mass transfer or coalescence in a primordial binary system

Problems:

* frequency is not correlated with expected collision rate

(or any other cluster properties)

RGB
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log (p3ri/a,)

Leigh et al. (2007)
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4. Blue stragglers ST

Possible origins:

« stellar collision and merger wil LSRRI

0.6
« mass transfer or coalescence ina = |
primordial binary system 0.4 - +

0.2 —

Problems:
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lll

* frequency is not correlated with
expected collision rate (or any other
cluster properties)

- radial distribution is difficult to
interpret (maybe both mechanisms
operate?)
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4. Blue stragglers

Possible origins:
« stellar collision and merger

« mass transfer or coalescence in a
primordial binary system

Problems:

* frequency is not correlated with
expected collision rate

« radial distribution is difficult to
interpret

* binary fraction of blue stragglers in
NGC 188 is three times that in solar
heighborhood

Eccentricity
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Mathieu & Geller (2009)
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4. Blue stragglers

Possible origin:
« stellar collision and merger

* mass transfer or coalescence in a
primordial binary system

« Kozai-Lidov oscillations in a triple
system leading to merger (Perets &
Fabrycky 2009)

| aoaaa sl
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0.01F
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10’ 108
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4. Blue stragglers

Possible origin:
« stellar collision and merger

 mass ftransfer or coalescence in a primordial
binary system

* Kozai-Lidov oscillations in a triple system
leading to merger (Perets & Fabrycky 2009)

Problems:

* frequency is not correlated with expected
collision rate

- radial distribution is difficult to interpret

* binary fraction of blue stragglers in NGC
188 is three times that in solar neighborhood

Eccentricity
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5. Type Ia supernovae

These arise from white dwarfs that exceed the Chandrasekhar limit,
either through

* mass accretion from a main-sequence companion star
« mergers of white dwarf-white dwarf binaries

« if most close binaries are in triples then most SN Ia progenitors are in

triples so Kozai-Lidov oscillations will strongly affect rate (Thompson
2011)

« may explain "prompt"” Ta supernovae
« predicts periodic gravitational pulses (Gould 2011)

 why have we not found nearby WD-WD binaries? Possible color
contamination by main-sequence third body
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6. Planetary migration

Planet-planet scattering + tidal friction may form hot Jupiters
« suppose scattering leads to an isotropic distribution of velocities

« tidal friction is only important for pericenter g < 0.02 AU, so must
scatter onto nearly radial orbit. Probability ~ q/a

« if Kozai-Lidov oscillations are present angular momentum oscillates but
L is conserved. Probability of q < 0.02 AU at some point in the cycle is ~

(q/a)I/Z

* Kozai-Lidov oscillations due to outer planets are a critical part of all
high-eccentricity migration scenarios

Wednesday, November 9, 2011
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(Wu & Murray 2003)
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KL oscillations
observed Fabrycky & planet-planet scattering

Triaud et al. (2010) Tremaine (2007) Nagasawa et al. (2008)
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7. Black-hole mergers

Kozai-Lidov oscillations may accelerate the merger of binary black holes
(the “final parsec problem") where external field may come from triaxial
galaxy potential or a third black hole (Blaes et al. 2002, Yu 2002,
Tanikawa & Umemura 2011)

8. Comets

Kozai-Lidov oscillations induced by the Galactic tidal field drive comets
onto orbits that intersect the planetary system
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Kozai-Lidov oscillations

distant satellites of the giant planets have inclinations near O or 180° but
not near 90°

may excite eccentricities of planets in binary star systems, but probably not
all planet eccentricities

may enhance merger rate of binary black holes in the centers of galaxies
- source of long-period comets
» formation of close binary stars
» formation of blue stragglers
» formation of hot Jupiters
- obliquities of host stars of transiting exoplanets
- Type Ia supernovae, gamma-ray bursts, gravitational wave sources

* homework: why do Earth satellites stay up?
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