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Motivation

(Larson et al. 2010)

(Jarosik et al. 2010)
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They then measure the intensity

To a good first approximation, the 
detectors are devices that count the 
number of photons hitting them per 
unit time per unit area. Some of them 
are sensitive to polarization.

(Holmes et al. 2008)

I(x, n̂, t, γ)

CMB Observables



They then measure the intensity

(Holmes et al. 2008)
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To a good first approximation, the 
detectors are devices that count the 
number of photons hitting them per 
unit time per unit area. Some of them 
are sensitive to polarization.



It turns out to be more convenient to trade the 
temperature T and Stokes parameters Q and U in 
for multipole coefficients

aT,�m =
�

d2n̂ Y m
�

∗(n̂)∆T (n̂)

aP,�m =
�

d2n̂ 2Y
m
�

∗(n̂) (Q(n̂) + iU(n̂))

aE,� m ≡ −(aP,� m + a∗P,�−m)/2

aB,� m ≡ i(aP,� m − a∗P,�−m)/2

CMB Observables



and measure the corresponding angular power 
spectra

CMB Observables

Cobs
TT,� ≡

1
2� + 1

�

m

��aobs
T,� m

��2

Cobs
BB,� ≡

1

2�+ 1

�

m

��aobsB,�m

��2

Cobs
TE,� ≡

1

2�+ 1

�

m

aobsT,�maobsE,�m
∗

Cobs
EE,� ≡

1

2�+ 1

�

m

��aobsE,�m

��2



and measure the corresponding angular power 
spectra

CMB Observables

Cobs
TT,� ≡

1
2� + 1

�

m

��aobs
T,� m

��2

Cobs
BB,� ≡

1

2�+ 1

�

m

��aobsB,�m

��2

Cobs
TE,� ≡

1

2�+ 1

�

m

aobsT,�maobsE,�m
∗

Cobs
EE,� ≡

1

2�+ 1

�

m

��aobsE,�m

��2

∆2
R(k) =

H
2(tk)

8π2�(tk)
∼

scalar and tensor perturbations



and measure the corresponding angular power 
spectra

CMB Observables

Cobs
TT,� ≡

1
2� + 1

�

m

��aobs
T,� m

��2

Cobs
BB,� ≡

1

2�+ 1

�

m

��aobsB,�m

��2

Cobs
TE,� ≡

1

2�+ 1

�

m

aobsT,�maobsE,�m
∗

Cobs
EE,� ≡

1

2�+ 1

�

m

��aobsE,�m

��2

∆2
R(k) =

H
2(tk)

8π2�(tk)

∆2
h(k) =

2H
2(tk)
π2

∼

∼

scalar and tensor perturbations

only tensor perturbations



and measure the corresponding angular power 
spectra
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In single field slow-roll inflation, the energy scale 
of inflation and the distance traveled by the 
inflaton in field space are related to the tensor-to-
scalar ratio

V 1/4
inf = 1.06× 1016 GeV

� r

0.01

�1/4

∆φ ≈ ∆N

�
r

8
≈

�
r

0.01 MP

Motivation

If a tensor signal is seen, the inflaton must have moved 
over a super-Planckian distance in field space (Lyth 1996)*

* This is for single field slow-roll models with canonical kinetic term. For a very nice 
treatment for more general single field models, see arXiv:1111.3040 (Green & Baumann)



Motion of the scalar field over super-Planckian 
distance is hard to control in an effective field theory

V (φ) = V0 +
1

2
m2φ2 +

1

3
µφ3+

1

4
λφ4 + φ4

∞�

n=1

cn (φ/Λ)
n

The     are typically unknown. 
Even if they were known, the effective theory is 
generically expected to break down for          , e.g. 
because other degrees of freedom become light.

cn

(Λ < Mp)

φ > Λ

Motivation



Use a field with a shift symmetry. 
Break the shift symmetry in a controlled way.

