Astronomical Imaging
and Photometry:
Introduction



. Introduction—magnitudes, fluxes and flux densities, AB
scale, S/N, dynamic range, etc.

Detectors—a little history, CCDs and how they work and are
made, CMOS and IR detectors, Double-correlated sampling
and kTC noise, future prospects.

. An overview of optics for astronomy---First- and third-order

optics, aberrations, simple physical optics and diffraction.
Telescopes.

The atmosphere---Seeing, absorption, and backgrounds



5. Doing photometry.---Processing the Images, measuring
astronomical objects on images, calibrating the
measurements. The devil in the details. Pitfalls.

6. Spectroscopy and Spectrophotometry---Dispersive
elements, a little history, resolving power, detectors,
spectrograph optics, slits and fibers, FRD, techniques
toward IFUs. Pitfalls.

7. A tour of a spectrograph design---designing the PFS for
Subaru.



Originally, the classical Greeks divided the stars into six magnitude
bins according to brightness, from 1 (brightest) to 6 (faintest which
can be seen with the naked eye). It was conceived as a logarithmic
scale and the ratio was thought to be 2.

In 1856, Pogson proposed that the system be formalized. It was
known then that a typical first magnitude star was *about” 100 times
as bright as a typical sixth magnitude star, so Pogson saddled

all of posterity with the POGSON ratio = 100" = 10°4 =2.512...

He could just as easily have proposed e = 2.718.., which would

have made magnitudes the same as natural logarithms and

which would have fit the situation as it was known then just as

well, and made our lives subsequently infinitely easier, but he

was an Englishman, and Napier was a Scot, and....

well, you know.



So the FLUX F from an astronomical object is related to its
(apparent) magnitude m by

F = Const * 107{-0.4"m}
or

m=-25log F+C (hereinafter log =log,,)

We can also, of course, use magnitudes to measure LUMINOSITY,
by referring to a standard DISTANCE, usually taken to be 10 pc;
thus the ABSOLUTE MAGNITUDE M of a source is related to its

apparent magnitude by
m=M+ 5log (d/10) =M + 5 log d — 5.

If we are to build instruments to detect astronomical objects and
understand and analyze the measurements we must know something
about C, and exactly what we mean by m and F.



The FLUX is what we measure with some detector, which is
sensitive to the total power, total energy, or (more typically) total
number of photons detected in some wavelength region, in some
region of the focal plane of a telescope, normally averaged or added
over some known time. But we NEVER measure the total flux.

Detector systems have some efficiency function S(A) which is a
product of several factors:

T(A) the transmission of the telescope

A(A) the transmission of the atmosphere

f(A) the transmission of any on-purpose filter in the system
q(\) the efficiency of the detector itself

For modern visible and near-IR detectors, q(\) is usually a QUANTUM
EFFICIENCY, the probability of detection of a photon at A..



So we never measure the TOTAL (bolometric) flux, both because of
the fact that no real detector is sensitive to all wavelengths, the
fact that the atmosphere is not transparent to all wavelengths,
(more later) the fact that we almost nhever WANT the bolometric
flux, because we want some information about the spectral energy
distribution of the astronomical object, AND that for the detectors
we will be talking about, number of photons, not energy, is the
detected quantity. This is a very important point, which we need
always to remember.

So what we MEASURE is a signal s which is, if we can count photons,
S= AtSFV(ﬂ) S(1) dv/(hv)

F Flux *density*-- power per unit frequency per unit area

S(A) Efficiency as above
A Collecting area of Telescope
t total integration time



NOTE that F (1) dv/(hv) is the number of photons incident on the

atmosphere of the earth per unit area per unit time in the frequency
interval dv .

Now there are a number of PHOTOMETRIC SYSTEMS defined at the
hardware level by various combinations of detectors and (usually)
sets of filters used to isolate (usually fairly broad) wavelength
regions. Let's look at some response curves for a few of these
systems.

These are the BROADBAND PHOTOMETRIC SYSTEMS, with
OA/A ~ 6v/v typically 0.1 or so.

