# Co-evolution of supermassive black holes and galaxies within their large-scale structures

### John Silverman (ETH-Zurich)

### Collaborators

#### <u>zCOSMOS</u>

### ETH: S. Lilly

M. Carollo K. Caputi

P. Kampczyk

C. Knobel

K. Kovac

C. Maier

Y. Peng

#### <u>xCOSMOS</u>

G. Hasinger (MP-IPP)

M. Elvis (CfA)

H. Brunner (MPE)

M. Brusa (MPE)

N. Cappelluti (MPE)

F. Civano (CfA)

A. Comastri (INAF-Bologna)

A. Finoguenov (MPE)

F. Fiore (INAF-Rome)

- R. Gilli (INAF-Bologna)
- R. Griffiths (CMU)
- A. Koekomoer (STSCI)

T. Miyaji (IAUNAM)

C. Vignali (Univ. Bologna)

M. Salvato (CalTech)

#### <u>COSMOS</u>

LAM/LATT: O. Le Fevre

J.-P. Kneib

L. De Ravel

V. Le Brun

L. Tasca

L. Tresse

T. Contini

S. De La Torre

F. Lamareille

- D. Sanders (IfA)
- N. Scoville (CalTech)
- P. Capak (SSC)
- K. Jahnke (MPIA)
- J. Kartaltepe (IfA)
- A. Merloni (MPE)

& full team

- INAF: G. Zamorani M. Bolzonella O. Cucciati B. Garilli A. Iovino M. Mignoli M. Scodeggio D. Vergani
  - E. Zucca

Chandra Deep Field South

W. N. Brandt (PSU)

- D. Alexander (Durham)
- F. Bauer (Univ. Columbia)
- J. Bergeron (IAP)
- B. Lehmer (Durham)
- B. Luo (PSU)
- P. Rosati (ESO)
- D. Schneider (PSU)
- G. Szokoly (EU-Hungary)
- P. Tozzi (INAF-Trieste)
- L. Wisotski (AIP)

#### MPE/ESO: V. Mainieri

A. Bongiorno

M. Tanaka

#### & full zCOSMOS team

#### <u>ChaMP</u>

- P. Green (CXC)
- B. Wilkes (CXC)
- W. Barkhouse (UI)
- D.-W. Kim (CfA)
- M. Kim (SNU)
- H. Tananbaum (CXC)

# What are the fundamental questions?



Do supermassive black holes (SMBHs) play a role in galaxy evolution?

I. z < 0.3

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Local SMBH bulge mass relations
- AGN activity/star formation connection (Sloan Digital Sky Survey)

#### II. Up to z~1

- AGN/star formation connection over the last 8 billion years
- Galaxy redshift surveys: Chandra Deep Field South, (z)COSMOS
- AGN identification through X-ray emission (Chandra, XMM-Newton)

How is AGN and star formation influenced by their large-scale environments?

Occurrence of AGN activity as a function of local galaxy density (zCOSMOS)

### What physical mechanism(s) is driving accretion onto SMBHs?

# Local SMBH-bulge relation





# Accreting SMBHs: AGNs and QSOs





Silverman et al. 2008b, ApJ, 679, 118

See also Boyle & Terlevich 1998; Franceschini, Hasinger & Miyaji 1999; Merloni, Rudnick, Di Matteo 2004; Marconi et al. 2004; Shankar et al. 2008

#### What physical process drives the concurrent growth of SMBHs and their host galaxies?

#### • Major mergers of galaxies

- + Ultraluminous infrared galaxies:
  - High central gas concentrations and AGN activity (see Sanders & Mirabel 1996; Iwasawa et al. 2005).
- + *Numerical simulations* demonstrate that mergers:
  - Effectively able to form 'classical' bulges from spiral/disk galaxies (e.g., Hernquist 1993)
  - Transfer gas to the nucleus (Mihos & Hernquist 1996) thus powering AGN (e.g. Hopkins et al. 2008)
  - Self-regulating AGN feedback and quenched star formation (Di Matteo et al. 2005, Springel et al. 2005, Croton et al. 2006)
- + Observed merger rate increases with redshift (e.g., Kartaltepe et al. 2007; de Ravel et al. 2008)

#### Internal processes

- Bar/disk instabilities (Kormendy & Kennicutt 2004)
- + Stellar ejecta (e.g., Davies et al. 2007; Kauffmann et al. 2009)

#### \* Availability of gas

+ Plentiful reservoir of molecular gas on large (kpc) scales (Scoville et al. 2003; Ho et al. 2008)



### AGN feedback



McNamara et al. 2008



### **Merger-induced** accretion



### Is there an AGN/star formation connection?

# AGN/SF connection at z < 0.3 (SDSS)

### Type 2 AGNs: Nature's 'cosmic coronograph'



#### Kauffmann et al. 2003

See also Veilleux & Osterbrock 1987; Kewley et al. 2001, 2006; Stasinska et al. 2007

