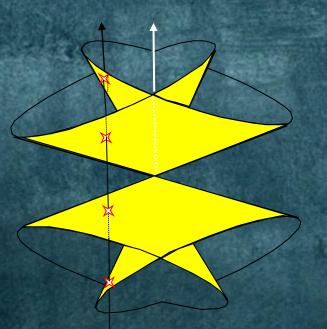
FREDERIC P. SCHULLER Max Planck Institute for Gravitational Physics



Spacetimes beyond Einstein

Kavli Institute for the Physics and Mathematics of the Universe Tokyo, Japan

SPACETIME

教科員

N. S. S. S. S.

A See Little

TOPOLOGY

1.1

A State

SET

SMOOTH ATLAS

1.232

OBSERVATIONS

State 2

1880

SMOOTH ATLAS

OBSERVATIONS

MAXWELL ELECTRO-MAGNETISM

SMOOTH ATLAS

Einstein 1905

OBSERVATIONS

MAXWELL ELECTRO-MAGNETISM

SMOOTH ATLAS

TOPOLOGY

Einstein 1905

OBSERVATIONS

MAXWELL ELECTRO-MAGNETISM

LORENTZIAN METRIC

SMOOTH ATLAS

Einstein 1905

OBSERVATIONS

1

MAXWELL ELECTRO-MAGNETISM

LORENTZIAN METRIC

SMOOTH ATLAS

TOPOLOGY

Einstein 1905

OBSERVATIONS

1

MAXWELL ELECTRO-MAGNETISM

LORENTZIAN METRIC

SMOOTH ATLAS

TOPOLOGY

Einstein 1905

OBSERVATIONS

MAXWELL ELECTRO-MAGNETISM EINSTEIN GRAVITY DYNAMICS

1

LORENTZIAN METRIC

SMOOTH ATLAS

TOPOLOGY

Einstein

1880

Einstein 1915

OBSERVATIONS

MAXWELL ELECTRO-MAGNETISM EINSTEIN GRAVITY DYNAMICS

1

LORENTZIAN METRIC

SMOOTH ATLAS

TOPOLOGY

Einstein 1915

OBSERVATIONS

1880

1905

Einstein

MAXWELL ELECTRO-AGNETISM EINSTEIN GRAVITY DYNAMICS

Kuchar+Teitelboim

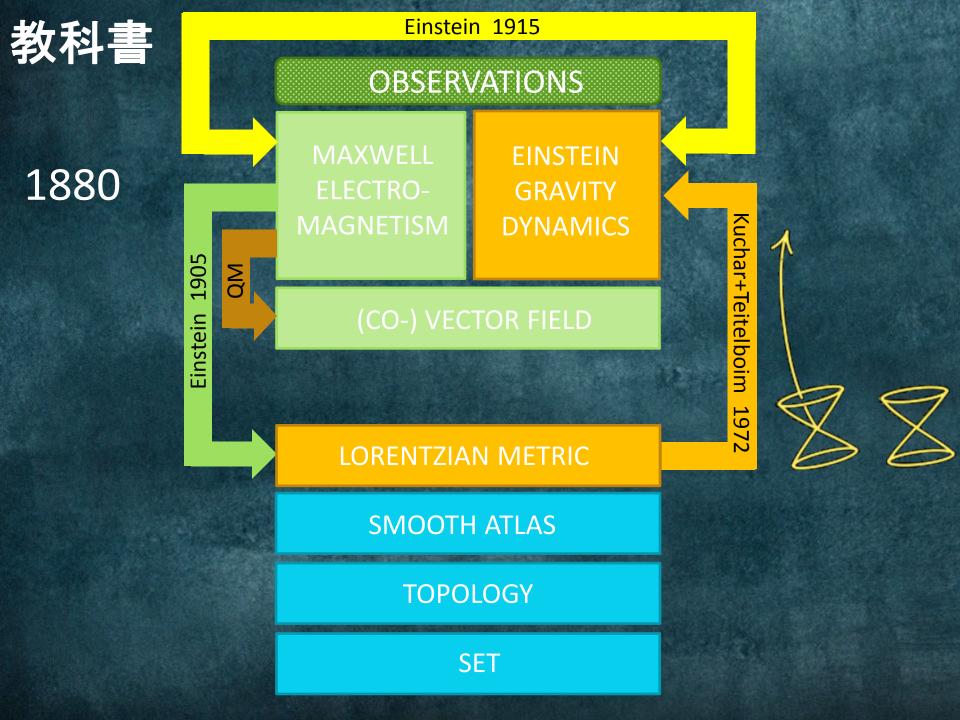
1972

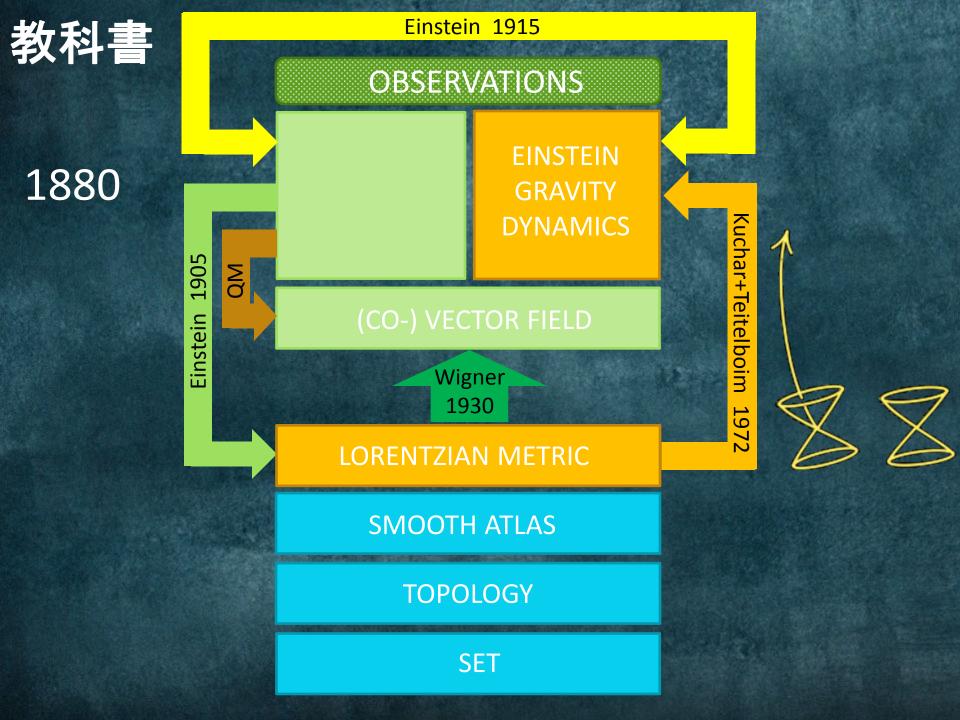
1

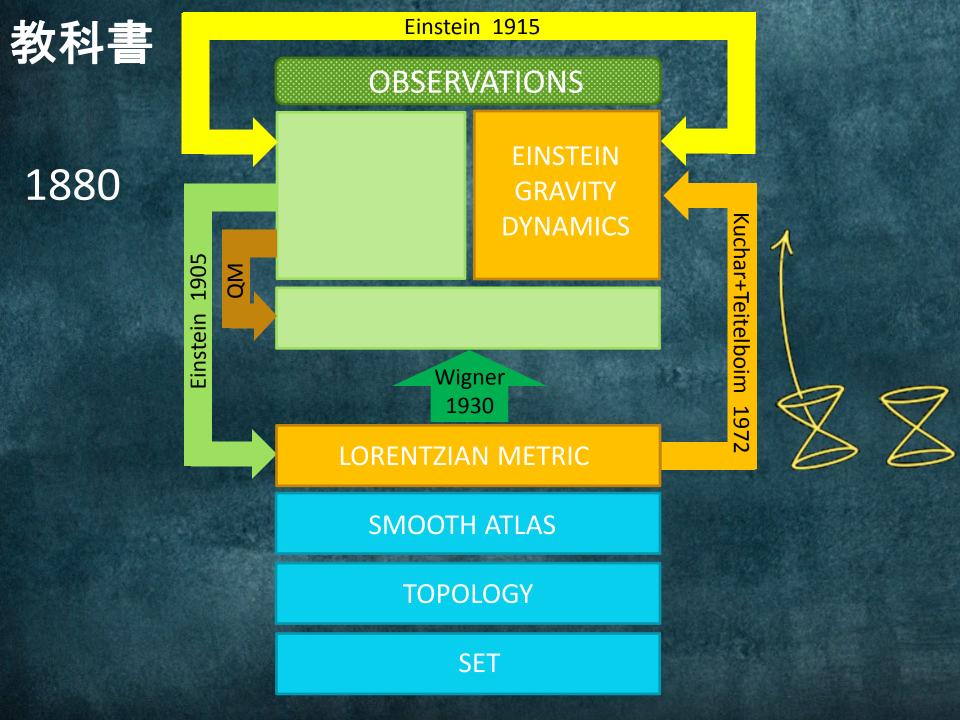
LORENTZIAN METRIC

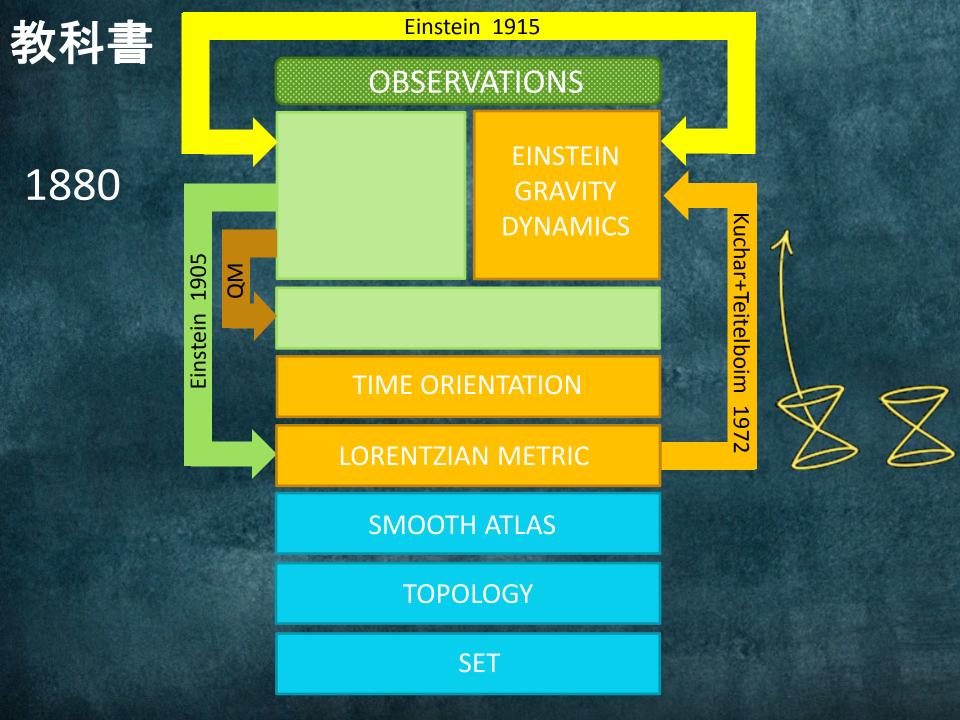
SMOOTH ATLAS

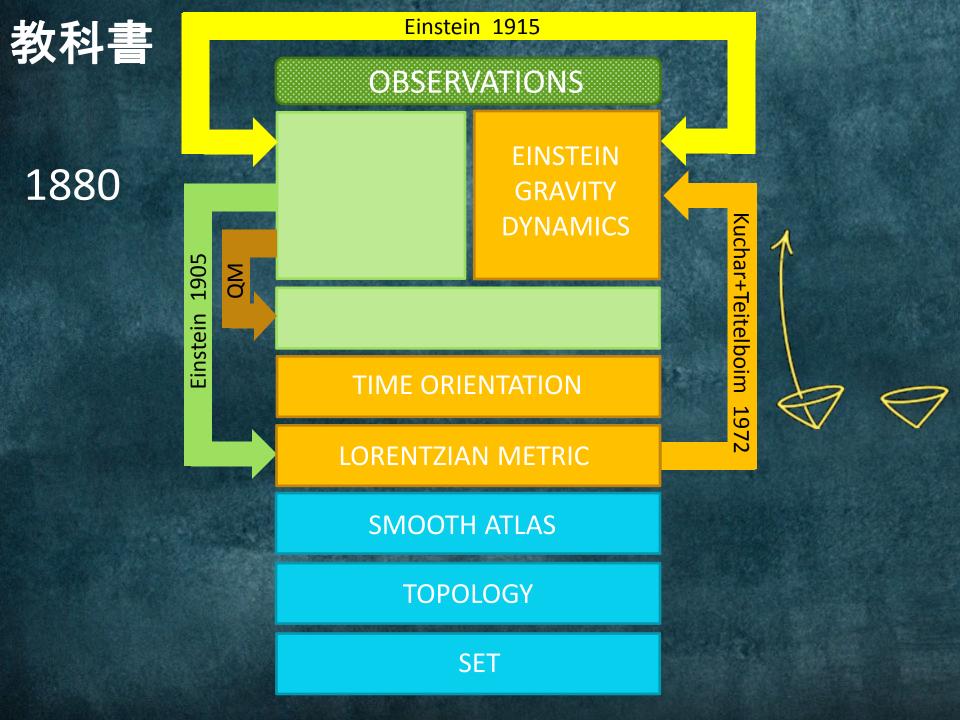
TOPOLOGY

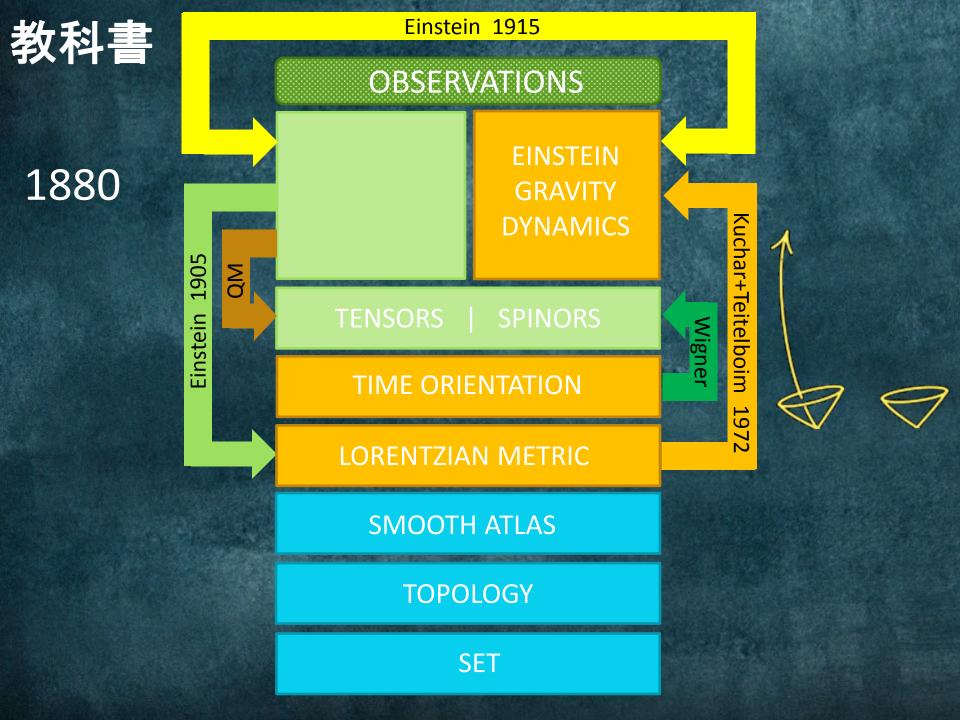


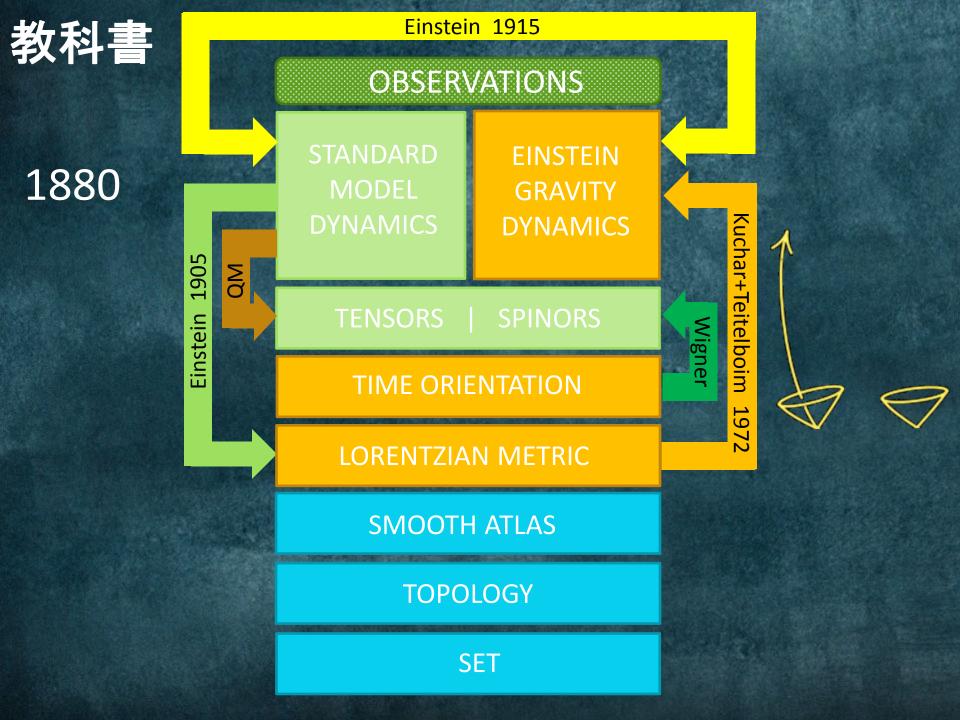


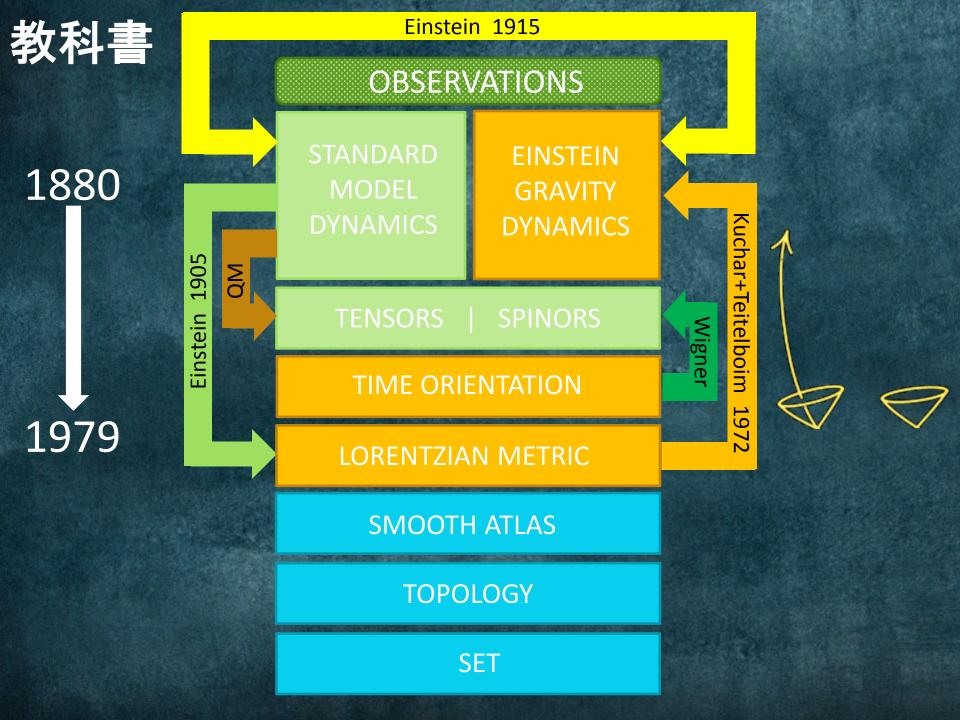