First, the archetype of them all, the photoptic' response

of the human eye, some approximation of which typically defines a
VISUAL band, then the very common but quite old Johnson UBV
(V=visual) system, and the newer SDSS five-color system, and

the Subaru HSC system



Standard eye sensitivity
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For a given filter/detector combination, say “f”, the magnitude
associated is

m_=-2.5log SFV(Z) S@A)dA/A + C

Where S _is the normalized response (h is gone, dv/v = dA/A ), a
constant multiple of the physical response function S(A) such that

Ss1(,1) di/i =1

Now F and S, are both nonnegative, so the integral is the flux density
at some wavelength in the support of S, and, in fact, near the
peak of S, if F is reasonably smooth and S, not too wide.



At V=0, the V flux defined above is 3.63E-20 erg cm? sec” HZ’
for a source with F,, = constant

Oke in 1969 defined monochromatic magnitudes, the so-called
AB scale:

AB = -2.5log (F, (cgs)(A)/ 3.63e-20) =-2.5log F, - 48.60

and magnitudes defined with this zero-point constant are called
AB magnitudes, ie, for cgs flux density

AB, =-2.5 log SFV(cgs)(ﬂ) S (A)dA/A - 48.60

AB magnitudes have the advantage that they are directly
related to the flux density at a wavelength near the mean
wavelength of the filter; they have the disadvantage that
they lure one into believing one can calculate the real

flux density. The physical flux density scale is known only to
a few percent over the visible wavelength range.



Each photon carries energy hv = 1.98e-12/A(microns) erg.

The number of photons is, as before,

s=AtSFv(ﬂ) S(4) dv/(hv) ~ (Ath) F (<A>) SS(A) dA/(A)
~ (Atq/h) F (<A>)

q is the SYSTEM EFFICIENCY and is the integral in the line
above; it is clearly approximately the total quantum efficiency
at the mean wavelength of the filter times the logarithmic

width of the filter; q ~ <S>AA/A, so the total number of photons
in an observation is approximately

S ~ (AVh)<S>AA/A F (<A>) = 1.51e7 F (<A>)(Jy) A(nY’) t(sec) <S>AA/A
~ 550 A(nP) t(sec) <S>AA/A at AB=20; <S>AA/A ~ 0.1, so ~50



The fully opened iris in most humans is about 6mm in diameter,

A ~ 3e-5 m72. A 7" magnitude star is about 5Jy, and the eye
integrates for ~0.05 sec, so the total number of photons *received”
for this detection is about 7 !!! Pretty good.



The sky in the daytime is not dark. Why?

The sun is an absolute magnitude 4.83 G2IV-V star; at 1 au = 4.84e-6 pc;
Its apparent visual magnitude is thus -26.8.

The atmosphere scatters about 10 percent of the light incident on it,
more-or-less isotropically. We will discuss this in much more detail

later. 10 percent is 2.5 magnitudes, so the whole sky has an apparent
magnitude of ~ -24.3. There are 20,000 square degrees in a hemisphere, 10.75
magnitudes, so the visual brightness of the daytime sky is about

-13.5 per square degree
-4.7 per square arcminute
+4.2 per square arcsec

The resolution of a very good eye is about 1 arcminute, so the sky
is too bright to see any but the brightest stars against it.



The full moon is about 450,000 times fainter than the sun, 14.1 mag,
so is about V ~ -12.7. The corresponding numbers for the sky
brightness are

+0.8 per square degree
+9.4 per square arcminute
+18.3 per square arcsec,

so at a typical ground-based resolution of ~ 1 arcsecond, the
moonlit sky dominates the signal for pointlike objects fainter than
about 18" magnitude. The moon's brightness (and the brightness of
the moonlit sk) falls off rapidly with phase:

0 0.00 m
40 1.06 m
80 2.24 m

120 3.93m



Is not dark; we will discuss the origins of the light later, but
for now we note that its V brightness is, in good sites, about
21.7 magnitude per square arcsecond, about a factor 25
fainter than the full moonlit sky, and roughly equal to the
moonlight contribution at phase ~110 degrees. The moon's
phase angle must be considerably larger for the moon to be
negligible. The situation is worse in the blue, where the
scattering is worse, and much better in the red, where both
the scattering is smaller AND the sky brightness from
natural emissions much, much larger.....but this just means that the
moon is less bad—the sky is very bright.



