GRAVITATIONAL LENSING IN A DARK MATTER FREE BRANEWORLD MODEL

Fanky Ki Cheong WONG The University of Hong Kong

All audience of this talk

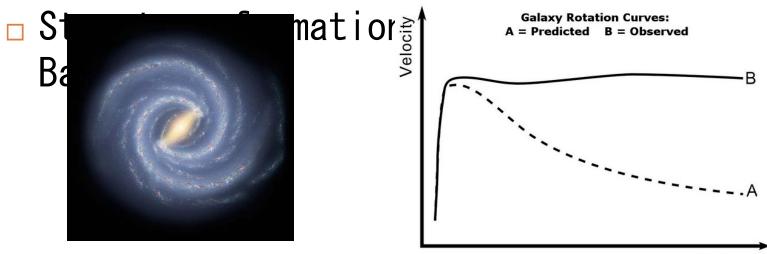
🗆 Dr. Lam Tsz Yan;

- Prof. Shinji Mukohyama; and
- Prof. Masamune Oguri

The University of Hong Kong

Main building and physics building

Some Views from Physics building

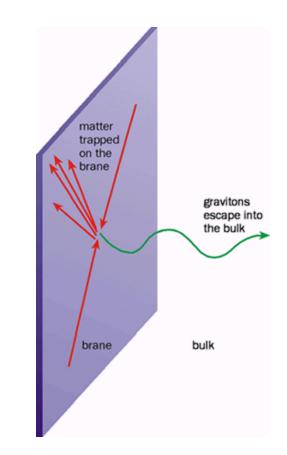


Outline of presentation

- Background of this project
- Introduction to Randall Sundrum braneworld
- Motivations of this study
- Rotation Curves in braneworlds
- Gravitational Lensing in braneworlds

Dark Matter problem

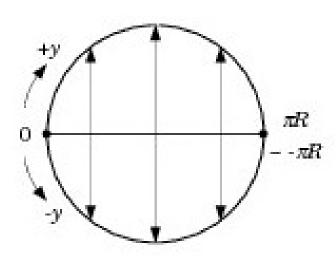
- Missing mass at galactic scales and galactic cluster observations
- e.g. Rotation Curves of galaxies, X-ray clusters images, gravitational lensing; and


Distance

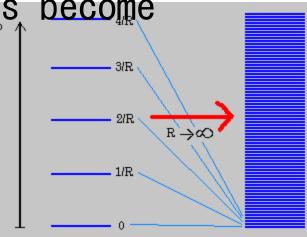
Braneworld as a solution

- 1. Evidences of Dark matter always inferred from gravitational motion
- 2. No simple theoretical framework for dark matter
- Supersymmetry offers a solution
- Detection of SUSY particle has never succeeded (yet?)
- Behavior of SUSY still not clear, alternative approach can not be ignored.

Braneworld


- Offers an explanation on why gravity is weak
- The idea is not new e.g. Kaluza-Klein theory in 1921
- RS models (Randall, Sundrum, 1999)
- Motivated by String theory/M theory

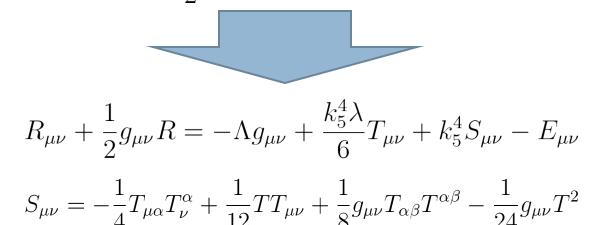
Randall-Sundrum models


□ 2-brane model

- Suggested by Horava-Witten solution
- 1-brane model one of the brane located at infinity
- Showing the possibility of infinite extra dimension

Major prediction of Braneworld

- 🗆 Kaluza Klein (KK) Modes
- In 2-branes model
- It is like standing waves between two branes
- Predictions in TeV physics
- In 1-branes model KK modes become spectrum
- No predictions in TeV
- But also allows more study about it