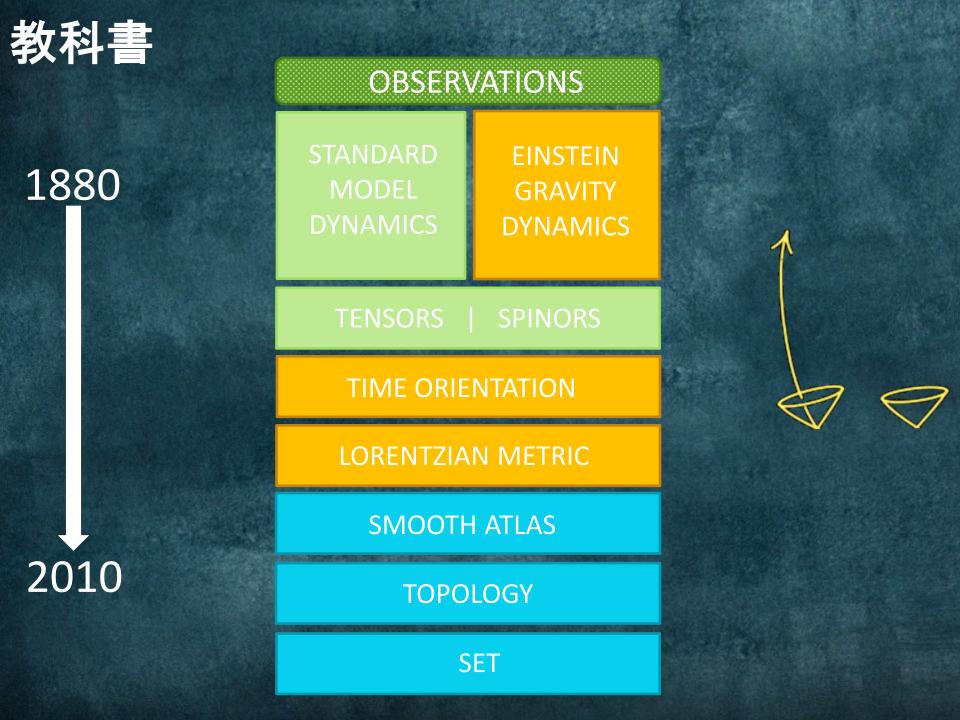












2010

OBSERVATIONS

STANDARD MODEL DYNAMICS EINSTEIN GRAVITY DYNAMICS

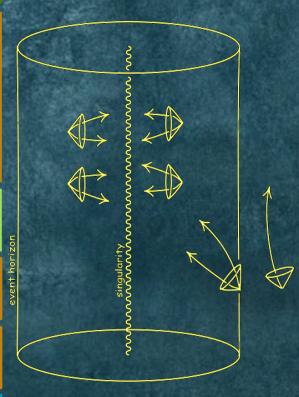
ENSORS | S

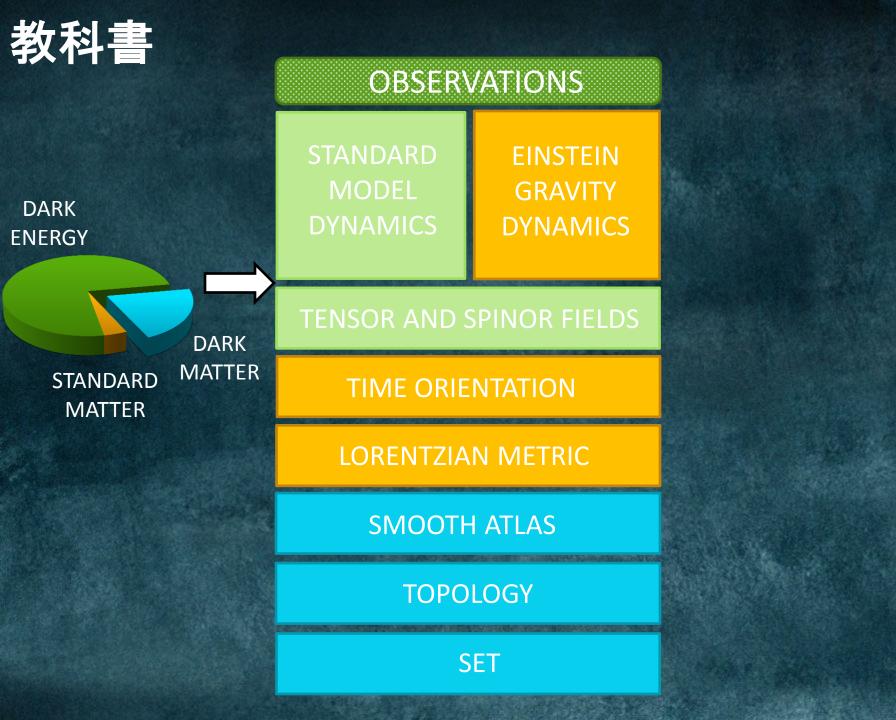
TIME ORIENTATION

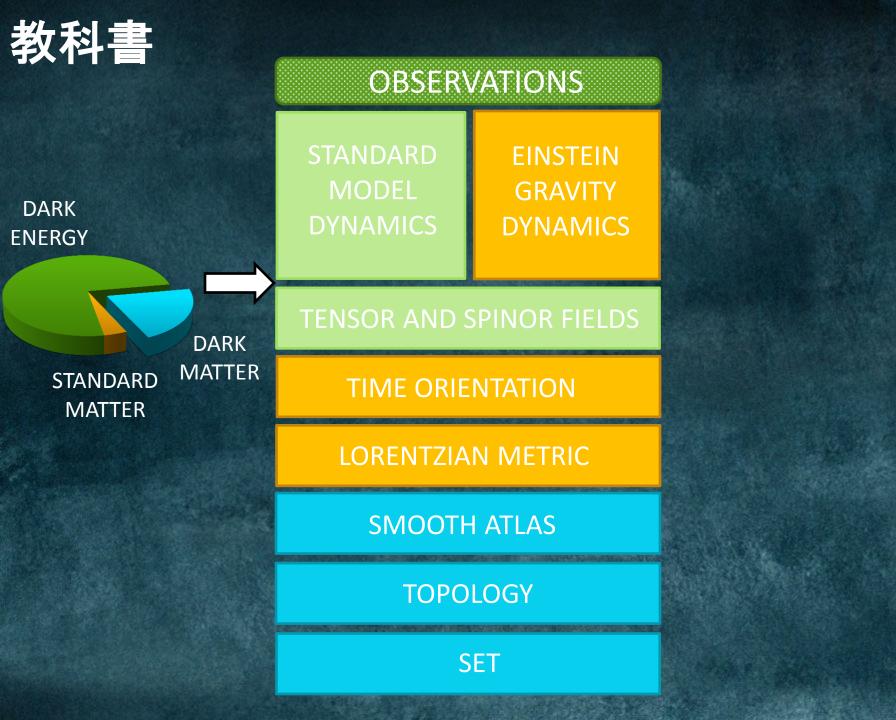
LORENTZIAN METRIC

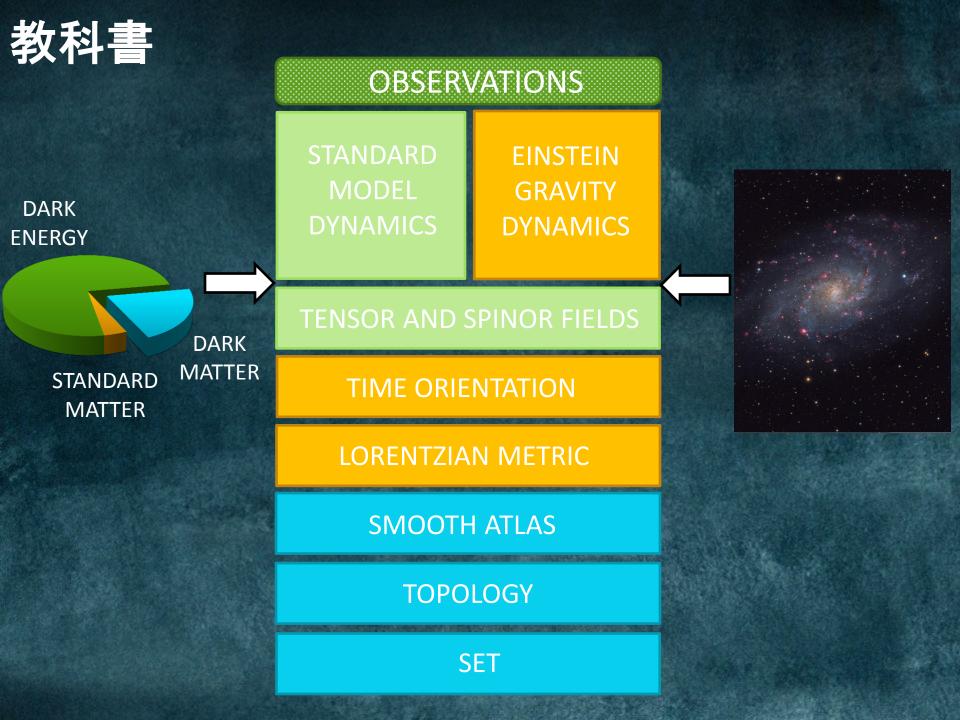
SMOOTH ATLAS

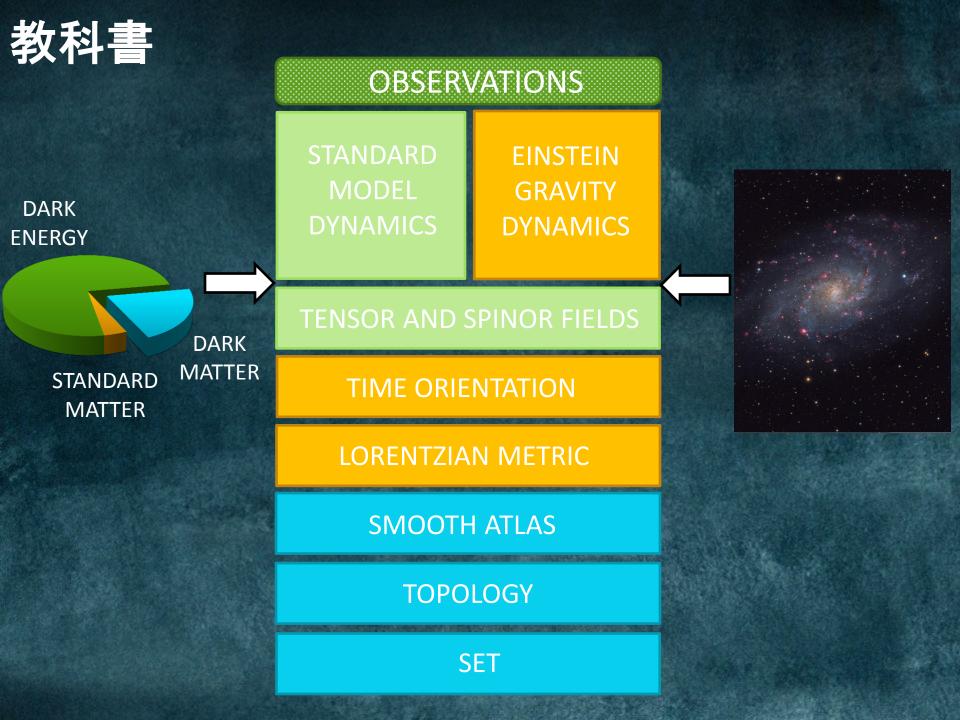
TOPOLOGY











OBSERVATIONS

STANDARD MODEL DYNAMICS

EINSTEIN GRAVITY DYNAMICS

TENSOR AND SPINOR FIELDS

TIME ORIENTATION

LORENTZIAN METRIC

SMOOTH ATLAS

SPACETIME KINEMATICS

OBSERVATIONS

STANDARD MODEL DYNAMICS

EINSTEIN GRAVITY DYNAMICS

TENSOR AND SPINOR FIELDS

TIME ORIENTATION

LORENTZIAN METRIC

SMOOTH ATLAS

TOPOLOGY

STANDARD MODEL DYNAMICS

EINSTEIN GRAVITY DYNAMICS

TENSOR AND SPINOR FIELDS

OBSERVATIONS

TIME ORIENTATION

LORENTZIAN METRIC

SMOOTH ATLAS

SMOOTH ATLAS

SET

TENSOR FIELDS

SMOOTH ATLAS

OBSERVATIONS

TENSOR FIELDS

SMOOTH ATLAS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELDS

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELDS

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELDS

SMOOTH ATLAS

TOPOLOGY

Algebraic Geometry

Modern PDE Theory

Convex Analysis FIELD FIELD EQUATIONS

TENSOR FIELD

SMOOTH ATLAS

TOPOLOGY

Algebraic Geometry

Modern PDE Theory Convex Analysis Rätzel, Rivera, FPS 2010

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD Φ

SMOOTH ATLAS

TOPOLOGY

 $\partial_{a_1} \dots \partial_{a_n} \Phi = 0$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD Φ