Go back to our photon rate equation:

s ~ 1.51e7 F (<A>)(Jy) A(nY) t(sec) <S>AA/A
~ 5.48e10 F (<A>)(Maggies) A(mP) t(sec) <S>AA/A
~ 5.48e10 10/(-0.4 AB,) A(n7’) t(sec) <S>AA/A

1 maggie is the flux from an AB= 0 star, 3630 Jy

Sky is 21.7 at best; a 3.5-meter telescope with

50% efficiency in a 20% filter has A<S>AA/A ~ 1,

so we get ~115 photons/sec from a 1 arcsec/2 patch on the sky.
In 1 arcsec seeing, so the FWHM of the image is 1 arcsec, the

image occupies ~ 4 arcsec’2 effectively.



We thus have both signal and background, each of which
carries its own noise signature. How accurately can we measure
the brightness of an object?

If we receive s photons from the object and b photons from
the sky UNDER the object, and we presume that we can
measure the sky OUTSIDE the object infinitely precisely,
the noise in the measurement is (s + b)"?, since photon
arrival is random and the noise is therefore Poisson.

Thus the signal-to-noise ratio, the inverse of the statistical
precision of the measurement, is

S/N = s/(s + b)"”?
There are two regimes, one in which s > b; i.e. objects

brighter than the sky under them, and the converse,
S << b, objects much fainter than the sky under them.



S/N ALWAYS is proportional to t? under constant conditions.

In the bright limit, S/N = s'?, and is independent of the
sky background and the image size (seeing), so long as
one remains in the bright limit.

In the faint limit, S/N is proportional to s, since the noise is
all from the sky, and is inversely proportional to the square
root of the sky background and inversely to the image size.

Therefore, at FIXED S/N, the time required to acquire a
measurement is inversely proportional to the source brightness
in the bright limit and inversely proportional to the SQUARE of
the source brightness in the faint limit. To go a magnitude
fainter requires 2.5°~ 6 times as long for faint objects.

t ~ b d?/s? in the faint limit, where d is the seeing diameter.



To cover some range in wavelength requires a number of
filters which is inversely proportional to AA/A. Since

the number of photons in a given exposure time is
proportional to AA/A for both the star and the sky, the time

to reach a given S/N in a single filter is inversely proportional
to AA/A, and since it requires a number of filters to cover the
range which is also inversely proportional to AA/A, the time
required goes inversely as the SQUARE of AA/A The ability to
measure at different wavelengths simultaneously by

means of a dispersive element like a grating or dichroic filters
(gaining a MULTIPLEX advantage) is therefore highly desirable
for high-wavelength-resolution studies of the spectral energy
distributions of astronomical sources.



Reach 25" magnitude with our 3.5-meter telescope with S/N = 5
(a typical definition of “detection”) with our good dark sky.

25" magnitude -> 1.0e-10 maggies, so

s ~ 5.5 photons/sec

4 pixels of sky at 21.7 mag/sec2 is magnitude 20.2, 450 photons/sec
so

S/N = (5.51)/(4501)"? ~ 0.25t"2 = 5 at t= 400 sec, an easy exposure.



What makes the star ~ an arcsecond across?
How do I need to sample the star image to get the accuracy | need?

How well can | determine the center of the star image, ie to measure
the position of the star? What limits the accuracy of this
measurement ?

What wavelength region should (can) | work in? That is,
Where do good detectors work?
Where is the sky transparent?
Where is the sky reasonably dark?
What do I do if | need to work in a wavelength region in which
there are problems with one or more of the above?

What if | am interested in extended objects?



What happens if the field is so crowded that | cannot treat the
object | am interested in, or any object, as isolated?

How do I choose filters to maximize my observing efficiency
given the science | wish to do?

How do I actually REDUCE my data so as to get a true measurement
as free as possible from instrumental/atmospheric/optical

artifacts? What limits my accuracy in making this
measurement?

What are the *systematic* errors in absolute photometry and
spectrophotometry? (How well do we know the AB,, scale?

can it be improved? How?)



We will address some of these questions here. To address them
all is a whole course, and there is not enough time. You should
know that not all of them have very satisfactory answers... :-(
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