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Gravitational instability is the driver to
large-scale structure formation

p Data show that large-scale structure has formed
from small density inhomogeneities since time of
matter dominated universe with a dominant cold
dark matter component

p inflation provides us with a compelling framework
for the origin of such density fluctuations with
specific statistics (Gaussian) and spectrum (nearly
scale invariant before horizon crossing)



Correspondence between “initial
conditions” and local large-scale structure
is now observed
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A self-gravitating expanding
dust fluid

The Vlasov equation (collisionless Boltzmann
equation) - f(x,p) is the phase space density
distribution -
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Ad(x) = AmGm ([flf\{ p.t)d*p — n)

This is what N-body codes aim at simulating...

How much do we understand those equations ?
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Snapshot from Bertschinger’s movie



Newton = a self-gravitating
expanding dust fluid
Peebles 80 ;Fry 84

The Vlasov equation (collisionless Boltzmann equation) FB, Colombi, Gaztafiaga,
- f(x,p) is the phase space density distribution - are Scoccimarro, ‘02

full linear.
ully honfinear This is what N-body codes aim at simulating...

df 4 P d
e Ef X, P. H—|—W—f{‘{ p.t) — mVy. ®(x ]f]pf[‘{ p.t) =0

Ad(x) = AmGm ([f':{ptdi —n)

The rules of the game: single flow
equations + expansion with respect to
initial density fields

ié(x?t) + 1vi. [(1+0(x,t))u;(x,t)] = 0
ot a
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V2®(x,t) — 4nGp(t)a* 6(x,t) = 0.
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» Motion equations in Fourier space in the
single flow approximation

_95(k,a)
Ja + (k. ﬂ,j — {2’1’}3!9 [d k]d ko dp(k — Kia)
X ﬂ{kl kg E{k] H}ﬂl{kg C{}
80(k, a)
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x .J-l]'lr_l{l.. kl}f}[lﬁ £1 9{]{1, [I},

| _ kia -k k(K - ko)
alky k) = klg ; Bk, ka) = W
» linear order = growth of structure
» higher order terms = mode couplings
» equations can be solved to any arbitrary order
: A’k : d*k,,
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To be more explicit we have the following recursion

n—1
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(a1, ... ,4n) EI{Z?HB}{H-—I}[ (2n + 1)a(k;. ko) (Ams1s- -5 Qn)
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In this regime (matter dominated, sub-horizon scale) all
coupling functions are thus explicitly known



Goals are multifold

Higher order statistical
quantities (bispectrum,
etc...)
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Gravity induced mode couplings have been computed and

observed!
Tree order “fNL” for the density field:
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® A lotis known at tree order with a very
good matching with Nbody simulations

From FB ‘92
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® But things get not as nice when one wants to

include loops
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Fig. 13. The power spectrum for n = —2 scale-free initial conditions. Symbols de
measurements in numerical simulations from [560]. Lines denote linear PT, one-
PT [Eq. (169)] and the Zel’dovich Approximation results [Eq. (181)], as labele
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The RPT
reformulation

Scoccimarro and Crocce ‘05



A reformulation of the theory in
a QFT like manner Scoccimarro 97
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A new diagrammatic expansion

tree-level PT one-loop




O n e I(e)’ i ngred i e nt : Final density / velocity div.
I

the propagator l
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FIG. 2: Diagrams for the non linear progalgator G(k, 77) up to two loops.



» The dominant contributions can be resommed
eX&Ctl)’ in the high k limit. Crocce and Scoccimarro 05

|
Gan (K, 1) 2 gap(n) exp ( _ R202(e — 1)2) (high-k limit)
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Comparison between RPT and N-Body Simulations
(z=0,2,5)




RPT (Scoccimarro and Crocce) consists in
standard PT when g—> G
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RPT expansion (schematic)
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Insights into higher
order propagators

FB, Crocce, Scoccimarro, ‘08



» Towards a complete “renormalisation” of PT ?

The next thing to look at is
the vertex ... ;

What we found is that these are the “p-point propagator” that can be
“renormalized”

1 oPW,(k,n)

= . = épk — k r(p)
p! 6(+?551(k1_) (‘)Qb( > D 1. P) ab.

T (ky, ks, ks) Q¥
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p This suggests another scheme : use the n-point
propagators as the building blocks

r{n](k:pla---!pn}:

P P P
= + +...
Pn P P

» The reconstruction of the power spectrum :

== Sum of positive terms

FIG. 3: Reconstruction of the power spectrum out of trans-
fer functions. The crossed circles represent the initial power
spectrum. The sum runs over the number of internal connect-
ing lines, e.g. the number of such circles. It is to be noted
that each term of this sum is positive.



p Calculation of renormalized vertex in high k
limit

if pij is the number of lines connecting the
segment (i) to (j)

Sfp. . g2\ &isi P § N
Cotp) = Mo (‘—i) el | (G / As' gad(s — o' Yaes (k1 ko, ka)gen(s')ge(')
| L1 A

M (i}

o 2p11+2poa+2p1a+pira+paz s o 2paa+piat+paa
(e -1) (e &)

i i<j

S(pyy) = 27 2i<i Pis
M(pii) = 2P7p;;!, and M(p;;) = pijliti # j
27.2
ook 12 2
(ki.ka,k3) = exp (— L2 (e5 —1) ) r