SMOOTH ATLAS

TOPOLOGY

 $Q^{a_1\dots a_n} \partial_{a_1}\dots \partial_{a_n} \Phi = 0$

FIELD FIELD EQUATIONS

TENSOR FIELD Φ

SMOOTH ATLAS

TOPOLOGY

N $\sum Q^{a_1\dots a_n} \partial_{a_1}\dots \partial_{a_n} \Phi = 0$ n=0

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD Φ

SMOOTH ATLAS

TOPOLOGY

N $\sum Q^{a_1\dots a_n} \partial_{a_1}\dots \partial_{a_n} \Phi = 0$ n=0

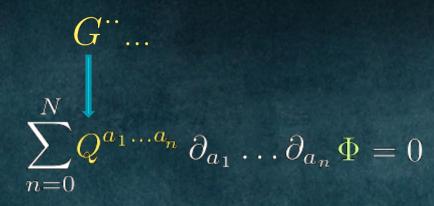
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD Φ

TENSOR FIELD $\, G \,$

SMOOTH ATLAS

TOPOLOGY



PREDICTIVE FIELD EQUATIONS

Tensor field Φ

TENSOR FIELD $\, G \,$

SMOOTH ATLAS

TOPOLOGY

$\sum_{n=0}^{\mathbb{N}} Q^{a_1 \dots a_n} \partial_{a_1} \dots \partial_{a_n} \Phi = 0$

 $O^{a_1 \dots a_N}$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

Tensor field Φ

TENSOR FIELD $\, G \,$

SMOOTH ATLAS

TOPOLOGY

P(k) =

$\sum_{n=0}^{\mathbb{N}} Q^{a_1 \dots a_n} \partial_{a_1} \dots \partial_{a_n} \Phi = 0$

 $Q^{a_1\ldots a_N} k_{a_1}\ldots k_{a_N}$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

Tensor field Φ

TENSOR FIELD $\, \mathbf{G} \,$

SMOOTH ATLAS

TOPOLOGY

P(k) =

$\sum_{n=0}^{\mathbb{N}} Q_{AB}^{a_1 \dots a_n} \partial_{a_1} \dots \partial_{a_n} \Phi^B = 0$

 $Q^{a_1\ldots a_N} k_{a_1}\ldots k_{a_N}$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD Φ

TENSOR FIELD $\, \mathbf{G} \,$

SMOOTH ATLAS

TOPOLOGY

$\sum_{n=0}^{\mathbb{N}} Q_{AB}^{a_1 \dots a_n} \partial_{a_1} \dots \partial_{a_n} \Phi^B = 0$

 $P(k) = \det \left[Q^{a_1 \dots a_N} k_{a_1} \dots k_{a_N} \right]$

OBSERVATIONS

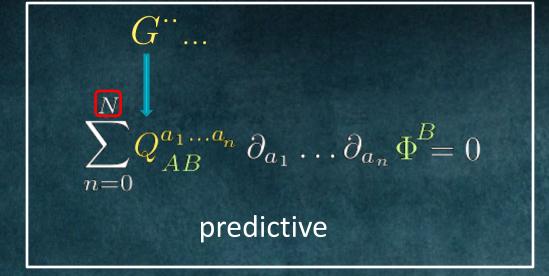
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD Φ

TENSOR FIELD $\, \mathbf{G} \,$

SMOOTH ATLAS

TOPOLOGY



PREDICTIVE FIELD EQUATIONS

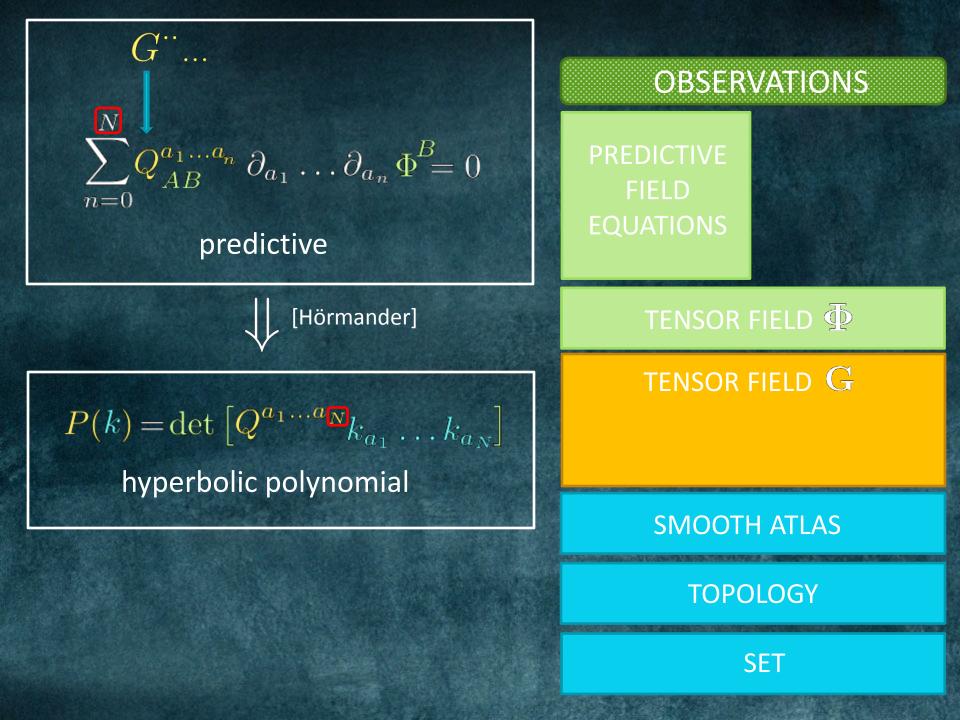
TENSOR FIELD Φ

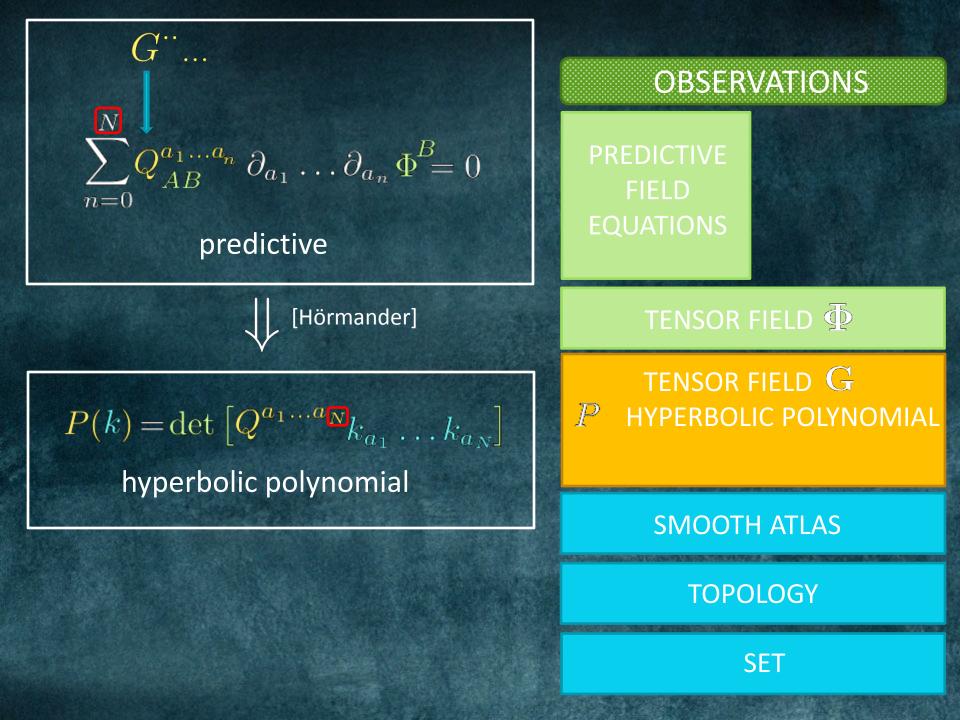
TENSOR FIELD $\, \mathbf{G} \,$

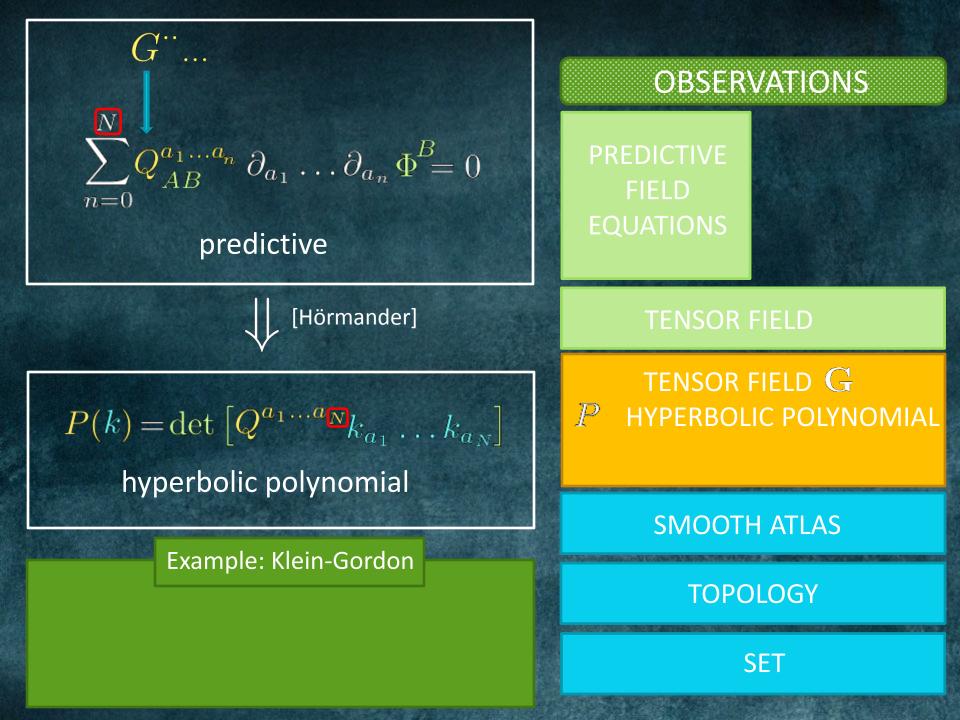
$P(k) = \det \left[Q^{a_1 \dots a_N} k_{a_1} \dots k_{a_N} \right]$

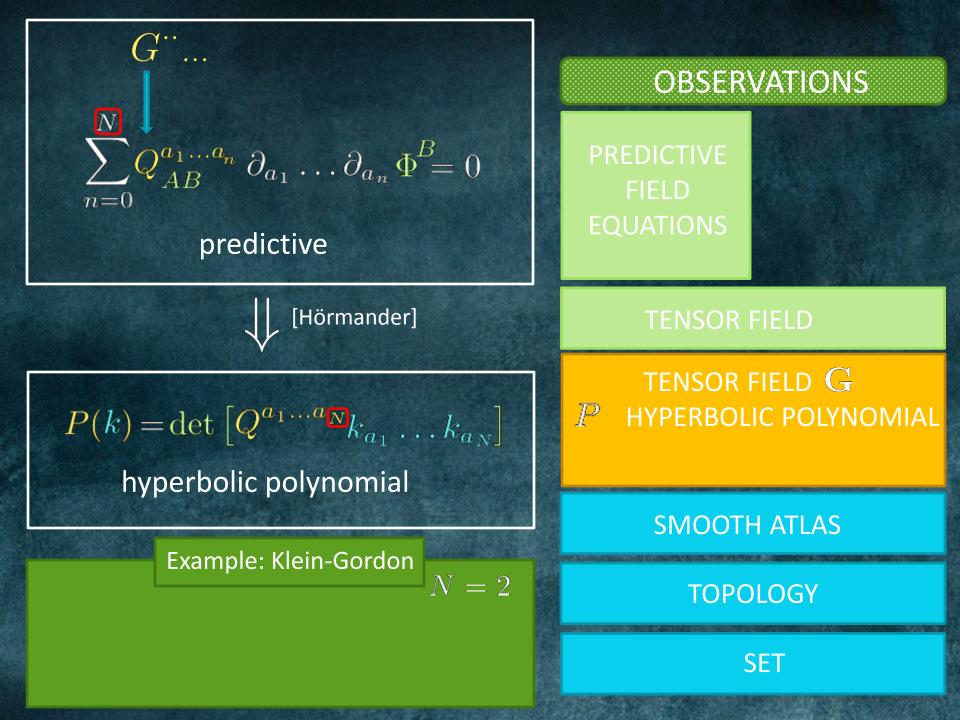
SMOOTH ATLAS

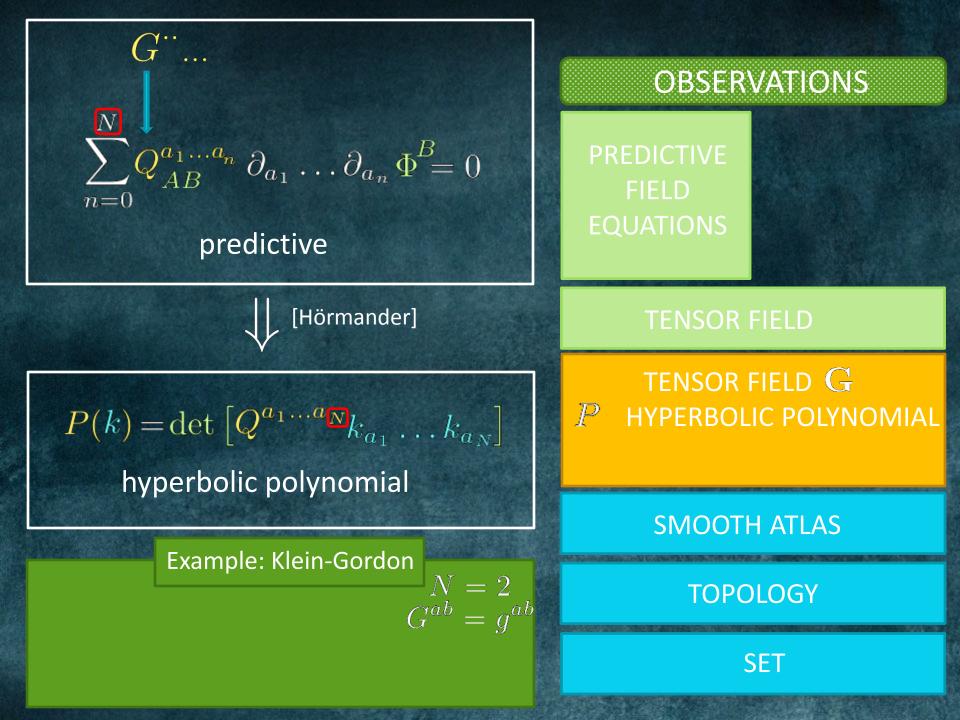
TOPOLOGY











$$G^{+} \dots$$

$$\sum_{n=0}^{N} Q^{a_{1}\dots a_{n}}_{AB} \partial_{a_{1}} \dots \partial_{a_{n}} \Phi^{B} = 0$$
predictive
$$\int [Hörmander]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$
hyperbolic polynomial
$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N}} \right]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{n}} k_{a_{1}}\dots k_{a_{N$$

