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OUTLINE

 The collider LHC, the detector ATLAS, its EM Calorimeter

 In situ commissioning of the ATLAS EM Calorimeter

 Cosmic muons analysis

 First LHC single beam data

 Z’ee discovery potential in early data (with realistic detector)
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LHC

 LHC : Large Hadron Collider, pp collisions  at 14 TeV (10 TeV)

 Located at CERN, ring of 27 km

 4 interaction points for 4 experiments : ALICE, ATLAS, CMS, LHCb

 Start-up the Sept. 10th 2008

 Stopped the Sept. 19th 2008



PS Mangeard IPMU – March 18th 2009 4

Cooling tower 

maintenance

run 1

Phys at Ehigh

156b, 3m 

colls at Ehigh

hwc for  Ehigh
++ consolidationrun 2               + HI

Phys at Ehigh

50ns, 3m 

push intensity

with Xing angle

4 to 5 TeV

> 6 TeV

beam 

commissioning

stable 

beams 

(physics)

shutdown

Phys at Ehigh
++

50/25ns, 2m

colls 900 GeV

CERN DG: …foresee first beams in the LHC at the end of Sept. this year, with 

collisions in late October. A short technical stop over Christmas. Then run through to 

autumn next year, ..possibility of lead ion collisions in 2010.

LHC new schedule

T. Virdee, TIPP09 
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New physics at LHC

Processus
Tevatron 1987

(0.07pb-1)

Tevatron 2009

(8fb-1)

LHC

(1fb-1)

Z’ 1TeV << 1 evt < 10 evts >1000 evts

 Possible discoveries soon after the start-up 

 Detector must be understood 

 pp collision at 14 (10) TeV  in the center of mass

 New phase space  available

 New physics may be visible

 Examples :

 Understand the Electroweak Symetry Breaking 

 Higgs

 New heavy gauge bosons

5IPMU – March 18th 2009
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17th June 2008February 2008

November 2005

May 2007

February 2000

The ATLAS detector
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The ATLAS EM Calorimeter

 Accordeon geometry

 Almost perfect azimuthal hermeticity 

 Fine granularity thanks to longitudinal and  

transverse segmentation:  ~175 000 channels



h Sampling Calorimeter Pb / Liquid Argon (90K)

Large pseudo-rapidity coverage |h|<3.2

 PS  energy loss

 S1 0.0030.1  position measurements

 S2 0.0250.025 main energy deposits

 S3 0.050.025  longitudinal leakage

1999-2002+2004 : Beam Tests 

2001-2004 : Construction

2004-2008 : Installation and commissioning in the cavern
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Why using cosmic muons?

 The only physics signals available in the cavern before LHC beam

 Continuity of the commissioning after  beam tests

 Operate in situ the detector as a whole system

 Check in situ the physics channels

 Improve the signal reconstruction

 Performances test (h uniformity, timing …)

 First cosmic data taken in 2006

 No tracker 

 No muon chambers

 Few calorimeter modules available : small statistic

 Very low signal (~300 MeV)

Dedicated trigger using the 

hadronic calorimeter
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Track reconstruction

(Xo,Zo)
Y=0

4m

- 4m

η=0.8

η cell 

center

η=0 η=0.4

No available trackers

 Dedicated algorithm using hadronic calorimeter information 

– Cell energy threshold : 100 MeV

– TileCells in top AND bottom: 

long lever arm

– Fit track that minimizes sum of 

orthogonal distances to cells 

weighted by energy density

– Track crosses horizontal plane 

at (Xo,Zo)

~50% of triggered events have « tile track »
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• Need good prediction 
of physics pulse shapes

• Need good timing

10

Ionizationsignal

Pulse shape

Calculation of 

maximum amplitude

Signal reconstruction at cell level
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Muon signal reconstruction in EM Calo

• Cosmic  muons : Low signal (300 MeV) : Reduced noise is crucial !!
• Asynchrone arrival time : Determine the good timing windows !!

Maximal 

amplitude

Timing : tprediction - treal

 Can decrease the noise contribution 
by a factor 1.8 (2.9) from 5 (1) samples 
(1s) to 29 samples reconstruction

 Energy underestimated by ~3%

~23 GeV ~300 MeV
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Cluster algorithms

• Projective muon : 2 cells clusters adjacent in phi
• Cosmic muons are not projective : What kind of cluster algorithm ??