Original RS 1-brane construction

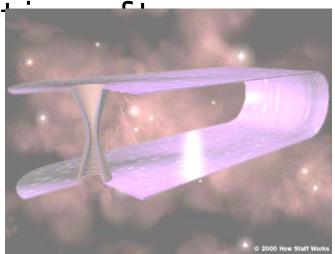
- □ Gravity is a 5D interaction
- 5D spacetime (bulk) have large negative curvature, it is done by introducing a negative cosmological constant
- Standard Model fields confined on 4D brane, and there is a brane tension fine tuned with 5D cosmological constant
- Brane is mirror symmetric
- Construct action of 2-brane model and limit another brane to infinity

Braneworld as modified 4D Einstein theory

The matter on membrane infer discontinuity of extrinsic curvature (Israel, 1966)

□ Project 5D Einstein equation to 4D (Shiromizu, Maeda_R = Sasak in 5D 2000)

What is $E_{\mu\nu}$


- A traceless tensor
- □ Projection of 5D Weyl tensor to the brane $E_{\mu\nu} = {}^{(5)} C_{ABCD} n^C n^D g^A_\mu g^B_\nu$
- Weyl tensor = component of Curvature that is not governed by Einstein's equations
- It contains freedom for 5D Gravitational wave, therefore KK spectrum
- KK spectrum could "source" by the brane
 via
 $abla^{\mu}S_{\mu\nu} = k_5^4 \nabla^{\mu}E_{\mu\nu}$
- Is it possible to be dark matter?

Motivations from wormhole

- Origins of Dark Matter
- □ Galactic scale evidence of extra dimension
- Inter Galactic wormhole may be possible
- Wormholes violate energy conditions in GRDauk Matter"braneworddseeobo, 2007) everywhere is the key to sustain it.

A little advertisement on wormhole

- □ Wong, Harko, Cheng, 2011
- Braneworld wormhole could evolve with the Universe, and expand with the Universe
- Wormholes that exist before inflation collapse
- Expanding wormholes existing inflation could be still size

Testify or Falsify

- Explaining dark matter phenomenology
- The braneworld corrections depend on geometry
- More empirical results are required to determine the true structure of spacetime
- Predict different observations from the same object
- Galactic rotation curves (Gergely et al, 2011)

HSB and LSB

- □ Low Surface Brightness galaxies - low visible mass content, diffuse gas riph ≥ 23mag/arsec²
- LSB galaxies are conventionally dark matter rich
 HSB very different from LSB

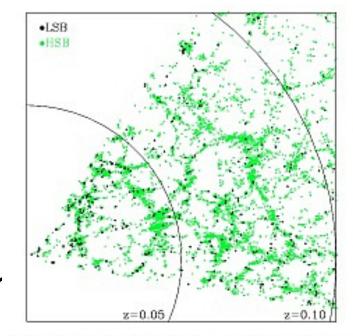


Fig. 1. One of the two analysed pie slices. The right ascension range $354^\circ \le \alpha \le 53^\circ$ containing ~400 LSB galaxies and ~8000 HSB galaxies is plotted.

Bulk and brane

The geometry of bulk leaves an imprint on the brane.

□ The brane spherical geometry $ds^2 = g_{tt}(r)dt^2 + g_{rr}(r)dr^2 + r^2d\Omega^2$

□ Possible bulk configuration $^{(5)}ds^2 = -M(r,y)^2 dt^2 + N(r,y)^2 dr^2 + Q(r,y)^2 d\Omega^2 + dy^2$

Calculate 5D Weyl tensor

- Project it to the brane
- 🗆 Simplify with 5D Einstein equati

The form of $E_{\mu\nu}$

$$\begin{split} E_t^t &= \frac{N_{,y,y}}{N} + \frac{2Q_{,y,y}}{Q} - \frac{\Lambda_5}{2} \\ E_r^r &= -\frac{N_{,y,y}}{N} + \frac{\Lambda_5}{6} \\ E_\theta^\theta &= E_\phi^\phi = -\frac{Q_{,y,y}}{Q} + \frac{\Lambda_5}{6} \end{split}$$