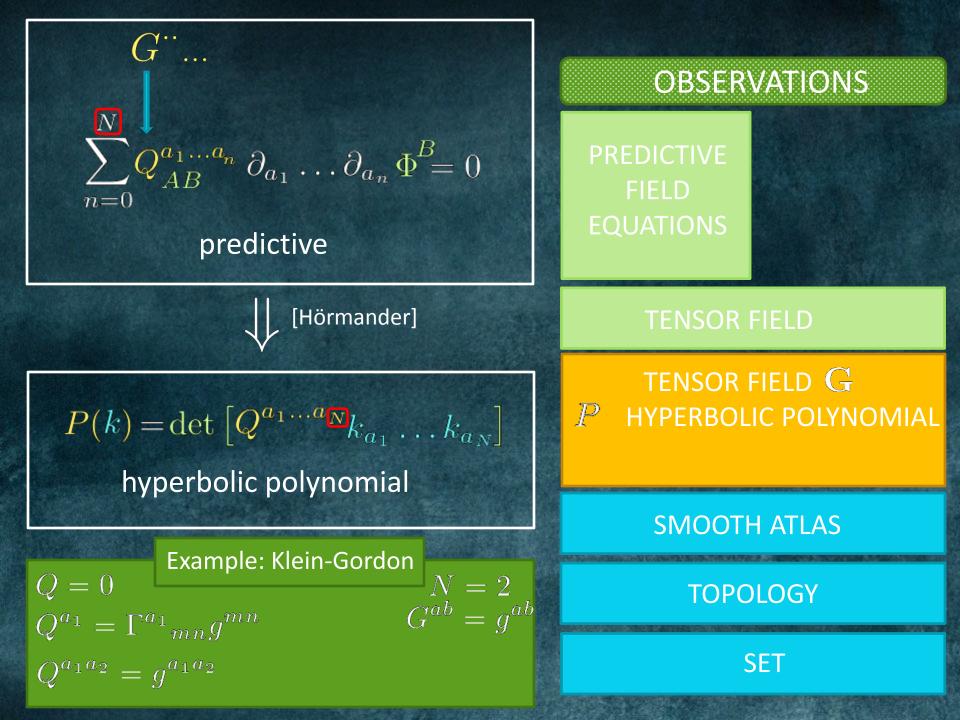
$$G^{*} \dots$$

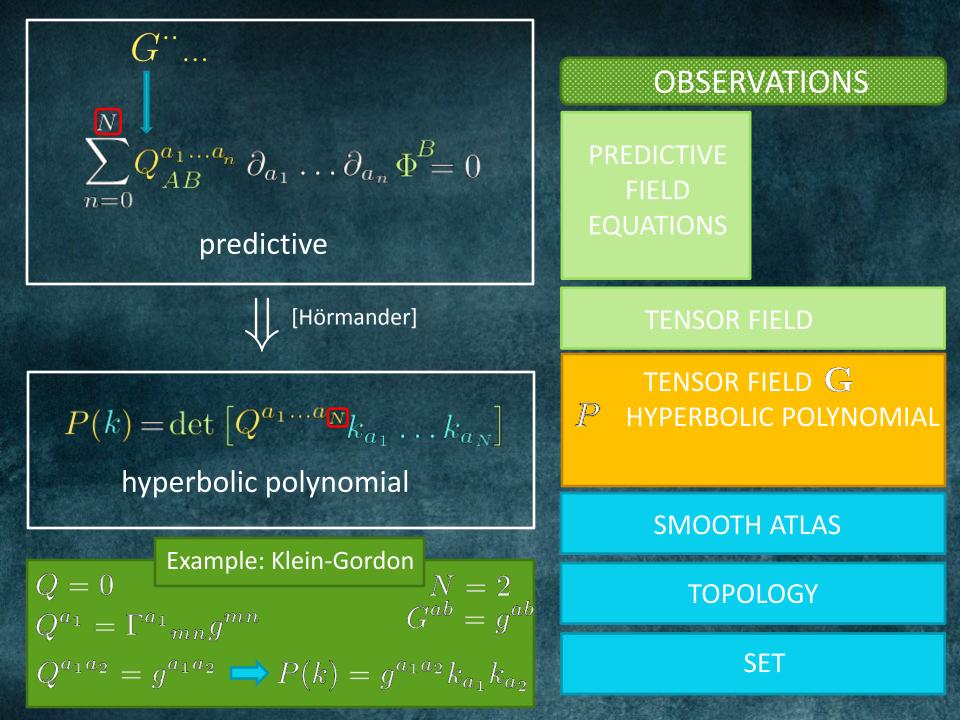
$$\sum_{n=0}^{N} Q_{AB}^{a_{1}\dots a_{n}} \partial_{a_{1}}\dots \partial_{a_{n}} \Phi^{B} = 0$$
predictive
$$\int [Hörmander]$$

$$P(k) = \det \left[Q^{a_{1}\dots a_{N}}k_{a_{1}}\dots k_{a_{N}}\right]$$
hyperbolic polynomial
$$P(k) = \operatorname{det} \left[Q^{a_{1}\dots a_{N}}k_{a_{1}}\dots k_{a_{N}}\right]$$

$$P(k) = \operatorname{det} \left[Q^{a_{1}\dots a_{N}}k_{a_{1}}\dots k_{n}\right]$$

$$P(k)$$





$$P(k) = \det \left[Q^{a_1 \dots a_{\mathbb{N}}} k_{a_1} \dots k_{a_N} \right]$$

hyperbolic polynomial

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

$$P(k) = \det \left[Q^{a_1 \dots a_N} k_{a_1} \dots k_{a_N} \right]$$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ *P* HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

P-null surface in k-space

$$P(k) = \det \left[Q^{a_1 \dots a_N} k_{a_1} \dots k_{a_N} \right]$$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ *P* HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

P-null surface in k-space

 $P(k) = \det \left[Q^{a_1 \dots a_{\mathbb{N}}} k_{a_1} \dots k_{a_N} \right]$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

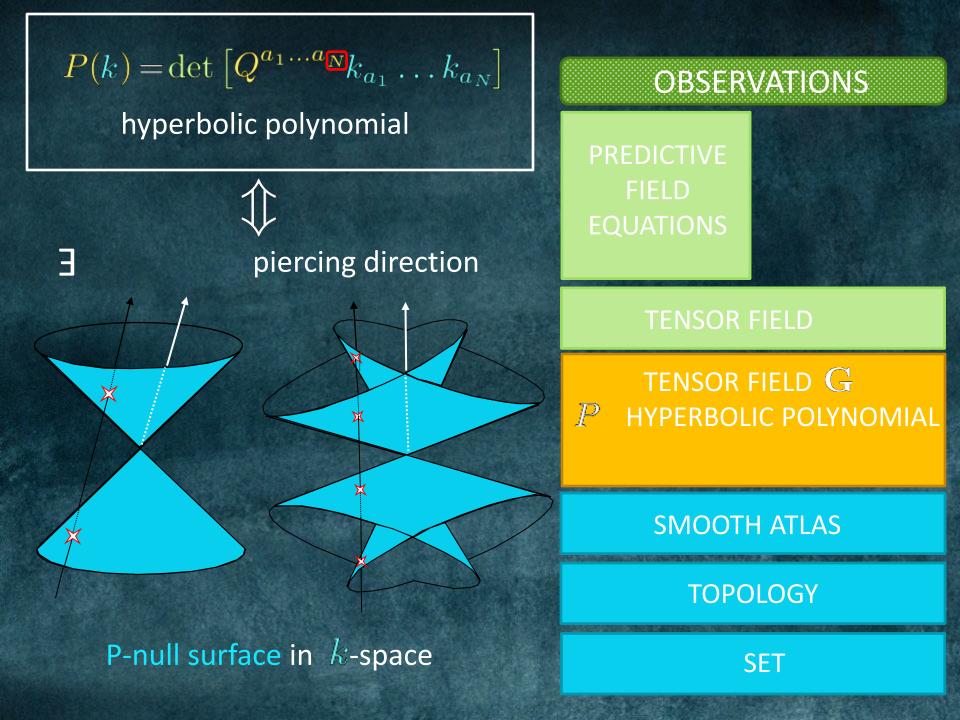
TENSOR FIELD

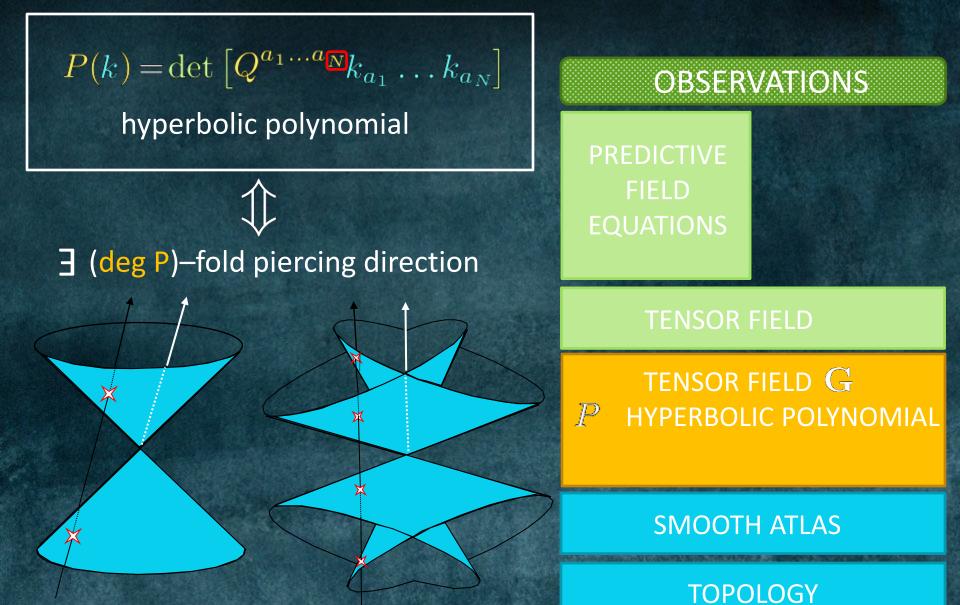
TENSOR FIELD ${f G}$ *P* HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