 LArMuID : topo. cluster of S2 cells (Seed > 100 MeV>5s, Neig. > 50 MeV>3s)
 Developped to tag muons in collision data
 Underestimate the energy (Missed energy)

 3x3 : Fixed size cluster of S2 cells (Seed >100MeV)
 Do not suffer of noise (29s reconstruction)
 Small dependence to projectivity (~1-2%)

 Suitable choice for the non-uniformity study
 Underestimate the energy by 1% 

 1X3 : Fixed size cluster of S2 cells (Seed >100MeV + Projectivity cuts)
 Reduce available statistics
 Less sensitive to noise
 ~98% of energy is mesured
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Clusters map & first in situ tests

Number of clusters per S2 EM Barrel cells

 First opportunity to commission in situ the calorimeter

 Few problems have been identified and fixed
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Tile Track/EM cluster matching

 |Dh|x|Df| < 0.11 x 0.11 : Purity of ~ 100%

 No tile criteria : Purity of ~ 90%

All EM clusters are not necessarily due to muons 

Extrapolate the track to S2 

Compare with cluster position
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Muons projectivity
To check the energy response uniformity 

 Need to know how well projective the muons are
 Can we use again the tile information?

Events with 2 EM clusters one in top and one in bottom
Extrapolate a LAr track to plan Y=0
Compare to tile track position 

s~ 6cm s~ 6cm

 Can use safely the tile track for projectivity selection

 Projectivity cut applied : 30cm x 30 cm
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Energy Response in EM Calo
A first in situ check of the performance of the EM Calo has been performed with
the first cosmic data taken in 2006 and March 2007 (~120k events).

 Systematic uncertainties on energy scale of ~5%
 Uniformity agrees  with simulation within  < 2%
 A similar study is currently performed with the new statistics (~2M events)

16

Cluster energy distributions have been fit 
with a Landau convoluted with a Gaussian

Normalized to 1
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Search of new dead cells

 Search of new dead channels:

 From calibration pulse injection : expected <0.02%

 Search only on  6% of the calorimeter coverage 

 No new S2 dead cells in the available region

 Not enough statistics for the other layers

Number of clusters per S2 EM Barrel cells



PS Mangeard 18

Single Beam runs

IPMU – March 18th 2009

 During the first week of LHC operation in September 2008 

 Several single beam runs with splash events from beams 1 & 2

 Due to  the collimator position (140 m in front of the ATLAS 
interaction point) a specific energy flow occurs in calorimeter

Particles flow (µ, p ....)
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Energy deposits in EM Calorimeter

IPMU – March 18th 2009

 Deposited energy > 100 TeV per event

 Energy flow over the whole EM calorimeter in the  four layers

 Several structure are observed

Accumulated energy (Ecell > 5s) over 100 single beam events
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Scanned geometry

 Structure and geometry of all layers is clearly visible 

 None obvious problem

IPMU – March 18th 2009

Particles flow

Accumulated energy (Ecell > 5s) as a function of h
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Influence of matter

The amount of matter between 

the collimator and ATLAS 

induces a specific particles 

flow trough the detector and 

b.c. a specific energy flow in 

the calorimeter

IPMU – March 18th 2009

Accumulated energy (Ecell > 5s) as a function of azimuthal angle
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Dead cells search

 Energy deposits over the whole EM calo (cosmics : ~6%)

 Over the100 available events, count the number of times a cell has a 

deposited energy E> 5 times the noise

No new dead cells

IPMU – March 18th 2009
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 Channels that can not be read 

out from the detector

 The problem is expected to 

be located inside the detector

 No repair foreseen

 Dead channels < 0.02 %

 No High Voltage dead zone

 ~ 6% need Correction > 1%

23

LAr Dead Channels in 2008
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 channels for which the 

electronics readout is currently 

not functioning

 To be fixed in shutdown

 Dead readout channels < 0.95%

24

LAr Dead Readout Channels in 2008



Drift time
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Pulse Shapes : EM Calo
The rising at the end of the pulse is sensitive to 
a shift of the electrode with respect to its 
nominal central positioning 
Need 32 samples recorded data

 The contribution of the gap 
variation to the barrel calorimeter 
response uniformity is not larger 
than 0.3%

+    Mean Value

Expected value 

from geometry

25

 Physics pulses are well predicted 
 Residuals ~1-2%
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Timing study in EM Calo
The difference between the physics timing and the calibration timing was extracted 
per cell and per type of FEB from single beam events

Data: the time is first computed straightforwardly using the OFC iteration and then a 
time-of-flight correction is applied to get an "equivalent-to-collisions" time. 
Prediction : the time is computed from the calibration pulse and the readout path. 