- 2nd derivative of metric along extra dimension
- Additional constraint from the conservation equation

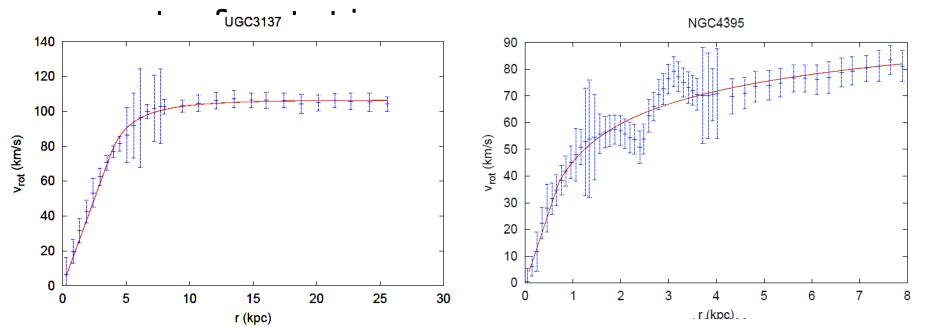
Only the r component is non-trivial

Energy and Pressure of $E_{\mu\nu}$

- Ist approach: Hypothesize high energy events that could source E in the formation history. Based on the physics we can model the remnant form of E, and test it with observations
- Alternative approach in Gergely, et al., 2011
- Components of E view as energy U and pressure P of some fluid
- □ Guess equation of state based on Schwarzschild case in 2+1+1 decomposition

LSB metric and Visible mass matching

$$-g_{tt} \approx 1 - \frac{2GM}{c^2 r} + \frac{2\gamma}{1 - \alpha} \left(\frac{r}{r_c}\right)^{\alpha - 1}$$
$$g_{rr} \approx \left\{1 - \frac{2G(M + M_b)}{c^2 r} + \gamma \left[\left(\frac{r}{r_c}\right)^{\alpha - 1} - 1\right]\right\}^{-1}$$

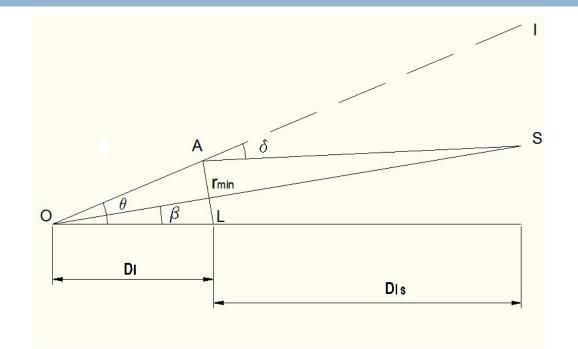

1

- $\square \alpha$ and \vee depend on a and B
- Mb is a degenerate parameter in rotation curve
- rc is obtained from matching Baryonic
 mass

Rotation Curve studies

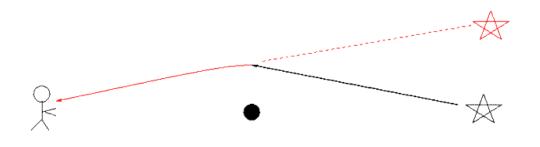
Data from Blok, 2001

Gergely, et al., 2011 – approximate Newtonian in linear part of rotation curve and braneworld dominant in outer