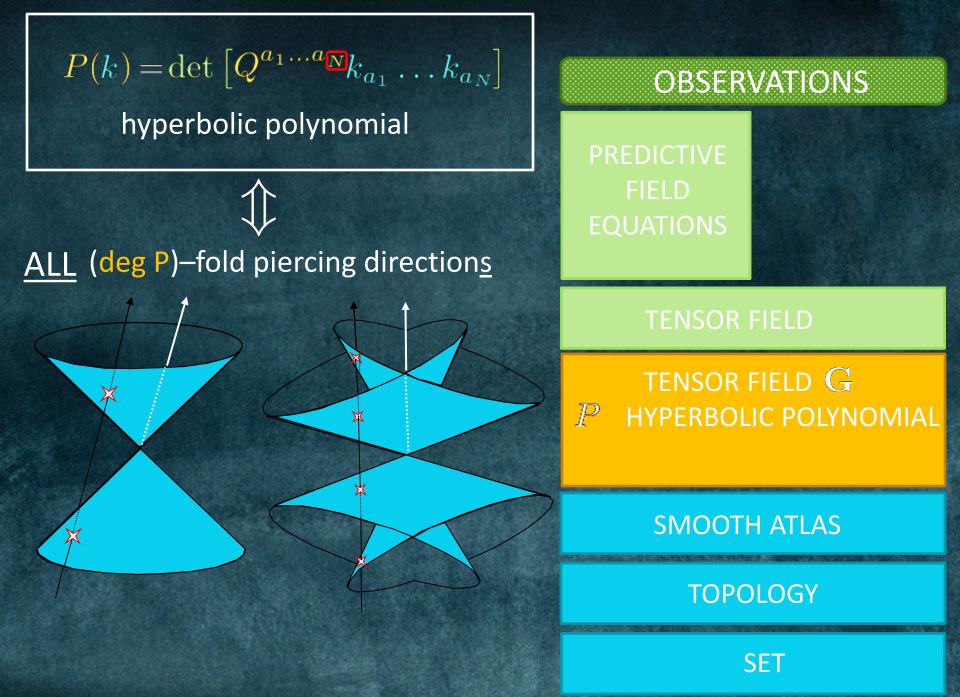
TOPOLOGY

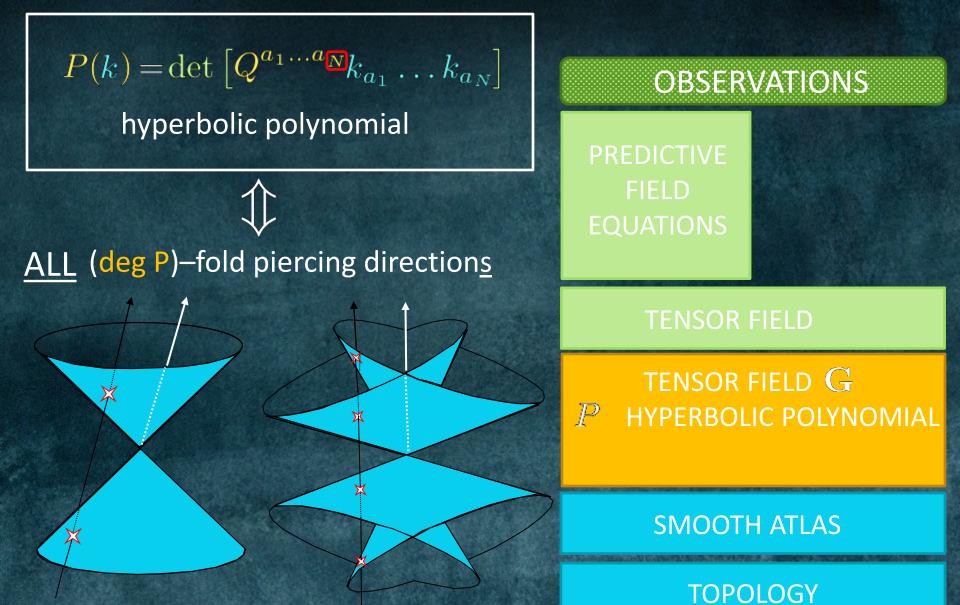
P-null surface in k-space



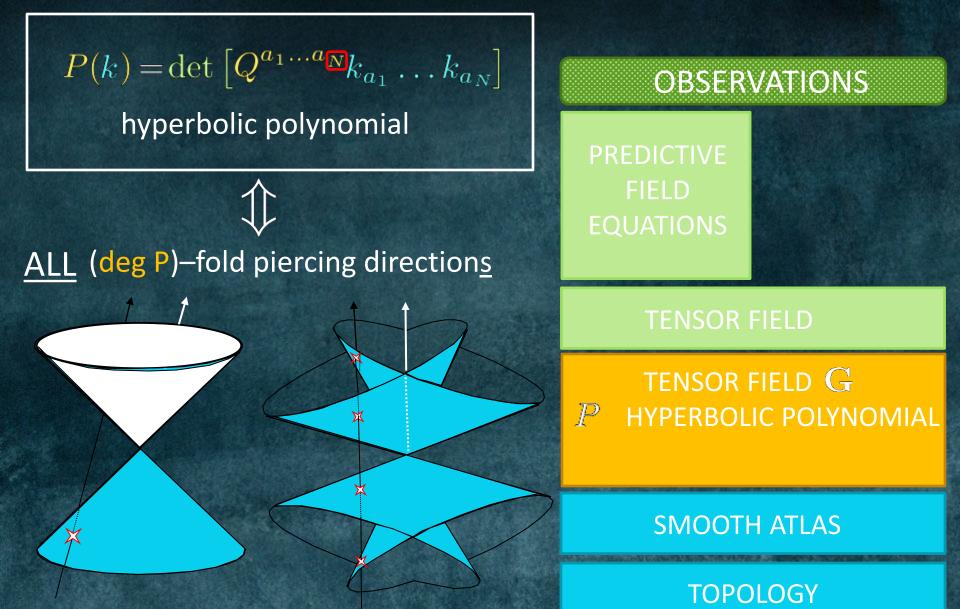


P-null surface in k-space

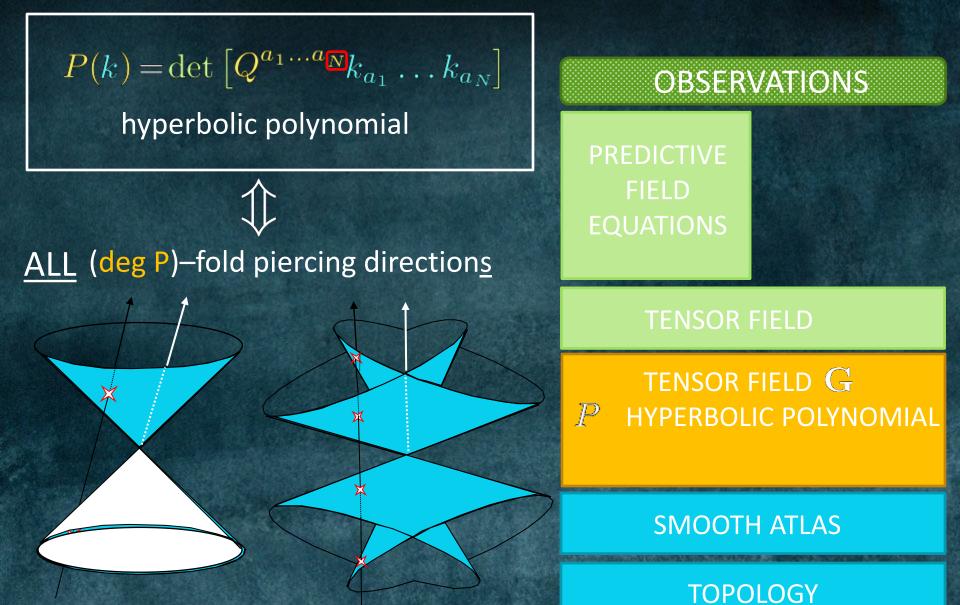




hyperbolicity cones



hyperbolicity cones



hyperbolicity cones

 $P(k) = \det \left[Q^{a_1 \dots a_{\mathbb{N}}} k_{a_1} \dots k_{a_N} \right]$

ALL (deg P)-fold piercing directions

X

1

PREDICTIVE FIELD EQUATIONS

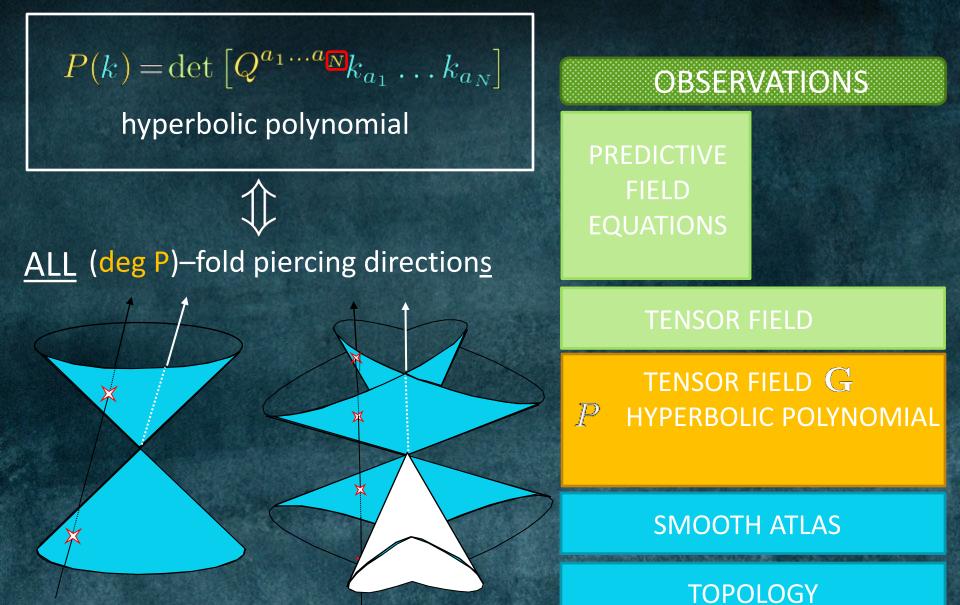
TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL

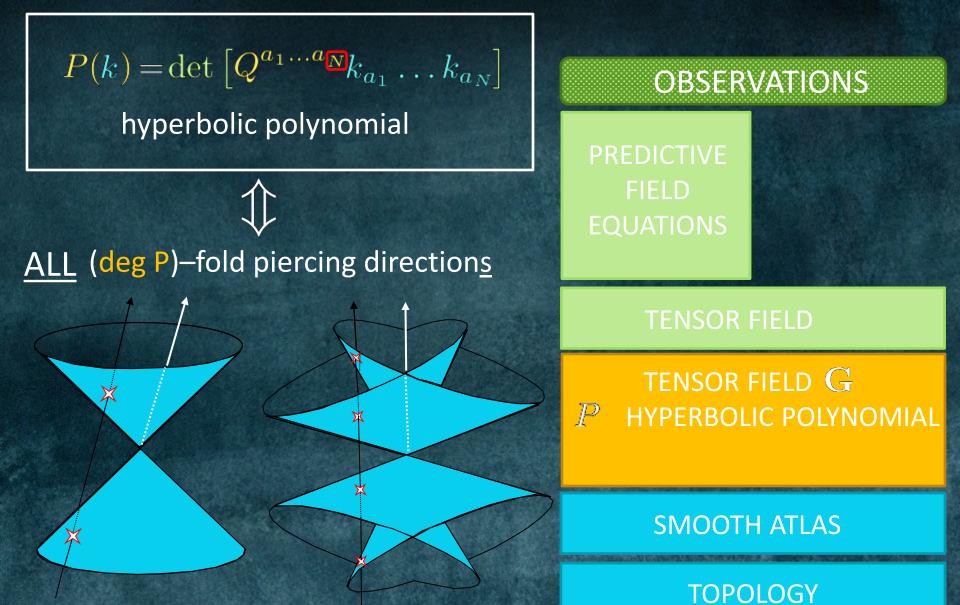
SMOOTH ATLAS

TOPOLOGY

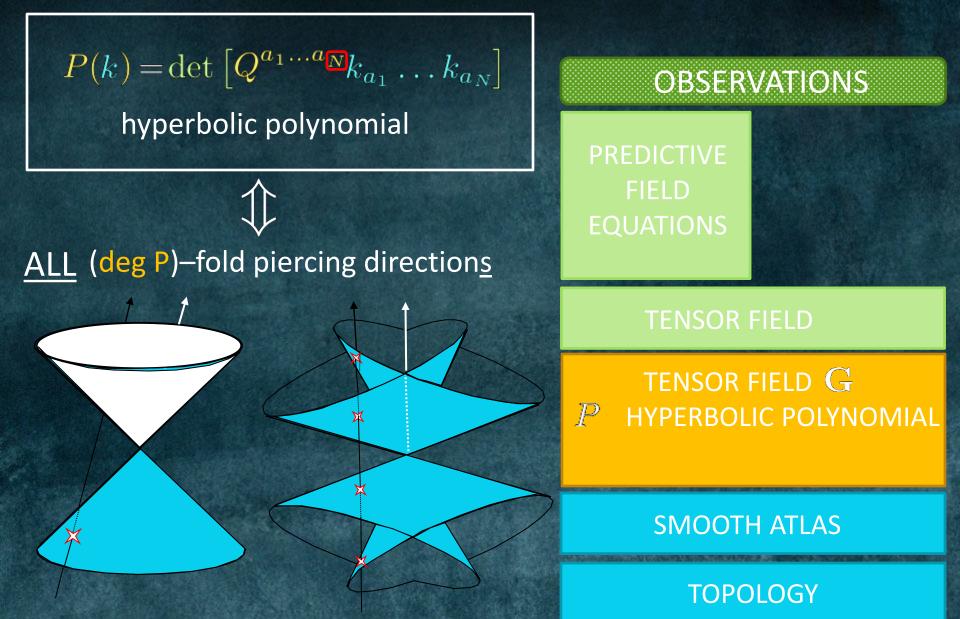
hyperbolicity cones



hyperbolicity cones



hyperbolicity cones



<u>hyperbolicity cones</u> "co-normals to initial data surfaces"

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD \mathbf{G} *P* HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

<u>Corollary</u>: massless particle action $S[x, k, \lambda] = \int d\tau \ [\dot{x}^a k_a - \lambda P(k)]$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

 $\begin{array}{ll} \hline \textbf{Corollary:} & \text{massless particle action} \\ S[x,k,\lambda] = \int d\tau \; [\dot{x}^a k_a - \lambda P(k)] \\ & \text{eliminate } k \; \text{[real algebraic geometry]} \end{array}$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

 $\begin{array}{ll} \hline \textbf{Corollary:} & \text{massless particle action} \\ S[x,k,\lambda] = \int d\tau \, \left[\dot{x}^a k_a - \lambda P(k) \right] \\ & \quad \textbf{eliminate} \, k \, \ \textbf{[real algebraic geometry]} \end{array}$

 $S[x, \mathbf{k}, \lambda] = \int d\tau \, \lambda P^{\#}(\dot{x})$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

Theorem: massless dispersion
$$P(k) = 0$$

 $\begin{array}{ll} \hline \textbf{Corollary:} & \text{massless particle action} \\ S[x,k,\lambda] = \int d\tau ~ [\dot{x}^a k_a - \lambda P(k)] \\ & \text{eliminate} ~ k ~ \text{[real algebraic geometry]} \end{array}$

$$S[x, \lambda, \lambda] = \int d\tau \, \lambda P^{\#}(\dot{x})$$

Theorem: P hyperbolic $\downarrow \downarrow$ dual polynomial $P^{\#}$ exists / unique* **OBSERVATIONS**

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

Theorem: massless dispersion
$$P(k) = 0$$

 $\begin{array}{ll} \hline {\rm Corollary:} & {\rm massless \ particle \ action} \\ S[x,k,\lambda] = \int d\tau \ [\dot{x}^a k_a - \lambda P(k)] \\ & {\rm eliminate} \ k \ {\rm [real \ algebraic \ geometry]} \end{array}$

 $S[x, \mathbf{k}, \lambda] = \int d\tau \, \lambda P^{\#}(\dot{x})$

<u>Theorem</u>: P hyperbolic $\downarrow \downarrow$ dual polynomial $P^{\#}$ exists / unique*

<u>Proof</u>: Hyperbolicity saves the day over \mathbb{R}

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

Theorem: massless dispersion
$$P(k) = 0$$

 $\begin{array}{ll} \hline \textbf{Corollary:} & \text{massless particle action} \\ S[x,k,\lambda] = \int d\tau ~ [\dot{x}^a k_a - \lambda P(k)] \\ & \text{eliminate} ~ k ~ \text{[real algebraic geometry]} \end{array}$

$$S[x, \mathbf{k}, \lambda] = \int d\tau \, \lambda P^{\#}(\dot{x})$$

J

<u>Theorem</u>: P hyperbolic $\downarrow \downarrow$ dual polynomial $P^{\#}$ exists / unique*

<u>Proof</u>: Hyperbolicity saves the day over $\mathbb R$

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL p#

SMOOTH ATLAS

TOPOLOGY

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$

SMOOTH ATLAS

Theorem:Phyperbolic $\downarrow \downarrow$ $\downarrow \downarrow$ dual polynomial $P^{\#}$ exists / unique* $P^{\#}(\nabla P(k)) = 0$ [where P(k) = 0]

OBSERVATIONS

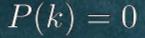
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$

SMOOTH ATLAS

Theorem:Phyperbolic $\downarrow \downarrow$ $\downarrow \downarrow$ dual polynomial $P^{\#}$ exists / unique* $P^{\#}(\nabla P(k)) = 0$ [where P(k) = 0]