# AGN/SF connection at z < 0.3 (SDSS)





Schawinski et al. 2007

Young stellar populations are associated with strongly accreting SMBHs

Kauffmann et al. 2003, 2007

# AGN/SF connection at z < 0.3 (SDSS)





### AGN hosts appear to be undergoing a transition from blue to red

### X-ray emission from AGNs

### Probing obscured accretion at high redshift (z > 0.3)

### Chandra Deep Field South (CDF-S)







### X-ray emission from AGNs

### Probing obscured accretion at high redshift (z > 0.3)

### Chandra Deep Field South (CDF-S)







Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# **Optical identification of X-ray sources**



Wednesday, April 22, 2009

14/27

### Host galaxy properties of X-ray selected AGN up to z~1





Grogin et al. 2005 (see Akiyama 2005; Gabor et al. 2009)

- Host galaxies have a broad color distribution; presence in the "Green valley" (see Nandra et al. 2007; Hickox et al. 2009)
- Color evolution similar to underlying galaxy population
- Preference for bulge-dominated galaxies (e.g., Kiuchi et al. 2006)
- Lack of evidence (e.g. asymmetry) for major-merging

### COSMOS

Galaxy evolution as a function of environment up to  $z \sim 2$ 

PI: Nick Scoville (CalTech)

HST/ACS: i' (Scoville)

Spitzer: (Sanders)

IRAC-3.6, 4.5, 5.6 8.0µm

MIPS-24, 70, 160µm

VLA: (Schinnerer)

GALEX: (Schiminovich)

XMM: (Hasinger)

Chandra: (Elvis)

VLT: (Lilly)

Subaru: (B, V, g, r, i, z; Taniguichi)

CFHT (u,i,Ks; McCraken)





### COSMOS

### Galaxy evolution as a function of environment up to $z \sim 2$

PI: Nick Scoville (CalTech) HST/ACS: i' (Scoville) Spitzer: (Sanders) IRAC-3.6, 4.5, 5.6 8.0µm MIPS-24, 70, 160µm VLA: (Schinnerer) GALEX: (Schiminovich) XMM: (Hasinger) Chandra: (Elvis) VLT: (Lilly) Subaru: (B, V, g, r, i, z; Taniguichi) CFHT (u,i,Ks; McCraken)



Determine the relation of **ongoing** star formation (SFRs) to AGN activity (Maccr) within the context of their local environment.



### COSMOS

Galaxy evolution as a function of environment up to  $z \sim 2$ 

PI: Nick Scoville (CalTech)

HST/ACS: i' (Scoville) Spitzer: (Sanders) IRAC-3.6, 4.5, 5.6 8.0µm MIPS-24, 70, 160µm VLA: (Schinnerer) GALEX: (Schiminovich) XMM: (Hasinger) Chandra: (Elvis) VLT: (Lilly) Subaru: (B, V, g, r, i, z; Taniguichi) CFHT (u,i,Ks; McCraken)



Determine the relation of **ongoing** star formation (SFRs) to AGN activity (M<sub>accr</sub>) within the context of their local environment.



### zCOSMOS (600 hrs on VLT, started April 2005):

- about 20,000 spectra 0.1 < z < 1.4 in "-bright": 1<sub>AB</sub> < 22.5 over 1.7 deg<sup>2</sup>
- about 10,000 spectra 1.4 < z < 3.5 in "-deep": colour-selection, B < 25, over 0.9 deg<sup>2</sup>
- designed for high success rate (~ 90% in bright, ~ 80% in deep)
- and high sampling rate (~ 70%) with multiple passes (8 in bright, 4 in deep)
- with velocity accuracy of 100 kms<sup>-1</sup> in bright, 300 kms<sup>-1</sup> in deep
- duplication in spectral data reduction, redshift identification and other measurements

### zCOSMOS 10k catalog

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich





### zCOSMOS 10k catalog



#### Select studies to date:

*"The Dependence of Star Formation Activity on Stellar Mass Surface Density and Sersic Index"* Maier et al. 2009, ApJ, 694, 1099

"An optical group catalogue to *z* = 1 from the *z*COSMOS 10*k* sample" Knobel et al. 2009, ApJ, in press, arXiv:0903.3411

*"The density field of the 10k zCOSMOS galaxies"* Kovac et al. 2009, ApJ, submitted, arXiv:0903.3409

"The Close Environment of 24  $\mu$ m Galaxies at 0.6 < z < 1.0 in the Cosmos Field" Caputi et al. ApJ, 691, 91

#### To be submitted soon:

"Role of stellar mass in the color-density relation up to  $z \sim 1$ " Cucciati et al. 2009

"Galaxy stellar mass function up to  $z \sim 2$ " Bolzonella et al. 2009

*"Unveiling galaxy bimodality in the Galaxy Stellar Mass Function and exploring its evolution with redshift"* **Pozzetti** et al. 2009