List of Candidate galaxies

k is introduced in step function to switch from baryonic mass dominant region


Galaxy	k	M_0	r_c	α	γ	$\chi^2_{\rm min}$
	${\rm kpc}^{-1}$	\odot	kpc			
DDO 189	57.5	4.05×10^{8}	1.25	0.3	6.43×10^{-8}	0.742
NGC 2366	46.0	1.05×10^{9}	1.47	0.8	1.12×10^{-7}	2.538
NGC 3274	138.1	4.38×10^{8}	0.69	-0.4	6.73×10^{-8}	18.099
NGC 4395	30.0	2.37×10^{8}	0.71	0.9	3.43×10^{-7}	27.98
NGC 4455	99.7	2.26×10^{8}	1.03	0.9	2.72×10^{-7}	7.129
NGC 5023	86.3	2.69×10^{8}	0.74	0.9	4.53×10^{-7}	10.614
$UGC \ 10310$	36.4	1.28×10^{9}	2.6	0.4	1.12×10^{-7}	0.729
UGC 1230	15.3	3.87×10^{9}	3.22	-1.7	1.12×10^{-7}	0.539
UGC 3137	34.5	5.32×10^{9}	3.87	-0.5	1.23×10^{-7}	4.877

Simple 1D lensing

Lens equation $\tan |\theta| - \tan(s\beta) - \frac{D_{ls}}{D_s} [\tan |\theta| + \tan(\delta - |\theta|)] = 0 \quad (1)$

Minimal approach radius

□ Null geodesic

$$g_{\mu\nu}\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda} = g_{tt}(r)t'^{2} + g_{r}r(r)r'^{2} + r^{2}\phi'^{2} = 0$$

- □ Minimum radius on trajectoŕy= 0
- Identify the constants of motion with lensing geometry

$$g_{tt}(r_{\min})D_l^2\sin(\theta) + r_{\min}^2 = 0$$
 (2)

Deflection angle expanded

Compare angle between asymptotes

$$\delta(r_{\min}) = 2 \int_{r_{\min}}^{\infty} \mathcal{I} - \pi$$
$$\mathcal{I}(r) = \frac{1}{r} \left\{ \frac{g_{rr}(r)}{[g_{tt}(r_{\min})/g_{tt}(r)] (r/r_{\min})^2 - 1} \right\}^{1/2}$$
(3)

Ъ∫

θ

Deflection angle can be studied by treating minimal approach radius like impact parameter

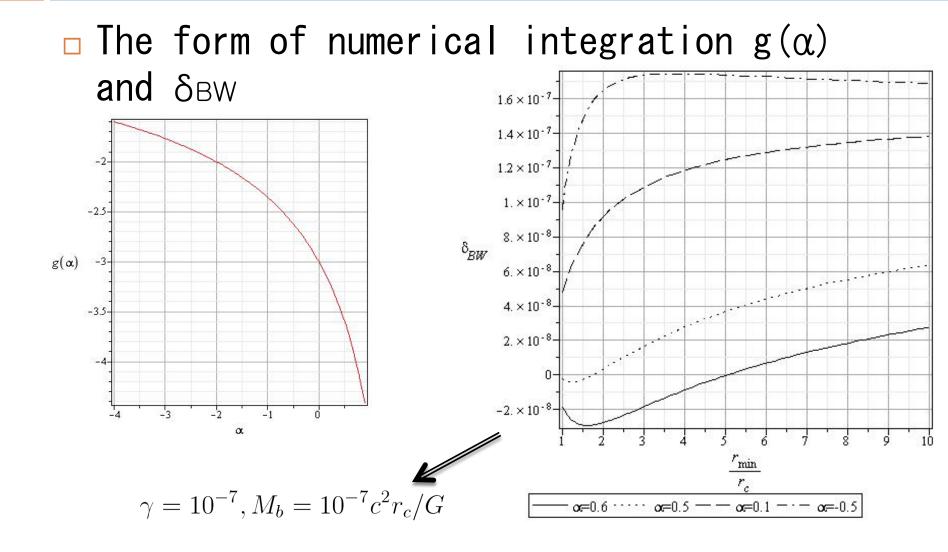
Image angle and remarks

Lens equation approximated for small angle $\theta^+ = \beta + \frac{D_{ls}}{D_s} \delta(r_{\min}^+, M_b)$ $\theta^- = \beta - \frac{D_{ls}}{D_s} \delta(r_{\min}^-, M_b)$