cotangent space

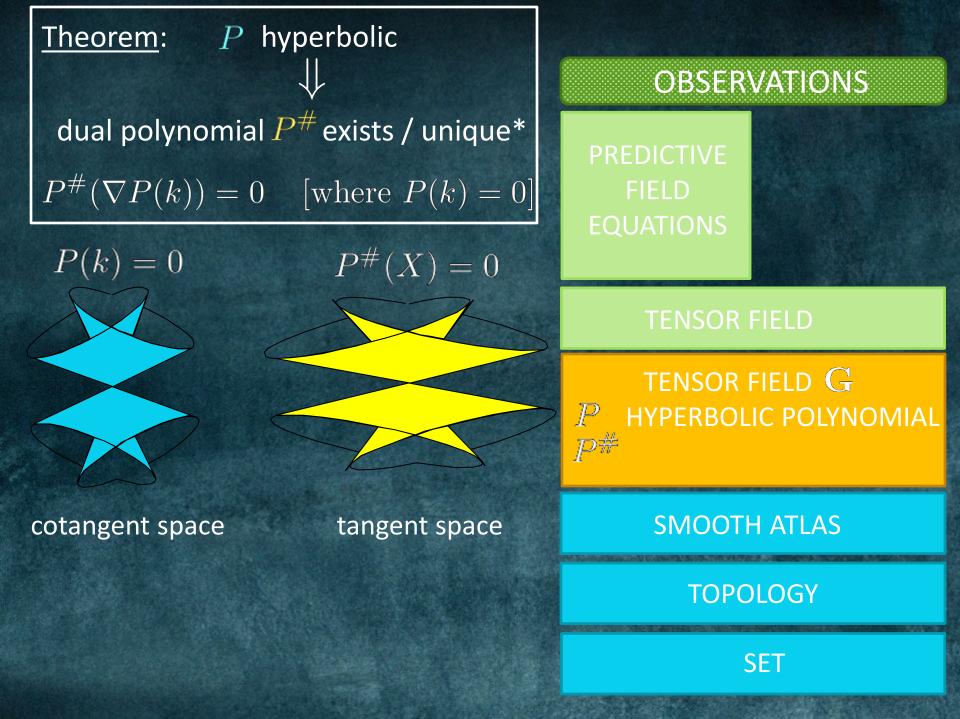
OBSERVATIONS

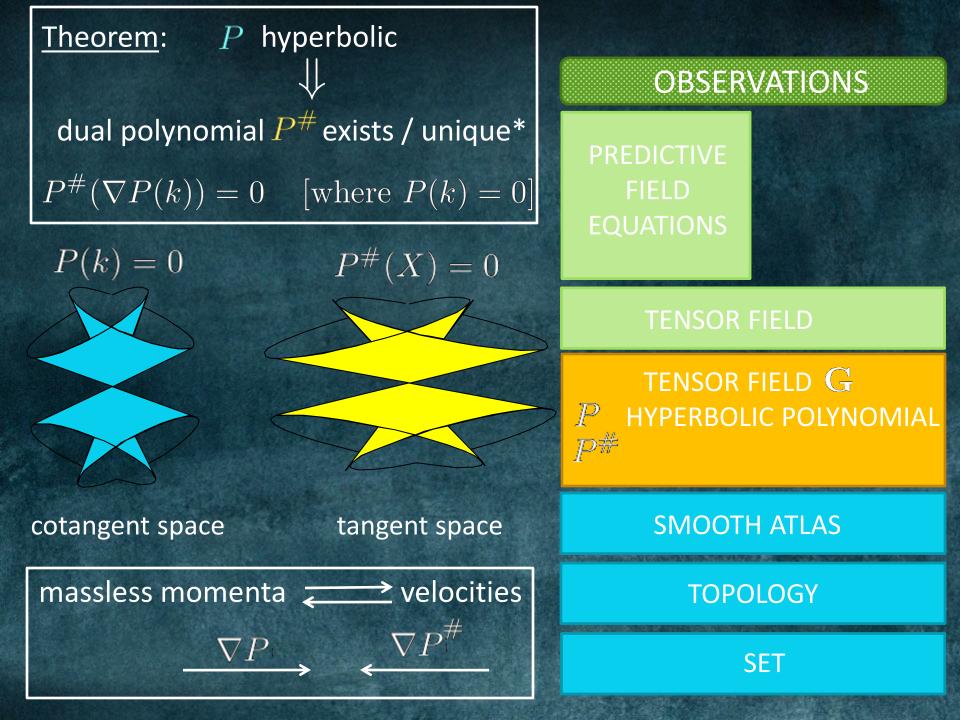
PREDICTIVE FIELD EQUATIONS

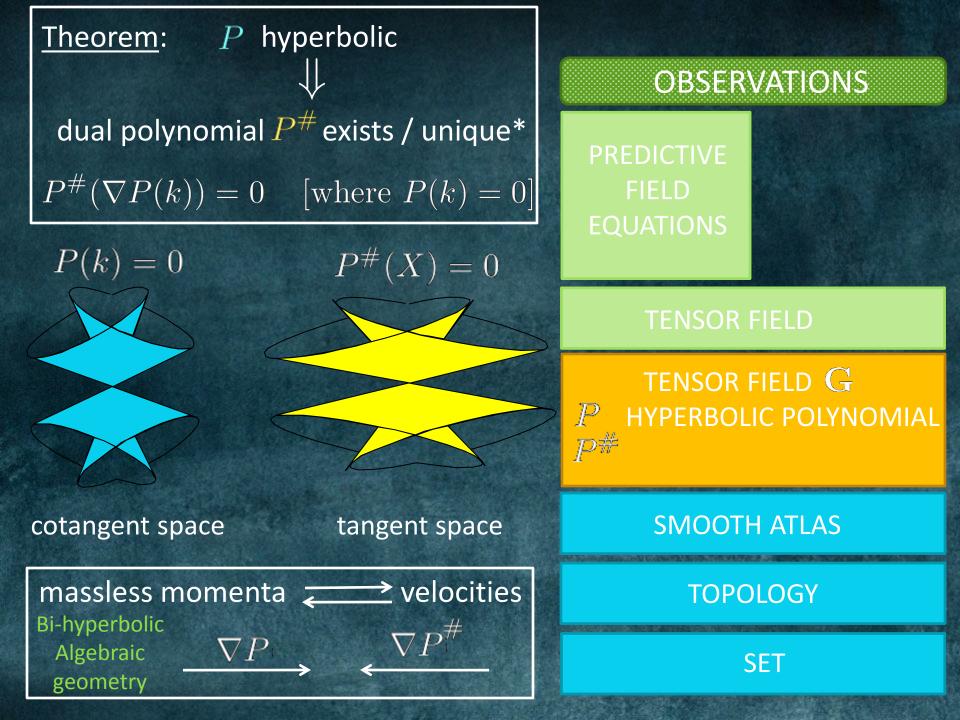
TENSOR FIELD

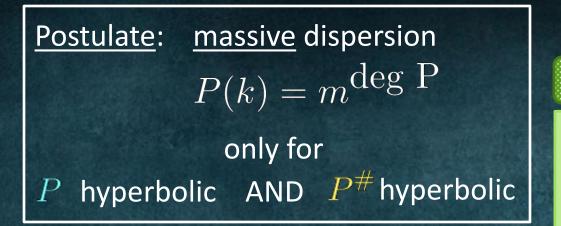
TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$

SMOOTH ATLAS









PREDICTIVE FIELD EQUATIONS

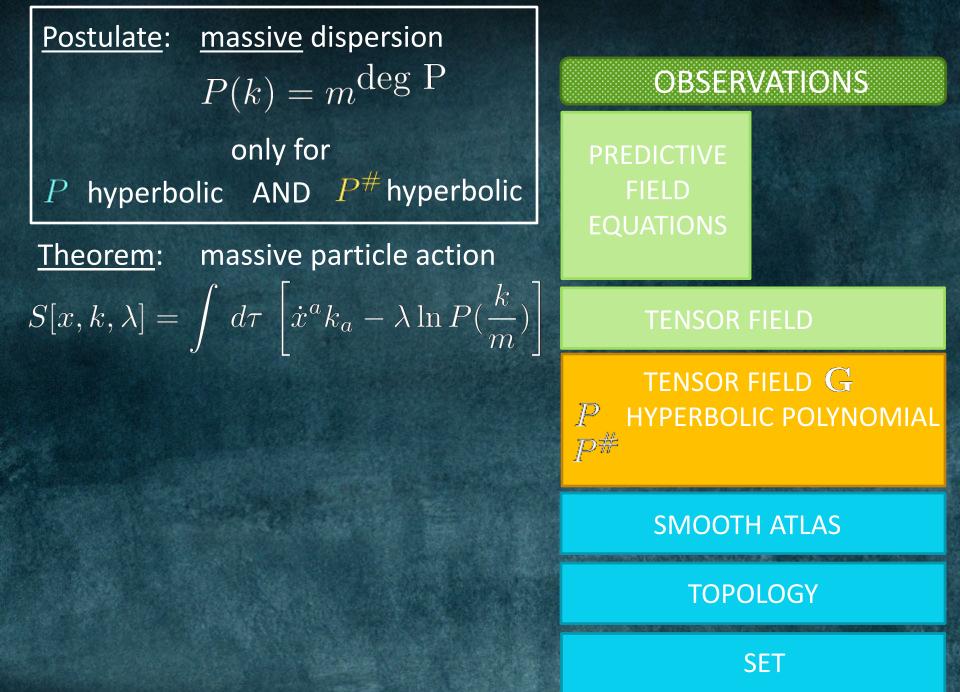
TENSOR FIELD

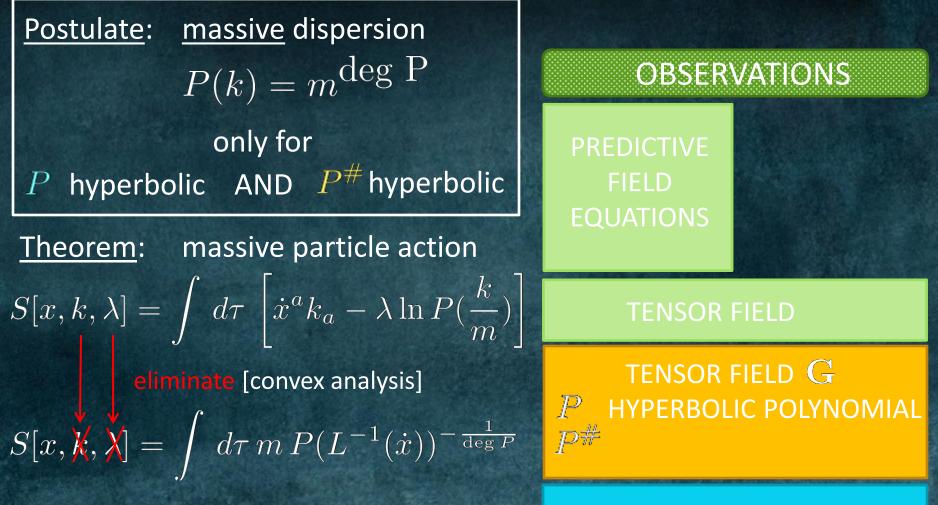
TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$

OBSERVATIONS

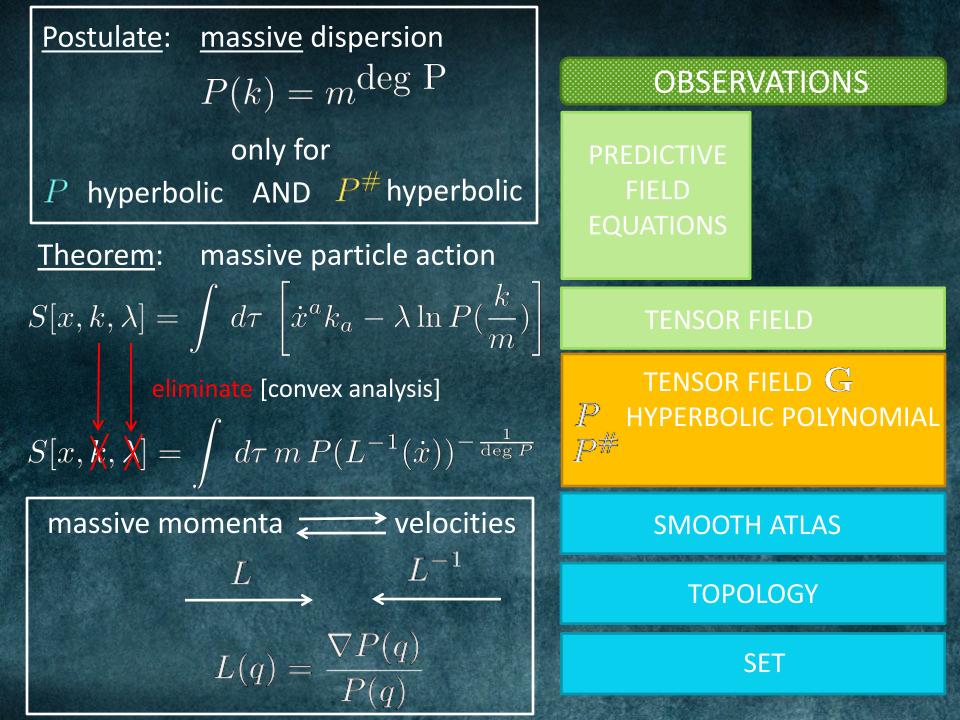
SMOOTH ATLAS

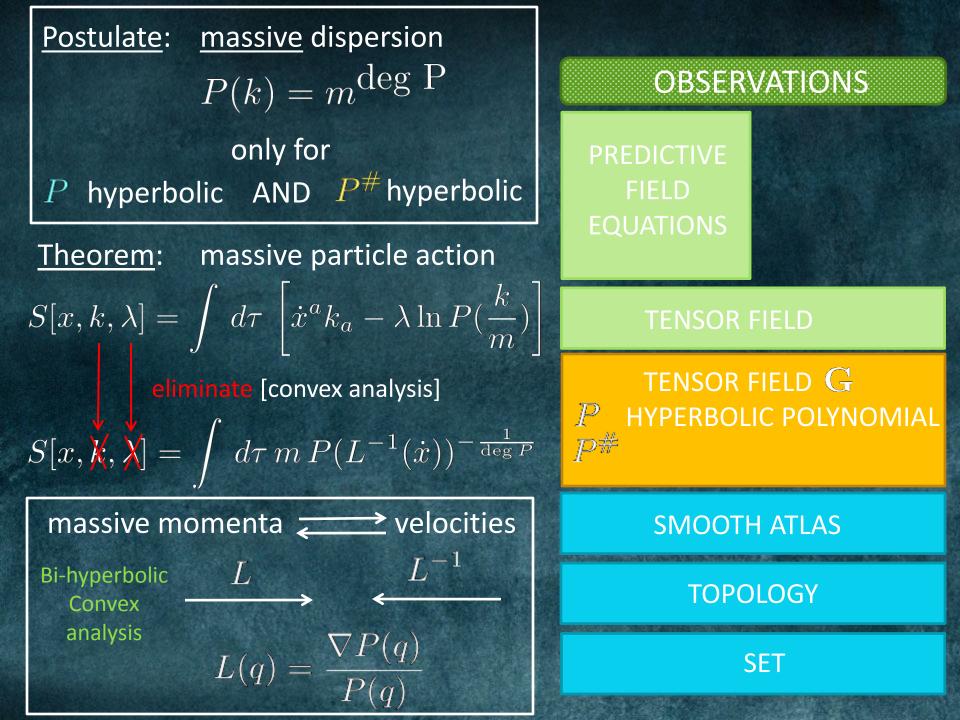
TOPOLOGY

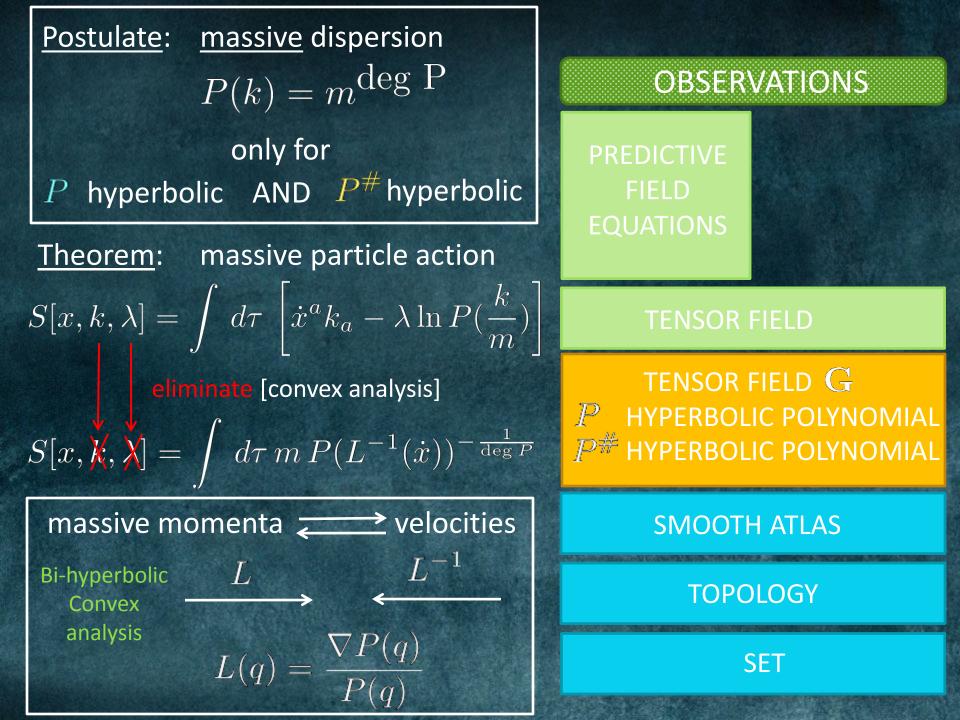


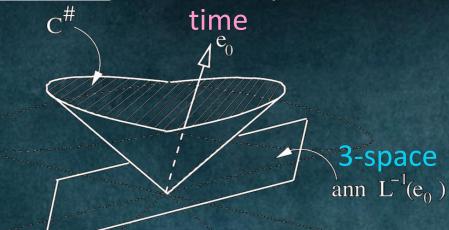


SMOOTH ATLAS









PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

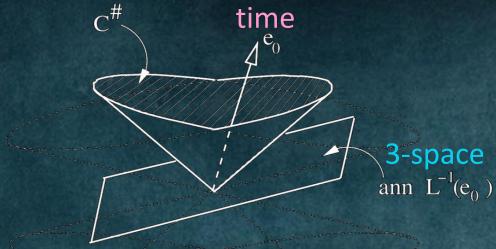
TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

OBSERVATIONS

SMOOTH ATLAS

TOPOLOGY

SIVIUUTH ATLAS



OBSERVATIONS

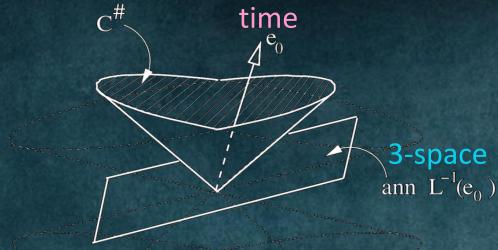
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

<u>Corollary</u>: modified dispersion E(p) $P(E\epsilon^{0} + p_{\alpha}\epsilon^{\alpha}) = m^{\deg P}$

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS



OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

Corollary: modified dispersion E(p) $P(E\epsilon^{0} + p_{\alpha}\epsilon^{\alpha}) = m^{\deg}P$ $\int solve \text{ for E} [Galois]$ TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY



OBSERVATIONS

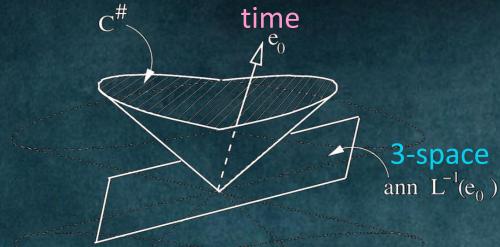
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