 The agreement between the measurement of the time and the prediction 
using calibration pulses is at the level of 2 ns except for the presampler
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To a Z’ Discovery ?

IPMU – March 18th 2009

 LHC is a machine with a fast discovery potential 

 The understanding of first  collision data is crucial

 All the commissioning work performed with cosmics and single LHC  

beam data is necessary to an optimal use of data

 To a experimental physicist (on collider) , a Z’ is an resonance,  

heavier than the SM Z one, observed in the Drell-Yan ppl+l- + X with 

l=m,e,t 

 I focused my study on the discovery potential of a Z’ e+e- using only 

the EM calorimeter
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A realistic approach
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1. Can we use the EM calo only?

 Keeping a maximum electron identification efficiency

 Rejecting background :

• Without hadronic calo :  Jets rejection?

• Without tracker :  No g rejection

2. The non nominal EM calo performances

 What impact on the energy reconstruction ?

 The constant term may be degraded wrt measurements
realized during the beam tests.

 Effects linked the trigger system ?



PS Mangeard

Signal and Backgrounds
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 3 orders of magnitude between signal and QCD background

Challenges :

Can we reject it by a factor 1000 with the EM calo only?

Can we do it keeping a good efficiency? (signal limited search)

Simulation from the last ATLAS data challenge (14 TeV)
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Electron Identification 
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 Simple and robust cuts :
 Based on the EM Calo only

 h independant cuts

 Similar as for the Z extraction

 Take advantage of EM decay specificities :
 Longitudinally : energy fractions in S1, S2, S3

 Laterally :  energy distribution for different sizes of 
cluster in S1, S2, S3

 Uncalibrated energy of clusters was available
 I tested several sizes in the three layers
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QCD background rejection (1)
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Had1

S3

S2

S1

PS

EM Calo

Had. Calo

f3 : S3/(PS+S1+S2+S3)

Main energy deposit in S2

h

f

Fine granularity in S1                       

Ratio E(3x3)/E(7x7)

Width of EM shower in S1

Energy fraction in S3

Longitudinal development :

Lateral development :

EM and hadronic showers in the 
calorimeter are different
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QCD background rejection(2) 
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Cuts Ident.  Eff. J4 Rej. J5 Rej. J6 Rej.

Our 3 cuts 96.4% 71.0 51.8 29.2

ATLAS Standard 91.2% 29.8 35.4 39.6

 3 simple cuts, based on EM calo only, h independant  :

 f3 <0.04, >85% of energy in a 3x3 cluster, width in S1< 2.5

 Better efficiency with the 3 cut than with ATLAS standard (End-caps)

 Important for a discovery because the search is signal limited

 Similar cuts as for the Z extraction from the first data
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Signal extraction with the EM calo 

33

 Up to now, only the EM calo is used

 Photons are not rejected:

 g+jets :  complete simulation  ~100 times < QCD

 gg et W+g are negligible

100 pb-1

S~7.4s

18 signal events

 ) 



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




 Sig

B

Sig
BSigS 1ln2Significance :

1 pb-1 S~17s

290 signal events

1 TeV Z’Z

1 pb-1

IPMU – March 18th 2009



PS Mangeard

Saturation
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 For 1 TeV Z’, ATLAS is not affected by saturation

 Extrapol. : 5% of S1 and S2 (|h|<0.8) cells will saturate for a 6 TeV Z’

MG

LG
S2   

|h|<0.8

#
e

n
tr

ie
s

MG

LG
S2 

|h|>0.8

#
e

n
tr

ie
s

#
e

n
tr

ie
s

MG

LG S1

saturation

 EM calorimeter has been designed to be able to see a Z’

 3 electronic gains allow an energy reconstruction with a large dynamic 
range : from few tens of MeV to few TeV electrons 

Maximum energy cell in cluster
MG : Medium Gain 
LG : Low Gain
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Energy reconstruction
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 The calibrated energy reconstruction sums the 
weighted energies of clusters in the PS and the 3 
layers.  )332100 EwEEEwaE  

30 ,,, wwa are h-dependantwhere

30 ,,, wwa are determined from MC

 At the beginning of data taking, MC may (will) not fit 
correctly data. Let’s reconstruct energy naively !