A possible solution:

Freese, Frieman, Olinto, PRL 65 (1990)

V (φ) = Λ4

�
1 + cos

�
φ

f

��

The inflaton as an axion

f � Mpwith

However, such large   seem hard to realize
string theory.

f

Banks, Dine, Fox, Gorbatov hep-th/0303252

Motivation



Silverstein, Westphal, arXiv:0803.3085

First example of large field inflation 
in string theory

McAllister, Silverstein, Westphal, arXiv:0808.0706
Flauger, McAllister, Pajer, Westphal, Xu, arXiv:0907.2916

Kaloper, Lawrence, Sorbo, arXiv:1101.0026

Berg, Pajer, Sjors, arXiv:0912.1341

and later

Motivation

For interesting related studies in EFT, see

Dubovsky, Lawrence, Roberts, arXiv:1105.3740



Basic Ingredients for Axion 
Monodromy Inflation



In string theory axions arise from integrating 
gauge potentials over non-trivial cycles in the 
compactification manifold.

bI(x) =
�

Σ(2)
I

B

cα(x) =
�

Σ(p)
α

C(p)

Axion Monodromy Inflation
Origin of the inflaton

In the limit of zero momentum, the couplings 
of these fields vanish to all orders in string 
perturbation theory.



Breaking by branes

For definiteness consider a D5-brane 
wrapping a two-cycle        of size L    .Σ(2) √

α�

SDBI = − 1
(2π)5α�3gs

�
d6ξ

�
det(−ϕ∗(G + B))

⊃ − �

(2π)5α�2gs

�
d4x

�
(4)g

�
L4 + b2

Axion Monodromy Inflation
Origin of the potential



So the axion has the following potential

V (b) =
�

(2π)5α�2gs

�
L4 + b2

Similarly for the         axion in the 
presence of NS5 branes

C(2)

Axion Monodromy Inflation

V (φ) ≈ µ3φ

with µ =
�1/3(2π)3gs

L10/3
Mp

For large field values in terms of the 
canonically normalized fields



The basic setup

anti
5B

5B

5B

∫
C(2) = c

anti
5B

Figure 2: Schematic of tadpole cancellation. Blue: Two-real-parameter family of two-
cycles Σ1, drawn as spheres, extending into warped regions of the Calabi-Yau. Red: We have
placed a fivebrane in a local minimum of the warp factor, and an anti-fivebrane at a distant
local minimum of the warp factor. In the lower figure, Σ1 is drawn as the cycle threaded by
C(2), and global tadpole cancellation is manifest.

Moduli stabilization is essential for any realization of inflation in string theory, and we
must check its compatibility with inflation in each class of examples. In type IIB compactifi-
cations on Calabi-Yau threefolds, inclusion of generic three-form fluxes stabilizes the complex
structure moduli and dilaton [19]. A subset of these three-form fluxes – imaginary self-dual
fluxes – respect a no scale structure [19, 18]. This suffices to cancel the otherwise dangerous
flux couplings described in §3.2.1.

4.2 An Eta Problem for B

In this class of compactifications, however, the stabilization of the Kähler moduli leads to an
η problem in the b direction. This problem arises because the nonperturbative effects (e.g.

19

NS5
anti-NS5

Axion Monodromy Inflation

Type IIB orientifolds with O3/O7

Stabilize the moduli a la KKLT



Consistency checks

Axion Monodromy Inflation

The inflaton potential must be smaller than 
the potential barriers stabilizing the moduli.

The backreaction on the geometry must be 
controlled.

Higher derivative corrections must be 
negligible.

Instanton corrections must be controlled.



Phenomenology
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Signatures in the CMB

The low energy effective field theory for Axion 
Monodromy Inflation is that of a single scalar field 
with canonical kinetic term, minimally coupled to 
gravity, with potential

V (φ) = µ3φ + bµ3f cos(φ/f)

possibly with additional couplings to other degrees
of freedom (see e.g. arXiv:1110.3327)



ns

Observable 1: ns and r

(Komatsu et al. 2010)

Model Independent 
Signatures



ns

µ3φ(modification of 
Komatsu et al. 2010)

Observable 1: ns and r

Model Independent 
Signatures



In the presence of instanton corrections, the 
power spectrum gets modified. 