<u>Corollary</u>: modified dispersion E(p) $P(E\epsilon^{0} + p_{\alpha}\epsilon^{\alpha}) = m^{\deg P}$ $\int \text{solve for E}_{\text{[Galois]}}$ $E = \sum_{n=0}^{\infty} C^{\alpha_{1}...\alpha_{n}} p_{\alpha_{1}}...p_{\alpha_{n}}$ TENSOR FIELD G P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY



OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

Corollary: modified dispersion E(p) $P(E\epsilon^{0} + p_{\alpha}\epsilon^{\alpha}) = m^{\deg P}$ hard! $\int \int solve \text{ for E}$ [Galois] $E = \sum_{n=0}^{\infty} C^{\alpha_{1}...\alpha_{n}} p_{\alpha_{1}}...p_{\alpha_{n}}$ TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

OBSERVATIONS

TENSOR FIELD G

TOPOLOGY

SET

PHYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

cotangent space

tangent space

TENSOR FIELD G PHYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

OBSERVATIONS

SMOOTH ATLAS

SET

SET

TOPOLOGY

SMOOTH ATLAS

TENSOR FIELD \mathbf{G} P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

OBSERVATIONS

cotangent space

tangent space

TENSOR FIELD

PREDICTIVE FIELD EQUATIONS

<u>Application</u>: time↔energy orientation

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

cotangent space

tangent space

TENSOR FIELD

pos/neg energy cones

 $\mathcal{O}^{\pm} = \{ k \, | \, k(X) \ge 0 \text{ for all } X \in \mathcal{O} \}$

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

cotangent space

tangent space

TENSOR FIELD

pos/neg energy cones

 $\mathcal{O}^{\pm} = \{ k \, | \, k(X) \ge 0 \text{ for all } X \in \mathcal{O} \}$

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

cotangent space

tangent space

TENSOR FIELD

pos/neg energy cones

 $\mathcal{O}^{\pm} = \{ k \, | \, k(X) \ge 0 \text{ for all } X \in \mathcal{O} \}$

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

cotangent space

tangent space

TENSOR FIELD

<u>Theorem</u>: pos/neg energy cones $\mathcal{O}^{\pm} = \{k \mid k(X) \gtrless 0 \text{ for all } X \in \mathcal{O}\}$ disjointly cover massless momenta $\widehat{\uparrow}$ \mathcal{O} hyperbolicity cone of $P^{\#}$

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD G P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

 P^{ab}

(Einstein)

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD G P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL $P^{ab}_{P^{abcd}}$ (Einstein)

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD G P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL P^{ab} (Einstein) P^{abcd} P^{abcdef}

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

Theorem:

 P^{ab} (Einstein) P^{abcd} P^{abcdef}

<u>no other</u> geometries predictive and time-orientable

SPACETIME DYNAMICS

PREDICTIVE FIELD EQUATIONS

Rätzel, Rivera, FPS 2010

PREDICTIVE GRAVITY DYNAMICS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

Giesel, FPS, Wohlfarth

Functional

Analysis

Representation
Theory

Refined Kinematics

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

initial

data

surface

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

initial

data

surface

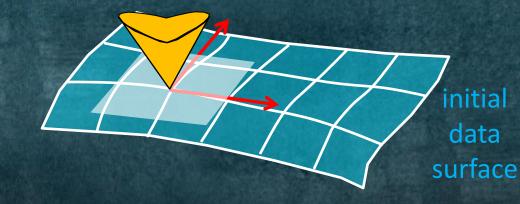
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY



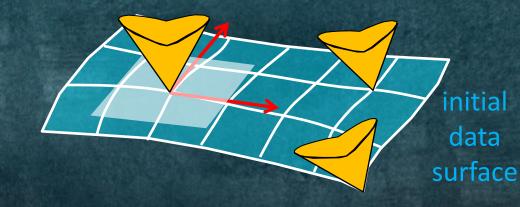
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY



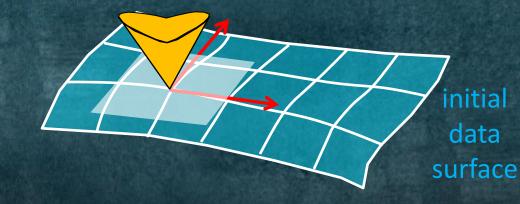
PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY



PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

normal = Legendre(co-normal)

initial

data

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

vital injection from physics: Legendre map tells geometrodynamics about the matter it must carry

normal = Legendre(co-normal)

initial

data

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

normal = Legendre(co-normal)

initial

data

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

normal = Legendre(co-normal)

initial

data

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

normal = Legendre(co-normal)

initial

data

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

normal = Legendre(co-normal)

deformation

initial

data

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

normal = Legendre(co-normal)

 N^{α}

deformation

initial

data

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

deformation

 (N, N^{α})

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

DIVINE VIEW (M, P)

 $\frac{\text{deformation}}{(N, N^{\alpha})}$

DIVINE VIEW

(M, P)

pull-back

deformation

 (N, N^{α})

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

DIVINE VIEW

(M, P)

pull-back

 $P^{0lphaeta\gamma}$

 $P^{lphaeta\gamma\delta}$

 $P^{00\alpha\beta}$

deformation

 (N, N^{α})

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

DIVINE VIEW

(M, P)

pull-back

Ρ^{αβγδ} Ρ^{0αβγ}

 $P^{0\alpha\beta\gamma}$

 $P^{lphaeta\gamma\delta}$

 $P^{00\alpha\beta}$

deformation

 (N, N^{α})

 $P^{00\alpha\beta}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

DIVINE VIEW (M, P)

 $P^{0\alpha\beta\gamma}$

 $P^{lphaeta\gamma\delta}$

 $P^{0\alpha\beta\gamma}$

 $P^{lphaeta\gamma\delta}$

deformation operators $\mathcal{H}(N) = \mathcal{D}(N^{\alpha})$

 $P^{00\alpha\beta}$

 $P^{00lphaeta}$

DIVINE VIEW

 $[\mathcal{H},\mathcal{H}] = P \mathcal{D}$

 $[\mathcal{D},\mathcal{H}] = \mathcal{H}$

 $[\mathcal{D},\mathcal{D}] = \mathcal{D}$

 $P^{0\alpha\beta\gamma}$

Pabyo

 $P^{0lphaeta\gamma}$

 $P^{lphaeta\gamma\delta}$

 $P^{00\alpha\beta}$

deformation operators

 $\mathcal{H}(N) = \mathcal{D}(N^{lpha})$

 $P^{00lphaeta}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD \mathbf{G} P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

HUMAN VIEW

 $P^{lphaeta\gamma\delta} P^{00lphaeta} P^{0lphaeta\gamma}$

 $P^{00lphaeta}$

 $P^{lphaeta\gamma\delta}$

 $P^{0lphaeta\gamma}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

HUMAN VIEW

 $P^{lphaeta\gamma\delta}$

 $P^{lphaeta\gamma\delta}$

 $P^{0\alpha\beta\gamma}$

Hamiltonian = $\hat{\mathcal{H}}(N) + \hat{\mathcal{D}}(N^{\alpha})$

 $P^{0lphaeta\gamma}$

 $P^{00lphaeta}$

 $P^{00lphaeta}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

HUMAN VIEW

 $\{\hat{\mathcal{H}},\hat{\mathcal{H}}\}=P\,\hat{\mathcal{D}}$

 $\{\hat{\mathcal{D}},\hat{\mathcal{H}}\}=-\hat{\mathcal{H}}$

 $\{\hat{\mathcal{D}},\hat{\mathcal{D}}\}=-\hat{\mathcal{D}}$

Hamiltonian = $\hat{\mathcal{H}}(N) + \hat{\mathcal{D}}(N^{\alpha})$

 $P^{0lphaeta\gamma}$

 $P^{0\alpha\beta\gamma}$

Pabyo

 $P^{lphaeta\gamma\delta}$

 $P^{00\alpha\beta}$

 $P^{00lphaeta}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD G P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

DIVINE VIEW $[\mathcal{H},\mathcal{H}] = P \mathcal{D}$ $[\mathcal{D},\mathcal{H}]=-\mathcal{H}$ $[\mathcal{D},\mathcal{D}] = \mathcal{D}$

HUMAN VIEW

 $\{\hat{\mathcal{H}},\hat{\mathcal{H}}\}=P\,\hat{\mathcal{D}}$

 $\{\hat{\mathcal{D}},\hat{\mathcal{H}}\}=\hat{\mathcal{H}}$

 $\{\hat{\mathcal{D}},\hat{\mathcal{D}}\}$

 $\hat{\mathcal{D}}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

DIVINE VIEW $[\mathcal{H},\mathcal{H}] = P \mathcal{D}$ $[\mathcal{D},\mathcal{H}] = \mathcal{H}$ $[\mathcal{D},\mathcal{D}] = \mathcal{D}$

hard (NON-LIE ALGEBRA) REPRESENTATION THEORY PROBLEM [Rätzel, Rivera, FPS]

> HUMAN VIEW $\{\hat{\mathcal{H}}, \hat{\mathcal{H}}\} = P \hat{\mathcal{D}}$ $\{\hat{\mathcal{D}}, \hat{\mathcal{H}}\} = \hat{\mathcal{H}}$ $\{\hat{\mathcal{D}}, \hat{\mathcal{D}}\} = \hat{\mathcal{D}}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

hard (NON-LIE ALGEBRA) REPRESENTATION THEORY PROBLEM [Rätzel, Rivera, FPS]

only a HOMOGENEOUS LINEAR PDE PROBLEM [Giesel, FPS, Witte, Wohlfarth]

HUMAN VIEW
 $\{\hat{\mathcal{H}}, \hat{\mathcal{H}}\} = P \hat{\mathcal{D}}$
 $\{\hat{\mathcal{D}}, \hat{\mathcal{H}}\} = \hat{\mathcal{H}}$
 $\{\hat{\mathcal{D}}, \hat{\mathcal{D}}\} = \hat{\mathcal{D}}$

DIVINE VIEW

$$[\mathcal{H}, \mathcal{H}] = P \mathcal{D}$$

 $[\mathcal{D}, \mathcal{H}] = -\mathcal{H}$
 $[\mathcal{D}, \mathcal{D}] = -\mathcal{D}$

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

SET

Search for modified geometrodynamics c existence/uniqueness/solution of homogeneous linear PDE

hard (NON-LIE ALGEBRA) REPRESENTATION THEORY PROBLEM [Rätzel, Rivera, FPS] only a HOMOGENEOUS LINEAR PDE PROBLEM [Giesel, FPS, Witte, Wohlfarth]

HUMAN VIEW
 $\{\hat{\mathcal{H}}, \hat{\mathcal{H}}\} = P \, \hat{\mathcal{D}}$
 $\{\hat{\mathcal{D}}, \hat{\mathcal{H}}\} = \hat{\mathcal{H}}$
 $\{\hat{\mathcal{D}}, \hat{\mathcal{D}}\} = \hat{\mathcal{D}}$

Rätzel, Rivera, FPS 2010

PREDICTIVE FIELD EQUATIONS

TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

Rätzel, Rivera, FPS 2010

OBSERVATIONS

PREDICTIVE FIELD EQUATIONS PREDICTIVE GRAVITY DYNAMICS

Giesel,

FPS,

Wohlfarth

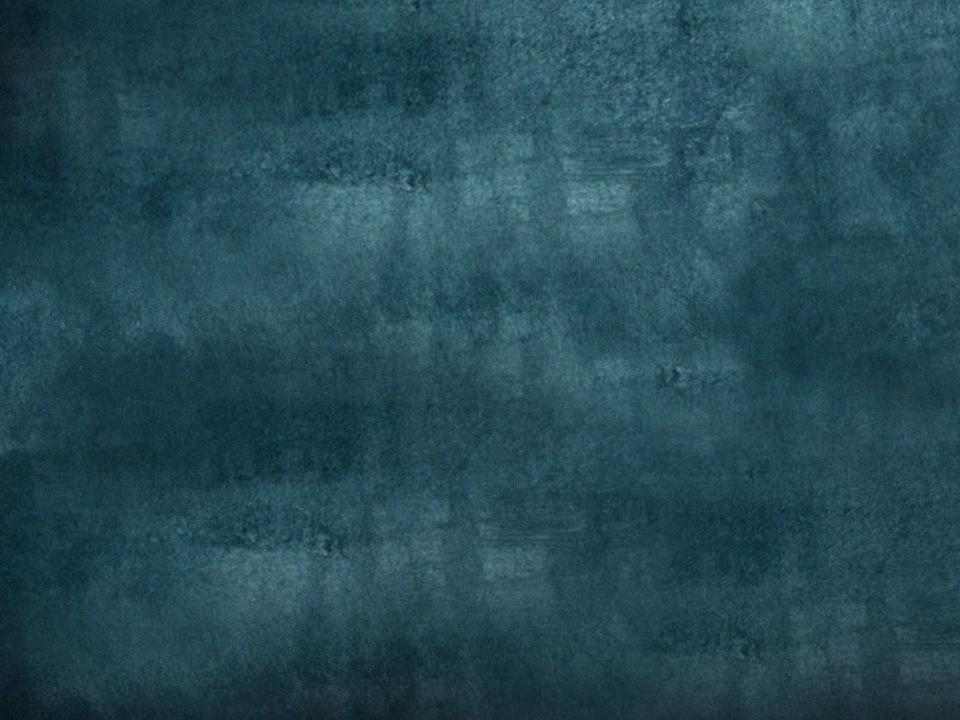
TENSOR FIELD

TENSOR FIELD ${f G}$ P HYPERBOLIC POLYNOMIAL $P^{\#}$ HYPERBOLIC POLYNOMIAL

SMOOTH ATLAS

TOPOLOGY

TAKE-HOME MESSAGE



Lorentzian spacetimes are tailored to Maxwell theory.

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted

 $S[\Phi,G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted $S[\Phi, G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$
- good mathematical control over all bi-hyperbolic spacetimes.

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted $S[\Phi, G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$
- good mathematical control over all bi-hyperbolic spacetimes.
- central insight, impact on several fields

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted $S[\Phi, G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$
- good mathematical control over all bi-hyperbolic spacetimes.
- central insight, impact on several fields
 - @ classification of physical dispersion relations

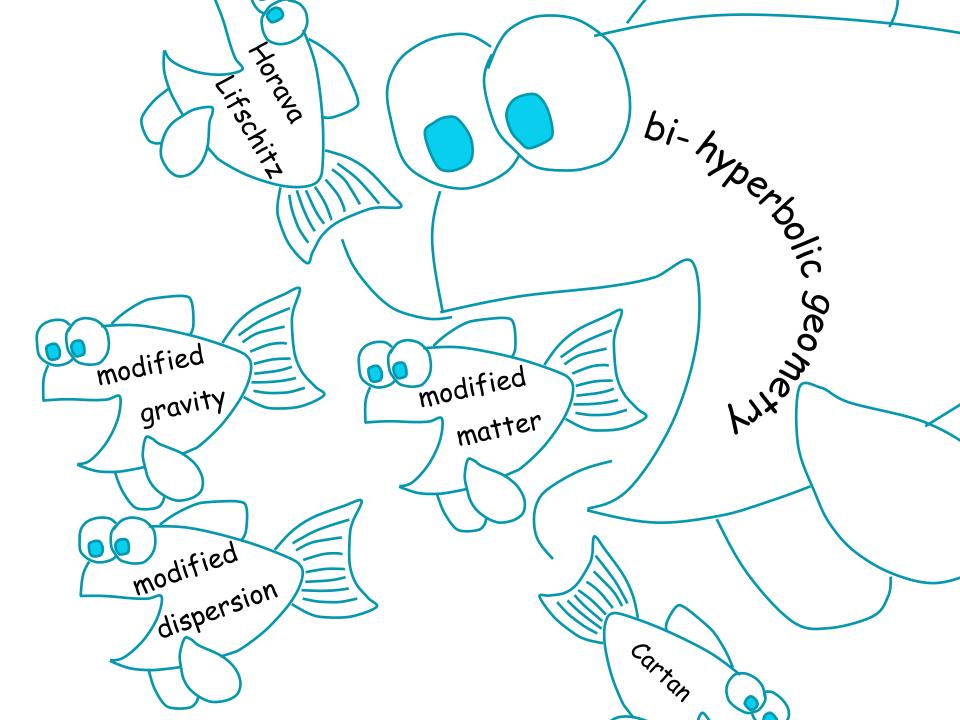
- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted $S[\Phi, G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$
- good mathematical control over all bi-hyperbolic spacetimes.
- central insight, impact on several fields
 - @ classification of physical dispersion relations
 - @ identification of all classical spacetime geometries

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted $S[\Phi, G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$
- good mathematical control over all bi-hyperbolic spacetimes.
- central insight, impact on several fields
 - @ classification of physical dispersion relations
 - @ identification of all classical spacetime geometries
 - @ construction of all classical gravity dynamics

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted $S[\Phi, G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$
- good mathematical control over all bi-hyperbolic spacetimes.
- central insight, impact on several fields
 - @ classification of physical dispersion relations
 - @ identification of all classical spacetime geometries
 - @ construction of all classical gravity dynamics
 - @ constraints for classical limits of quantum gravity

- Lorentzian spacetimes are tailored to Maxwell theory.
- Other geometries tailored to other matter severely restricted $S[\Phi, G] \longrightarrow bi-hyperbolic P^{ab}, P^{abcd}, P^{abcdef}, \cdots$
- good mathematical control over all bi-hyperbolic spacetimes.
- central insight, impact on several fields
 - @ classification of physical dispersion relations
 - @ identification of all classical spacetime geometries
 - @ construction of all classical gravity dynamics
 - @ constraints for classical limits of quantum gravity
 - It is all very simple.