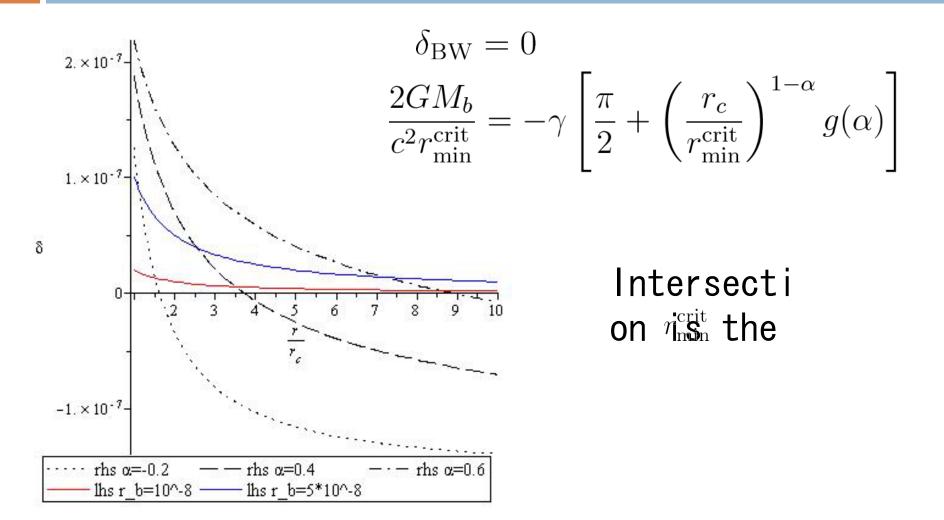
• With equation
$$\left(\frac{2}{D_l}\right)^2 \frac{1}{g_{tt}(r_{\min}^{\pm})}$$

A single lensing observation from a known source should able to rule out the model

Post Newtonian Expansion


Focus on the deflection angle
 Expand the integral as series of small parameter δ = δ_{GR} + δ_{BW}

$$\delta_{\rm GR} = \frac{4GM}{c^2 r_{\rm min}}$$


$$\delta_{\rm BW} = \frac{2GM_b}{c^2 r_{\rm min}} + \gamma \left[\frac{\pi}{2} + \left(\frac{r_c}{r_{\rm min}}\right)^{1-\alpha} g(\alpha)\right]$$

$$g(\alpha) = \int_{1}^{\infty} \frac{du}{u} \sqrt{\frac{1}{u^2 - 1}} \left[\frac{(1 - \alpha)u^{\alpha - 1} + (1 + \alpha)u^{\alpha + 1} - 2u^2}{(1 - \alpha)(u^2 - 1)} \right]$$

Braneworld contribution

Critical approach radius

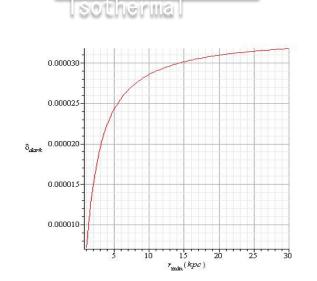
Lensing profile comparison

- Use the parameters fixed by rotation curves
- Compare LSB braneworld lensing with dark matter lensing
- To see if there could be discriminative effect on the lensing profile
- View dark matter as a correction to baryonic mass lensing

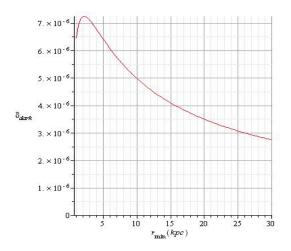
The lensing of Dark Matter

Pseudo isothermal halo vs NFW model
 Both can explain rotation curve of LSB
 Pseudo isothermal

