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Pictorial History of the Universe

Planck
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Motivation 1

● Cosmology experiments 
are providing us with a 
wealth of information

● On scales > few Mpc, 
gravity is the only 
relevant force

● We should be using this 
information to test 
gravity...
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Motivation 2

● The Universe is accelerating

● Physics behind acceleration is a big 
mystery
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Physics behind Acceleration

● Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Accelerating Universe

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Accelerating Universe

Violate Copernican principle

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation   

Accelerating Universe

add 
Dark Energy

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Modify any of the ingredients:

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Accelerating Universe

Modified Gravity ?

(focus of this talk)

General Relativity (GR)
- Friedmann Equation
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Physics behind Acceleration

● Minimal solution: cosmological constant Λ

Homogeneity & Isotropy
- FRW metric

Stress-Energy Content
- Matter & Radiation

Accelerating Universe

 Λ  

General Relativity (GR)
- Friedmann Equation
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Tests of Gravity: 6 years ago

● Solar System
– Precision constraints 

from time delay
● CMB (+SN, BAO)

– Model-dependent 
constraints 
(geometry, ISW)

– Important for 
developing viable 
modified gravity 
models
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Modified Gravity: Challenges

Theoretical Challenge:
● How to evade Solar System (and CMB) 

constraints

● Idea: reduce to GR in high-curvature regime
– Applies to Early Universe as well as high-density 

regions today
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Modified Gravity: Challenges

Observational Challenge:
● How can we distinguish Modified Gravity 

from GR + Dark Energy ?
– (Almost) any expansion possible with Dark Energy

● Beyond background: growth of structure
– Predictions straightforward in linear regime
– Non-linear regime less so...
– Will always compare modified gravity with Dark 

Energy model with identical expansion history
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Probing gravity: linear vs 
nonlinear regime

Linear regime:   CMB, Supernovae, BAO

Parametrizing gravity possible --> model-independent 
constraints

Limited statistical/constraining power

Non-linear regime:   weak lensing, cluster abundance,...

No general parametrization: specific non-linearities of 
modified gravity model important

Wealth of observables, plenty of S/N
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f(R) Gravity

Hu & Sawicki, PRD 07

● Simplest workable modified gravity model
● Generalize Lagrangian of General 

Relativity:

● Choose function with  ΛCDM limit:

Lg =
1

16¼G
(R ¡ 2¤) ¡! 1

16¼G
(R+ f(R))

f(R) = ¡2¤ R=Rc
R=Rc + 1

¼ ¡2¤¡ fR0
R20
R
;
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f(R) Gravity

● f(R) model produces ΛCDM expansion 
history without true Λ
– Difference in H(z) of order

● Equivalent to scalar-tensor theory

– Scalar field     with universal coupling

–  Grav. force enhanced by 4/3 within
 

● Chameleon effect: recover GR locally
– Scalar field decouples in high-density regions

fR0 ¿ 1

¸C =
p
3fRR

fR ´ df

dR

(background field 
value today)
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Chameleon Mechanism

● Consider scalar     with equation of 
motion (static regime)

– GR restored in sufficiently deep potential wells:

– Must hold in Solar System

average (background) field

´ @Ve®(Á)

@Á

Á

r2Á =
@V (Á)

@Á
+ 8¼G½

ª & 3

2
Á =

3

2
fR

Á=¹Á
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Working Example II: DGP

● Dvali-Gabadadze-Porrati model:
– Matter / radiation confined to 4D brane in 

5D Minkowski space
– Action constructed to reduce to GR              

on small scales

Dvali, