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Motivation

(Jarosik et al. 2010) (Jarosik et al. 2010)
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(Larson et al. 2010) (Bock et al. 2009)




CMB Observables

(Holmes et al. 2008)

To a good first approximation, the
detectors are devices that count the
number of photons hitting them per
unit time per unit area. Some of them
are sensitive to polarization.

They then measure the intensity

I(X7 ﬁ? t? fY)

r¥ -
b - -



CMB Observables

(Holmes et al. 2008)

To a good first approximation, the
detectors are devices that count the
number of photons hitting them per
unit time per unit area. Some of them
are sensitive to polarization.

They then measure the intensity

Z(()?ﬁat(hv) :IO <1 i




CMB Observables

It turns out to be more convenient to trade the
temperature T and Stokes parameters Q and U in
for multipole coefficients

— / 024 Y™ () AT (1)
pam = [ P 2Y () QM) + U ()
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ABtm = U(aPem — Apg_mm)/2
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CMB Observables

and measure the corresponding angular power
spectra
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CMB Observables

and measure the corresponding angular power
spectra
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CMB Observables

and measure the corresponding angular power
spectra
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CMB Observables

and measure the corresponding angular power
spectra
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Motivation

In single field slow-roll inflation, the energy scale
of inflation and the distance traveled by the
inflaton in field space are related to the tensor-to-

scalar ratio
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If a tensor signal is seen, the inflaton must have moved
over a super-Planckian distance in field space™ (wyth 1996)

odels with canonical kinetic term. For a very nice
Vil == e
! 40 (Green & Baumann)

*This is for single
treatment for more g



Motivation

Motion of the scalar field over super-Planckian
distance is hard to control in an effective field theory

i, 1
V(g) =Vo+ 5m*¢” + Sug’+

A6t Y en (/M)
n=1

(A < M,)

The ¢, are typically unknown.

Even if they were known, the effective theory is
generically.expected to break down for ¢ > A, e.g.
because other degrees of freedom become light.



Motivation

A possible solution:

Use a field with a shift symmetry.
Break the shift symmetry in a controlled way.

The inflaton as an axion
Freese, Frieman, Olinto, PRL 65 (1990)

V(g) = A* [1 + cos (?)] with f =z M,

However, such large / seem hard to realize
string theory.

Banks, Dine,



Motivation

First example of large field inflation
in string theory

Silverstein, Westphal, arXiv:0803.3085

and later

McAllister, Silverstein, Westphal, arXiv:0808.0706
Flauger, McAllister, Pajer, Westphal, Xu, arXiv:0907.2916

Berg, Pajer, Sjors, arXiv:0912.1341

For interesting related studies in EFT, see

Kaloper, Lawrence, Sorbo, arXiv:1101.0026
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Axion Monodromy Inflation

Origin of the inflaton

In string theory axions arise from integrating
gauge potentials over non-trivial cycles in the
compactification manifold.

gy / B
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Axion Monodromy Inflation

Origin of the potential

Breaking by branes

For definiteness consider a D5-brane
wrapping a two-cycle ¥(?) of size Ly’

SDBI = —




Axion Monodromy Inflation

So the axion has the following potential

V(b) = ——\/L* + b2

For large field values in terms of the
canonically normalized fields

V(p) = i’
61/3(277)395
J,10/3

with =

M,

presence or



Axion Monodromy Inflation

The basic setup
® Type lIB orientifolds with O3/0O7

® Stabilize the moduli a la KKLT

anti-NS5




Axion Monodromy Inflation

Consistency checks

The inflaton potential must be smaller than
the potential barriers stabilizing the moduli.

The backreaction on the geometry must be
controlled.

Higher derivative corrections must be
negligible.




Phenomenology

anti-NS5




Signatures in the CMB

The low energy effective field theory for Axion
Monodromy Inflation is that of a single scalar field
with canonical kinetic term, minimally coupled to
gravity, with potential

V(¢) = 1 + by’ f cos(o/ f)

possibly with additional couplings to other degrees




Model Independent
Signatures
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Model Independent
Signatures

Observable |l:nsand r
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Model Dependent
Signatures |

Oscillations in the primordial power spectrum

In the presence of instanton corrections, the
power spectrum gets modified.

This modification is not captured by the slow-roll
approximation for the power spectrum because of
parametric resonance, and the Mukhanov-Sasaki
equation has to be’ solved.




Model Dependent
Signatures |

Oscillations in the primordial power spectrum
d*Ri 2(1+ 2e+0) dRy

dx? T dr e
with 1
€ = €, — 3bf+/2¢, cos (¢k+ .f2€* na:)

5:5*—Sbsin(¢k+\/§e*ln$) ’




Model Dependent
Signatures |

Oscillations in the primordial power spectrum
A’ Ry 2(1 + Sosel@)) dR

dx? T dx

Look for a solution

ol il Bt L 1 - e 2
Ik = R,g()) [z\/;x3/2H§/)2(x) — c,g )(a;)z\/;x3/2H§/)2(:v)]

Then for large x

F R =0




Model Dependent
Signatures |

Oscillations in the primordial power spectrum




Model Dependent
Signatures |

One finds
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Model Dependent

Signatures |

Constraints from VWMAPS
Min Max | Points
Qyh* | 0.0212 | 0.0266 16
f 0.00009| O.l 512
0N g 0 0.44 128

33 million
spectra



Model Dependent
Signatures |

Constraints from VWMAPS
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Model Dependent
Signatures |

Constraints from VWMAPS
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Constraints from VWMAPS
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Model Dependent
Signatures |

Resonant Non-Gaussianity

Models with large § can lead to large non-Gaussianities
(Chen, Easther, Lim 2008)

(R(k1,t)R(ksa,t)R(ks,t)) =

s / (R ke, R (ks /R ks, £), Hi ()




Model Dependent
Signatures |

Observable lll: Resonant Non-Gaussianity

After some algebra

G(k1, k2, ks3) 1/ dXie_iX
L

—+ C.C




Model Dependent
Signatures |

Observable lll: Resonant Non-Gaussianity

g(kl,kg,kg) __ pres , . IIIK/IC* ﬁ an/k*
kikoks s 125 ( J D« ) — ; k; a8 ( ] O«
with K = ki + ko + ks
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Mod.el Dependent
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Model Dependent
Signatures |

k) =0.00 100Mpc ! 1‘

G (k1. k1 ¥z kK X3)




Model Dependent
Signatures |

If one takes the best-fit point of the 2-pt analysis
seriously, one expects a signal with fes~400.

Whether this is detectable remains to be seen.

500




Oscillons

What are they!?

Oscillons are long-lived, localized, oscillatory
configurations of a scalar field




Oscillons

Under what circumstances do they exist?

They can only exist if the potential
flattens out away from the minimum.
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Oscillons

Longevity

Oscillons classically radiate at an exponentially

small rate.
Segur, Kruskal, Phys. Rev. Lett. 58 (1987)

While there is no conserved charge (Q-balls)
associated with them, there is an adiabatic
Invariant.

Kasuya, Kawasaki, Takahashi, hep-ph/0209358




Oscillons

Stability

Small oscillons suffer an instability in the presence
of perturbations comparable to their size.

Very wide oscillons suffer an instability in the
presence perturbations much smaller than their
size.

. e.g. Amin, Shirokoft, arXiv:1002.3830




Oscillons

Formation at the end of inflation

Parametric resonance in the
equations for the perturbations
leads to an instability which
causes the inflaton to fragment
and form oscillons.



Oscillons

Formation at the end of inflation

The numerical calculation begins at the first
turning point. It assume that the couplings to
the degrees of freedom on the brane are small
enough so that I’ << H at the end of inflation.






Conclusions

® String theory seems to contain the right
ingredients to realize large field inflation.

® The scenario has interesting signatures:
A large tensor to scalar ratio, potentially a
modulated temperature anisotropy spectrum
as well as resonant non-Gaussianities.

® Resonant non-Gaussianity is currently poorly
constralned and deserves further study
. of the strin




Conclusions

® |n these models oscillons may form at the end
of inflation. The properties of oscillons, too,
deserve further study both in the context of
the stringy model and in their own right.

® More explicit geometries are desirable,
reheating in these models should be studied, ...