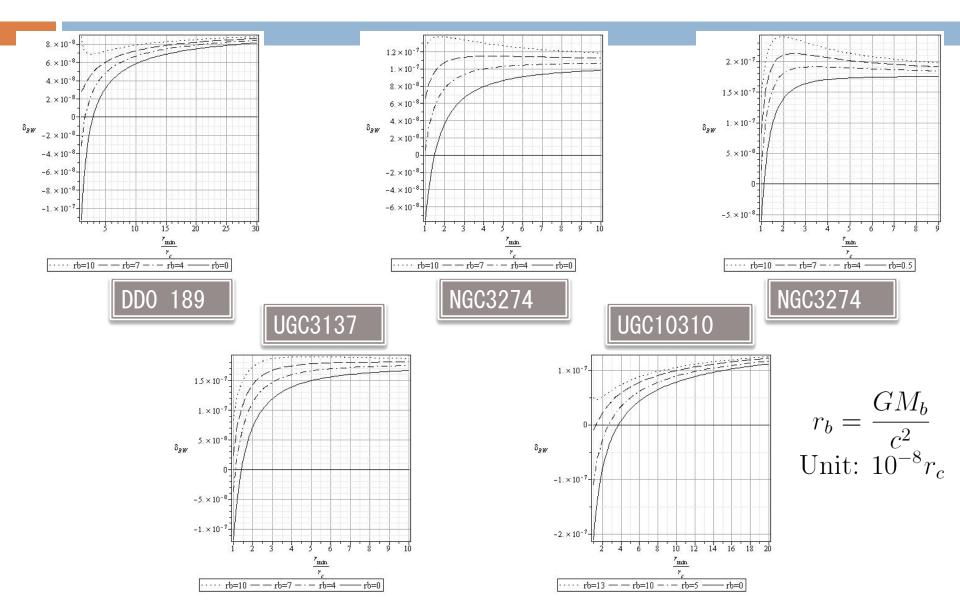
$$\rho_{\rm iso}(r) = \frac{\rho_0}{1 + \left(\frac{r}{r_s}\right)^2} \longrightarrow M_{\rm iso}(r) = 4\pi r_s^2 \rho_0 \left(r - r_s \arctan(\frac{r}{r_s})\right)$$


NFW motivated by N body simulations

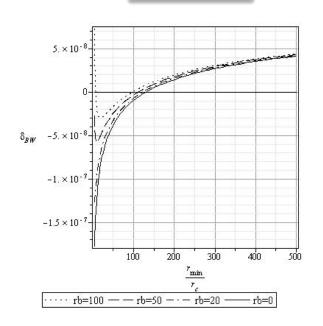
$$\rho_{\rm NFW}(r) = \frac{\rho_i}{\frac{r}{r_s} \left(1 + \frac{r}{r_s}\right)^2} \qquad \longrightarrow \qquad M_{\rm NFW}(r) = 4\pi r_s^3 \rho_i \left[\frac{\left(1 + \frac{r}{r_s}\right) \ln\left(1 + \frac{r}{r_s}\right) - \frac{r}{r_s}}{1 + \frac{r}{r_s}}\right]$$


Isothermal halo lensing

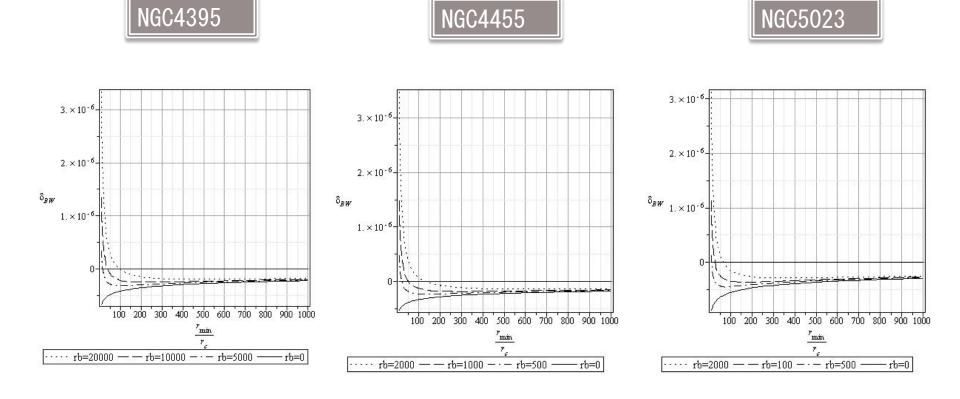
- Assume only mass inside radius of approach cause deflection
- Recall that braneworld deflection angle converge to a constant, it is more