• Mathematical certainty.



$$G^{ab} = G^{(ab)}$$

$$G^{ab} = G^{(ab)}$$
Maxwell $S[A] = \int_{M} vol_G G^{ac} G^{db} F_{ab} F_{cd}$

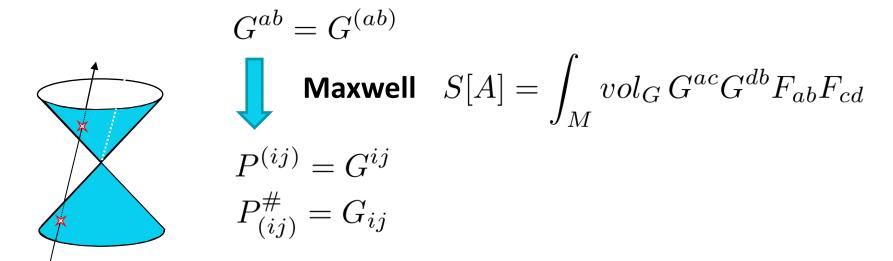
$$G^{ab} = G^{(ab)}$$
Maxwell $S[A] = \int_{M} vol_G G^{ac} G^{db} F_{ab} F_{cd}$

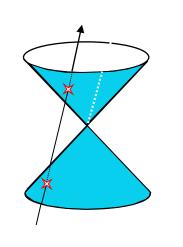
$$P^{(ij)} = G^{ij}$$

$$G^{ab} = G^{(ab)}$$
Maxwell $S[A] = \int_{M} vol_G G^{ac} G^{db} F_{ab} F_{cd}$

$$P^{(ij)} = G^{ij}$$

$$P^{\#}_{(ij)} = G_{ij}$$





$$G^{ab} = G^{(ab)}$$
Maxwell $S[A] = \int_{M} vol_G G^{ac} G^{db} F_{ab} F_{cd}$

$$P^{(ij)} = G^{ij}$$

$$P^{\#}_{(ij)} = G_{ij}$$
Hypersurface deformation algebra

$$G^{ab} = G^{(ab)}$$

$$Maxwell \quad S[A] = \int_{M} vol_{G} G^{ac} G^{db} F_{ab} F_{cd}$$

$$P^{(ij)} = G^{ij}$$

$$P^{\#}_{(ij)} = G_{ij}$$

$$Hypersurface \ deformation \ algebra$$

$$[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1)P^{\alpha\beta}(M\partial_{\beta}N - N\partial_{\beta}M)\partial_{\alpha}),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$$

$$G^{ab} = G^{(ab)}$$

$$Maxwell \quad S[A] = \int_{M} vol_{G} G^{ac} G^{db} F_{ab} F_{cd}$$

$$P^{(ij)} = G^{ij}$$

$$P^{\#}_{(ij)} = G_{ij}$$

$$Hypersurface \ deformation \ algebra$$

$$[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1) P^{\alpha\beta}(M\partial_{\beta}N - N\partial_{\beta}M)\partial_{\alpha}),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$$
Representation on 3-geometry phase space

 $G^{ab} = G^{(ab)}$ **Maxwell** $S[A] = \int_{M} vol_G G^{ac} G^{db} F_{ab} F_{cd}$ $P^{(ij)} = G^{ij}$ $P_{(ij)}^{\#} = G_{ij}$ Hypersurface deformation algebra $[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1) P^{\alpha \beta} M \partial_{\beta} N - N \partial_{\beta} M) \partial_{\alpha}),$ $\left[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)\right] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$ **Representation on 3-geometry phase space** $S[G] = \left(\frac{1}{2\kappa}\right) \int_{\mathcal{M}} \omega_G \ \left(R[G] - 2\Lambda \right)$

Example 2: Metric geometry carrying quartically interacting Proca

$$G^{ab} = G^{(ab)}$$

$$\int S[A] = \int vol_G \left[F_{ab}F^{ab} - \frac{1}{8}m^2A_aA^a - \lambda(A_aA^a)^2 \right]$$

$$P^{(ijkl)} = G^{(ij)} \left[(1 + \lambda m^{-2}A_aA^a)G^{|kl|} + 2\lambda m^{-2}A^{|k}A^{l|} \right]$$

$$P^{\#}_{(ijkl)} = G_{(ij} [\dots]_{kl}^{-1}$$

$$Hypersurface deformation algebra$$

$$[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1)P^{\alpha\beta}(M\partial_{\beta}N - N\partial_{\beta}M)\partial_{\alpha}),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$$

$$[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$$

$$Representation on 3-geometry phase space$$

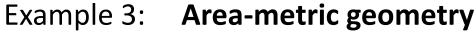
$$Homogeneous linear PDE \longrightarrow modified gravity$$

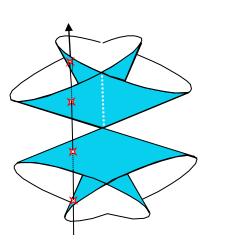
$$G^{abcd} = G^{[ab][cd]}$$

$$G^{abcd} = G^{[ab][cd]}$$
Hehl-Obukhov $S[A] = \int_M vol_G G^{abcd} F_{ab} F_{cd}$

 $G^{abcd} = G^{[ab][cd]}$ $Hehl-Obukhov \quad S[A] = \int_{M} vol_G G^{abcd} F_{ab} F_{cd}$ $P^{(ijkl)} = (vol_G)....(vol_G)....G^{...(i}G^{j|...|k}G^{l)...}$

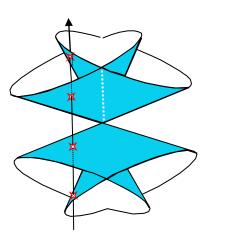
$$\begin{split} G^{abcd} &= G^{[ab][cd]} \\ \blacktriangleright & \mathsf{Hehl-Obukhov} \quad S[A] = \int_{M} vol_G \, G^{abcd} F_{ab} F_{cd} \\ P^{(ijkl)} &= (vol_G)....(vol_G)....G^{\cdots(i}G^{j|\cdots|k}G^{l)\cdots} \\ P^{\#}_{(ijkl)} &= (vol_G)^{\cdots } (vol_G)^{\cdots } G_{\cdots(i}G_{j|\cdots|k}G_{l)\cdots} \end{split}$$





$$\begin{split} G^{abcd} &= G^{[ab][cd]} \\ \blacktriangleright & \quad \text{Hehl-Obukhov} \quad S[A] = \int_{M} vol_G \, G^{abcd} F_{ab} F_{cd} \\ P^{(ijkl)} &= (vol_G)....(vol_G)....G^{\cdots(i}G^{j|\cdots|k}G^{l)\cdots} \\ P^{\#}_{(ijkl)} &= (vol_G)^{\cdots(}(vol_G)^{\cdots}G_{\cdots(i}G_{j|\cdots|k}G_{l)\cdots} \end{split}$$

Example 3: Area-metric geometry



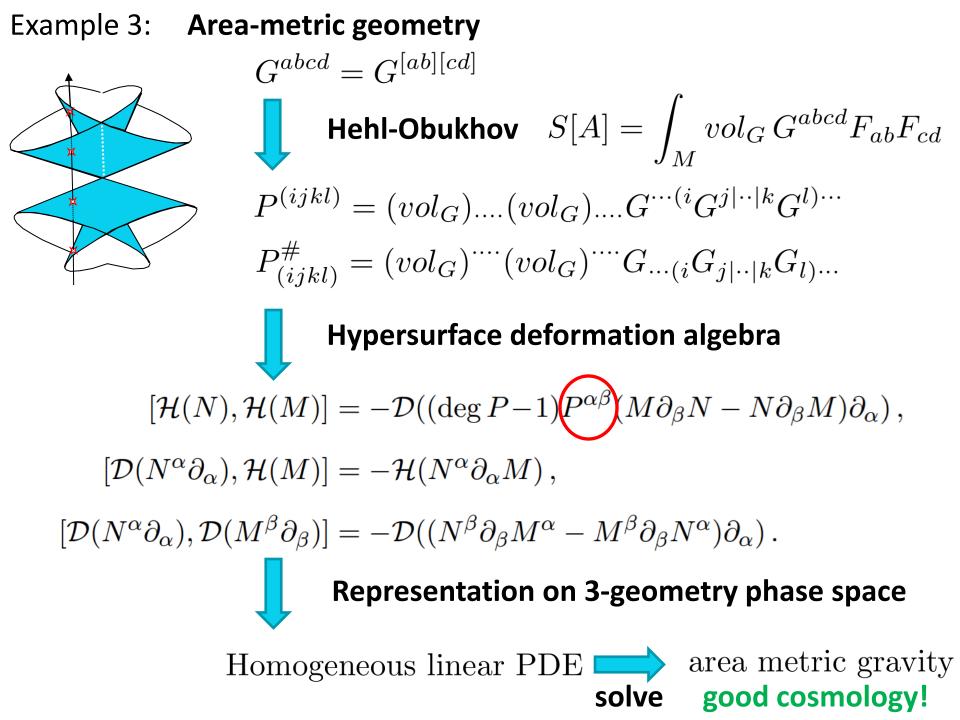
$$\begin{split} G^{abcd} &= G^{[ab][cd]} \\ & \bullet \\ & P^{(ijkl)} = (vol_G)....(vol_G)....G^{\cdots (i}G^{j|\cdots|k}G^{l)\cdots} \\ & P^{\#}_{(ijkl)} = (vol_G)^{\cdots (}(vol_G)^{\cdots G}..._{(i}G_{j|\cdots|k}G_{l)\cdots} \\ & \bullet \\ &$$

Hypersurface deformation algebra

Example 3: Area-metric geometry $G^{abcd} = G^{[ab][cd]}$ Hehl-Obukhov $S[A] = \int_{\mathcal{M}} vol_G G^{abcd} F_{ab} F_{cd}$ $P^{(ijkl)} = (vol_G)\dots(vol_G)\dots G^{\dots(i}G^{j|\dots|k}G^{l)\dots}$ $P_{(ijkl)}^{\#} = (vol_G)^{\cdots} (vol_G)^{\cdots} G_{\cdots(i}G_{j|\cdots|k}G_{l)\cdots}$ Hypersurface deformation algebra $[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1) P^{\alpha \beta}) M \partial_{\beta} N - N \partial_{\beta} M) \partial_{\alpha}),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}),\mathcal{H}(M)] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$

Example 3: Area-metric geometry $G^{abcd} = G^{[ab][cd]}$ Hehl-Obukhov $S[A] = \int_{\mathcal{M}} vol_G G^{abcd} F_{ab} F_{cd}$ $P^{(ijkl)} = (vol_G) \dots (vol_G) \dots G^{\dots (i}G^{j|\dots|k}G^{l|$ $P_{(ijkl)}^{\#} = (vol_G)^{\dots} (vol_G)^{\dots} G_{\dots(i}G_{j|\dots|k}G_{l|\dots})$ Hypersurface deformation algebra $[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1) P^{\alpha\beta} M \partial_{\beta} N - N \partial_{\beta} M) \partial_{\alpha}),$ $\left[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)\right] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$ **Representation on 3-geometry phase space**

Example 3: Area-metric geometry $G^{abcd} = G^{[ab][cd]}$ Hehl-Obukhov $S[A] = \int_{M} vol_G G^{abcd} F_{ab} F_{cd}$ $P^{(ijkl)} = (vol_G) \dots (vol_G) \dots G^{\dots (i} G^{j|\dots|k} G^{l)\dots}$ $P_{(ijkl)}^{\#} = (vol_G)^{\dots} (vol_G)^{\dots} G_{\dots (i}G_{j|\dots|k}G_{l|\dots})^{\dots}$ Hypersurface deformation algebra $[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1) P^{\alpha\beta} M \partial_{\beta} N - N \partial_{\beta} M) \partial_{\alpha}),$ $\left[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)\right] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$ **Representation on 3-geometry phase space** Homogeneous linear PDE



General case: your favourite candidate geometry

General case: your favourite candidate geometry

 (G_1,\ldots,G_m)

General case: your favourite candidate geometry

 (G_1,\ldots,G_m)

your favourite matter $S[A_1, \ldots, A_n; G_1, \ldots, G_m]$

General case: your favourite candidate geometry (G_1, \ldots, G_m)

> your favourite matter $S[A_1, \ldots, A_n; G_1, \ldots, G_m]$ P $P^{\#}$

General case: your favourite candidate geometry (G_1, \ldots, G_m) your favourite matter $S[A_1, \ldots, A_n; G_1, \ldots, G_m]$ P deg P $P^{\#}$ deg $P^{\#}$ General case: your favourite candidate geometry (G_1,\ldots,G_m) your favourite matter $S[A_1, \ldots, A_n; G_1, \ldots, G_m]$ P $\deg P$ $\deg P^{\#}$ $P^{\#}$ Hypersurface deformation algebra $[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1) P^{\alpha\beta} M \partial_{\beta} N - N \partial_{\beta} M) \partial_{\alpha}),$ $\left[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)\right] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$

General case: your favourite candidate geometry (G_1,\ldots,G_m) your favourite matter $S[A_1, \ldots, A_n; G_1, \ldots, G_m]$ P $\deg P$ $\deg P^{\#}$ $P^{\#}$ Hypersurface deformation algebra $[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1)P^{\alpha\beta}) M \partial_{\beta} N - N \partial_{\beta} M) \partial_{\alpha}),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})] = -\mathcal{D}((N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha})\partial_{\alpha}).$ Representation on 3-geometry phase space Homogeneous linear PDE

General case: your favourite candidate geometry (G_1,\ldots,G_m) your favourite matter $S[A_1, \ldots, A_n; G_1, \ldots, G_m]$ P $\deg P$ $\deg P^{\#}$ $P^{\#}$ Hypersurface deformation algebra $[\mathcal{H}(N), \mathcal{H}(M)] = -\mathcal{D}((\deg P - 1) P^{\alpha\beta} M \partial_{\beta} N - N \partial_{\beta} M) \partial_{\alpha}),$ $[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{H}(M)] = -\mathcal{H}(N^{\alpha}\partial_{\alpha}M),$ $\left[\mathcal{D}(N^{\alpha}\partial_{\alpha}), \mathcal{D}(M^{\beta}\partial_{\beta})\right] = -\mathcal{D}(\left(N^{\beta}\partial_{\beta}M^{\alpha} - M^{\beta}\partial_{\beta}N^{\alpha}\right)\partial_{\alpha}).$ **Representation on 3-geometry phase space** Homogeneous linear PDE (G_1, \ldots, G_m) gravity solve