"Group environment and galaxy colors up to  $z \sim 1$ " lovino et al. 2009

"Build-up of the morphology-density relation up to  $z\sim1$ " Tasca et al. 2009

"Close kinematic pairs in zCOSMOS" Kampczyk et al. 2009

### XMM/COSMOS





Hasinger et al. 2007; Cappelluti et al. 2007, 2009

 $f_{0.5-2.0 \text{ keV}} > 5 \times 10^{-16} \text{ erg cm}^2 \text{ s}^{-1}$  (Soft band)  $f_{2.0-10 \text{ keV}} > 2 \times 10^{-15}$  " " (Hard bard)



152 AGNs (0.1 < z <1) identified by zCOSMOS/10k having  $L_X > 10^{42}$  erg s<sup>-1</sup>



### Host galaxy stellar mass



AGN activity rises with host galaxy mass

Agreement with SDSS (Kauffmann et al. 2003; Best et al. 2005)

# Star formation rates of AGN hosts

### [OII] $\lambda$ 3727 as a SFR indicator (Ho et al. 2005)

- Not yet exploited for AGN hosts
- [OII] mainly attributed to host galaxy (see Croom et al. 2002)
- Quasars exhibit low SFRs (a few M<sub>☉</sub> yr<sup>-1</sup>). Quenching at low redshift?

### Method:

- I. PLATEFIT\_VIMOS (Lamareille et al. 2008)
  - automated spectral measurements
  - [OII] $\lambda$ 3727, [OIII] $\lambda$ 5007, H $\alpha$ , H $\beta$ , [NII]
- II. Removal of AGN contribution; assume
  - [OIII] $\lambda$ 5007 purely AGN dominated (Kauffmann et al. 2003)
  - [OII]<sub>AGN</sub>/[OIII]<sub>AGN</sub>=0.2 (Minjin Kim, L. Ho et al. 2006)
  - A<sub>V</sub>=0.8 (Kewley et al. 2006)
  - At z>0.85, infer [OIII] from correlation with L<sub>2-10 keV</sub> (Heckman et al. 2005, Panessa et al. 2006)

III. log SFR = log  $L_{[OII]}$  - 41 -0.2\*M<sub>B</sub>-3.43 (Moustakis et al. 2006)



# Star formation rates of AGN hosts



- Significant levels of star formation: ~I < SFRs < 100 M<sub>☉</sub> yr<sup>-1</sup>
- Similar evolution to the star-forming galaxy population
- Consistent with low SFRs in SDSS AGNs (z < 0.3)

Silverman et al. 2009b, ApJ, 696, 396

### Are AGNs associated with transitional galaxies



SDSS: Martin et al. 2007; Salim et al. 2007; Schawinski et al. 2007; Westoby et al. 2007 X-ray surveys: see Nandra et al. 2007; Silverman et al. 2008; Georgakakis et al. 2008; Schawinski et al. 2009

### Must account for the low mass-to-light ratio of 'blue cloud' galaxies

Silverman et al. 2009b, ApJ, 696, 396

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



- Constant ratio with redshift
- $<\dot{M}_{accr}/SFR > ~ 10^{-2}$  [A factor of 10x higher than M<sub>BH</sub>-M<sub>bulge</sub> relation]
- Intermittant scenario with an AGN duty cycle 10x shorter than star formation

Silverman et al. 2009b, ApJ, 696, 396

### **Environments of AGNs**

Zurich developed density estimator (Kovac et al. 2009, arXiv:0903.3409)

- Nearest neighbor approach (e.g., 5<sup>th</sup>, 10<sup>th</sup>)
- spectroscopic (10k) + photometric (30k) redshifts
- flux and volume limited tracers

- Projected-density (± 1000 km s<sup>-1</sup>)
- Overdensity ( $\delta$ ): 1 +  $\delta$  =  $\rho/\langle \rho \rangle$



- Silverman et al. 2009a, ApJ, 695, 171
- Environments similar to star-forming galaxies
- •AGNs in massive hosts (log  $M_* > 11$ ) prefer underdense regions

\* resolves seemingly disparate results from the SDSS (Miller et al. 2003; Kauffmann et al. 2004)



### Conclusions

#### • Two basic requirements for a galaxy to harbor an accreting SMBH

- + a massive host galaxy
- + a sufficient fuel supply
  - substantial levels of star formation (1-100 M<sub>☉</sub> yr<sup>-1</sup>) in zCOSMOS galaxies hosting AGN
  - no evidence for the quenching of star formation attributed to AGN feedback

#### Mutual decline in star formation and supermassive black hole accretion

- + shifts the evidence for co-evolution scenario to smaller physical scales (i.e., within the same galaxies)
- intermittant SMBH growth on time scales ~10<sup>8</sup> yr

### AGNs reside in environments similar to star-forming galaxies

+ physical processes such as galaxy harrassment and/or tidal stripping are influential in dense environments

Where is the star formation occurring (bulge vs. disk)?

What about the more luminous quasars and role of mergers at  $z \sim 2$ ?