isothermal hal NEW

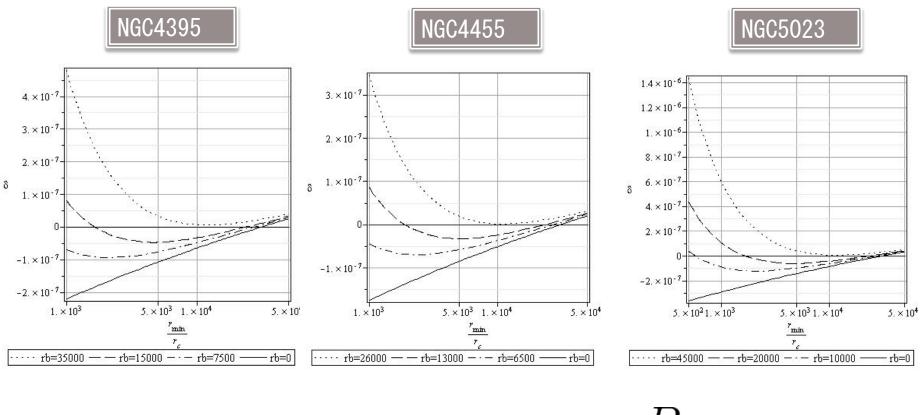
Simi Pseudo



Isothermal Halo like cases


Unusual Cases

Negative contribution occurs at large radius



Unusual Cases

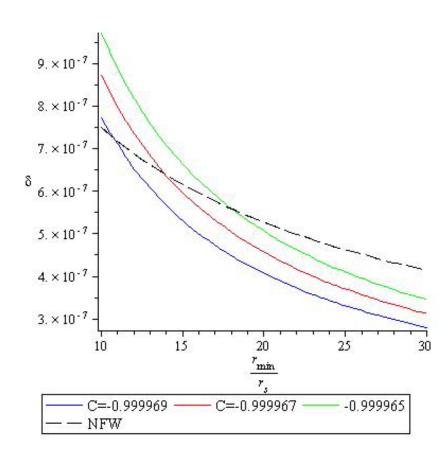
Braneworld contribution remain negative at large impact

Scattering at Imaginative range

 $\Box \alpha \sim 1 \qquad \longrightarrow \qquad P = U + \frac{B}{r^2}$

Another way of comparison

- Assume a well description of rotation curves by braneworld and dark matter model
- The metric will be determined up to a integration constant
- Compare the lensing effect predicted by braneworld versus dark matter


Formulation

- □ Assume a correction on Schwarzschild metric $\left[1 - \frac{r_b}{r} + \nu(r)\right] dt^2 + \left[1 - \frac{r_b}{r} + \mu(r)\right]^{-1} dr^2 + r^2 d\Omega$
- □ Assume ∨ fixed by tangential velocity profile in rotat^vion cyft
- Dobtain the differential equation of μ by traceless $\frac{d\mu(r)}{dr} = -\frac{\mu(r)\left[1 + M'(r)\right]}{r} \frac{M'(r)}{r}$ ke lowest order, e. g.
- Calculate the braneworld contribution to

Results

 If the rotation curves is well described by a Newtonian motion in NFW density profile

It is general for
 Braneworld predict
 different deflection
 against dark matter

Summary

- Braneworld contributions to the brane come from bulk geometry
- Galactic rotation curves as a probe to bulk geometry
- Braneworld lensing indicate unique features as compared to the dark matter case
- Future Studies
 - Determining more precisely the equation of state
 - "Corresponding" mass profile in braneworld, so to obtain 2D lensing image by programming code like glafic (Oguri, 2010)
 - HSB lensing study would allow comparison with more observations
 - What kind of high energy processes in the early