2 abe,tree

e

abe

p It implies that the vertex cannot be “renormalized” (into

an operator which is local in time)
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Comparison with numerical simulations
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FIG. 4: The large-k limit of the two-point density propagator
'), Symbols correspond to measurements in numerical sim-
ulations at redshifts z = 1,0.5 and z = 0 (top to bottom), see
text for details. The solid lines correspond to the large-k limit
expression given in Eq. (25). The linear relation obtained by
plotting log G vs. k? makes evident that the suppression of G
1s indeed Gaussian in the high-k limit. Moreover, the slope is
very well predicted by Egs. (25,26).
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FIG. 8: The large-k limit of the three-point density propa-
gator F(IQJ = Fﬁluauc, the only density contraction that can
be measured for growing mode initial conditions, uy = (1, 1).
The symbols in the figure correspond to equilateral configu-
rations at redshifts z = 1,0.5,0 (from top to bottom). We
have normalized these measurements to its low-k limit Fft)rec
given by Eq. (20). The figure clearly shows that the measured
propagator closely follows the large-k limit given by Eq. (37)
represented by solid lines, once TEQ) decays by ~ e~! from its
tree-level value.



Comparison with numerical simulations
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» Re-summation can be extended to any order

In the large k limit we have :

I'P) = exp ‘
2

[_ ‘k][ +.. .kp‘gag s
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Conclusions (1)

® Does it speed up the convergence for the
reconstruction of P(k) ?

® Also provide the building blocks for higher order
moments...

® |s this exponential cutoff really physical ?
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From Eulerian to
Lagrangian space

FB,Valageas, ‘08

Are the large-scale modes disrupting the forming
halos or simply moving them away?



Insights into the hidden math..

FB,Valageas, ‘08
p The same thing in Lagrangian space ...

x=q+¥(q,t), 1
Notably more difficult because 0.8
displacement is not potential
beyond 3rd order 0.6

04
&?x ox
% N H# = —Vxé(q) 0.2}
H@ V. (V@) + (57 1) Via| - TR0@-1) |

— [32‘1'(*?1) +H3'I'(E1)] 0
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Motion equations for the displacement divergence
and vector component (2D dynamics)

ay A

Uy 3o T Bos
= o | = E_E | v eV x (Aeg)
a‘i‘-zﬂﬂm ar q '

0

convergence : Kk = —‘Fax vorticity : w = —‘FEIA

P motion equations (no shell crossing)

K"+ lﬁ:’ — iﬁ: = /dkldkg op (ki +ko—k)
2 2, Kernels are homogeneous
X {a'(kl_,kg) [HI(HE—F%H:‘E—%HQ)—FLU] (w’z’—l—éwa—%wg)] in k
det(ki, ko)2
' ' ki.ko) = : .
—|—.D"|[k11kg)[.:ul(rf.g—l—éﬁa)—ﬂl(wg—l—éw’z)+%ﬁ1wg} }(32) alky ko) kik3

(k1.ky) det(ky, ko)

Bk, ko) =
Ktk

W' = /dkldkgénikl + ko — k) {a(ky, ke)[r1w) — wi k)

/ - L ) i ! . .
+0(ki, ka) [K1r5 +wiwn]}. — (L vanishes at linear and second order
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Expansion for the fields

Kg(wy) Je ..-::.:{‘:T-__-J&.J i.; O
KoOwy) A0 e P P O
{KEn). WEN)= «—0 + €« 4+ O +e—g L +e—¢
= ~__ . 0 N
K 0wy e - N

f@\\\
Clkn= <———— + <X

»incoming modes are all in linear regime, therefore of K type only;
» there are two types of kernels, & or [3
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Direct re-summation seems impossible...

but it is possible to map this statistical problem (with ensemble average to
be done with a set of continuous variables) into a problem with only a finite
set of variables (2 in 2D, 5 in 3D) assuming the incoming modes are in linear
regime.

p Incoming modes correspond to a collection of modes that are

Gaussian distributed

A A 4

d'lik) — /d‘w !‘f{)(‘w‘)&'[k! 'w)
2\ __ 2 52y _ 2 -
Jﬁr(k] = f(l“—’ H":]'(“rjﬁ[:k,“-’) {'ﬂ } = 302, {-j } 05, {&3) 0

p For the diagrams we want to compute, K and W depend on the other

modes through o and f only,
(k) + 5 (k) = Sa(l,m) = eTa(k) ((k )+ 5k, m) +eB(K) (w”{k, M+ 5wk, m)
W'(k,n) = —e"B(k)(x (k,n) — k(k, 7)) + ea(k) (W' (k, n) — w(k,7)).

p More specifically the propagator is given by,
G(n) :/ 'f::(_;;; &, B)P(é&, B) dads,
Ey)



Behavior of G(k,n)
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Conclusions (2)

® New “exact”’ results and new computational
technique;

® Many ways of implementing PT calculations (RPT,
this approach, closure theory, etc.) but what is the
most effective way is yet unclear;

® |agrangian versus Eulerian calculations give new
insights but the validity regime of the former needs

to be assess.

34