This modification is not captured by the slow-roll 
approximation for the power spectrum because of 
parametric resonance, and the Mukhanov-Sasaki 
equation has to be solved.

Model Dependent 
Signatures I

Oscillations in the primordial power spectrum    



Oscillations in the primordial power spectrum    
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Model Dependent 
Signatures I



Look for a solution

Rk(x) = R(o)
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Oscillations in the primordial power spectrum    

Model Dependent 
Signatures I
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One finds

with
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Model Dependent 
Signatures I
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Model Dependent 
Signatures I

(see Meerburg et al. arXiv:1109.5264 for WMAP7, 
and Huang et al. arXiv:1201.5955 for Planck and LSS forecasts)



Constraints from WMAP5
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Models with large   can lead to large non-Gaussianities

Resonant Non-Gaussianity

δ̇

HI(t) ⊃ −
�

d
3
x a

3(t)�(t)δ̇(t)R2(x, t)Ṙ(x, t)

with

(Chen, Easther, Lim 2008)

�R(k1, t)R(k2, t)R(k3, t)� =

−i

� t

−∞
dt
��[R(k1, t)R(k2, t)R(k3, t),HI(t�)]�

Model Dependent 
Signatures II



Observable III: Resonant Non-Gaussianity
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After some algebra
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Observable III: Resonant Non-Gaussianity

(This satisfies the consistency condition.)

K = k1 + k2 + k3

f res =
3
√

2πb

8(fφ∗)3/2

with
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If one takes the best-fit point of the 2-pt analysis
seriously, one expects a signal with fres~400. 

Whether this is detectable remains to be seen.
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What are they?

Oscillons

Oscillons are long-lived, localized, oscillatory
configurations of a scalar field



Under what circumstances do they exist?

Oscillons
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Under what circumstances do they exist?

Oscillons

They can only exist if the potential
flattens out away from the minimum. 

(−ω2 +m2)φ−∇2φ+ V � −m2φ = 0
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Longevity

Oscillons

While there is no conserved charge (Q-balls) 
associated with them, there is an adiabatic 
invariant. 

Kasuya, Kawasaki, Takahashi, hep-ph/0209358

Oscillons classically radiate at an exponentially 
small rate. 

Segur, Kruskal, Phys. Rev. Lett. 58 (1987)

Quantum effects turn the rate into a power law.
Hertzberg, arXiv:1003.3459



Stability

Oscillons

Small oscillons suffer an instability in the presence 
of perturbations comparable to their size.

e.g. Amin, Shirokoff, arXiv:1002.3880

Very wide oscillons suffer an instability in the 
presence perturbations much smaller than their 
size.



Formation at the end of inflation

Oscillons

Parametric resonance in the 
equations for the perturbations 
leads to an instability which 
causes the inflaton to fragment 
and form oscillons.

δφ̈+ 3Hδφ̇− 1

a2
∇2δφ+ V

��(φ̄)δφ

+16πG
˙̄φ

H
V

�(φ̄)δφ+ (8πG)2
˙̄φ2

H2
V (φ̄)δφ = 0



Oscillons

The numerical calculation begins at the first 
turning point. It assume that the couplings to 
the degrees of freedom on the brane are small 
enough so that               at the end of inflation. Γ � H
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Oscillon formation in the monodromy potential

Oscillons

PSpectRe



Conclusions
String theory seems to contain the right 
ingredients to realize large field inflation.

The scenario has interesting signatures: 
A large tensor to scalar ratio, potentially a 
modulated temperature anisotropy spectrum 
as well as resonant non-Gaussianities.

Resonant non-Gaussianity is currently poorly 
constrained and deserves further study 
independent of the stringy scenario.



Conclusions

In these models oscillons may form at the end 
of inflation. The properties of oscillons, too, 
deserve further study both in the context of 
the stringy model and in their own right.

More explicit geometries are desirable, 
reheating in these models should be studied, ...



Thank you