3210 )( EEEEE 

Link to material in front of the calo Link to longitudinal leakage
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Impact of calibration 
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 Inv. Mass spectra after the 3 cuts electron identification

 In black, optimized reconstructed energy with MC coefficients 

 In red, energy reconstruction  via the simple sum of cluster energies.  

The resonance mass is underestimated by ~5%

 No significance loss with the simple reconstruction

~50 GeV

S~7.4s~18 signal events 

in [µ-3s,µ+3s]

100 pb-1

~18 signal events 

in  [µ-3s,µ+3s]

S~7.4s
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Constant term effects
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 The constant term dominates the energy resolution at high energy

 Even in the realistic case (2%), significance not affected

c
E

b

E

a

E


s

 Has been carefully measured <1% in standalone beam test for few modules

 But at start-up, all modules, in situ, with matter in front of it …effects?

S~7.4s

S~7.2s

(15%)
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Uncertainties
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 QCD background level :

 Assume a factor 2 of uncertainties

 Uncertainty on the significance  ~ ±1.2s

 Normalize the cross sections from 14 TeV to 10 TeV

 Conservative choice of 50% for the Z’ signal

 From 67% for QCD J0 to 20% for QCD J7

 Significance decreases from 7.4s to 5.6s
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Summary
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PS Mangeard

What is a Z’? 

 If a resonance is discovered…

What is a Z’ for a theorist ?

 The production mechanism induces a neutral particule, without color 

and which is its own antiparticle.

 Spin 0 :      in some SUSY model with violated  R-Parity

 Spin 1 : 

 Kaluza-Klein (KK) excitation from a SM gauge boson in 

extradimension models

 Gauge boson from symetry group extended from SM

 Spin 2 : KK excitation from a graviton in a Randall-Sundrum model

 Spin determination is crucial to highligth the situation

40IPMU – March 18th 2009

~
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CONCLUSION
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Since several years a large effort of in situ commissioning has been 
undertaken by the ATLAS Collaboration thanks to cosmic muons and single 
beam data

1. The EM Calorimeter has been highly commissionned

 Cosmic muons analysis (ATL-LARG-PUB-2007-013)

 Single LHC beam data analysis

 EM calorimeter (as ATLAS) is ready for physic & pp collision data

2.    New physics may be seen soon after the pp collision start-up

 Z’ee discovery potential in early data is little affected by 

non-nominal performances  (ATL-PHYS-INT-2008-020)
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SPARE
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Simulated data
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CSC 

Sample

Pt range 

(GeV)

s (nb) # of  

events

Luminosity 

(pb-1)

Signal 5605 Mee>500 376.5 10-6 79k 208500

dijets J3 5012 70-140 588 1101k 1.87

dijets J4 5013 140-280 308 383k 1.24

dijets J5 5014 280-560 12.5 332k 26.4

dijets J6 5015 560-1120 0.36 328k 777.8

dijets J7 5016 1120-2240 5.71 10-3 155k 27132

Samples generated with Pythia

Simu version : 12.0.6; reco version : 13.0.3 ; Geometry : CSC-01-02-00

Working at 14 TeV

Zχ’ of 1 TeV + Drell-Yan in same  sample    

 ~96k events of Zχ’ AND DY (extract ~79k Zχ’ from fit)
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QCD background rejection (1)
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Longitudinal development in EM Calo

Cuts ID Eff. J4 Rejection J5 Rejection J6 Rejection

f3 < 0.04 99.1% 1.9 2.0 2.0

Kinematic cuts + Signal/Truth : DR<0.1

 50% of QCD background is eliminated

Normalized distributions

ENERGY FRACTION IN S3
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QCD background rejection (2)
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Main energy deposits in S2

h

f

Fine granularity in S1                       
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 Rejection is significantly increased by these simpl cuts

Lateral development in EM Calo

Cuts ID Eff. J4 rej. J5 rej. J6 rej.

f3 < 0.04 (1) 99.1% 1.9 2.0 2.0

(1) + S2 >0.85 (2) 98.3% 30.6 18.5 8.6

(1) + (2) + S1<2.5 (3) 96.4% 71.0 51.8 29.2

Ratio E(3x3)/E(ZxZ)

EM shower width in S1
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Signal extraction with ATLAS
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With Had. Calorimeter and 

trackerWith Had. Calorimeter

S~10.5s S~10.2s

1 TeV Z’

 Increases significance  from 

7.4s to 10.5s

 Tracker allow to distinguish 

di-photon from di-electron 

resonances
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Remarks 

 Our method using the EM Calo only works also for di-photon resonances 
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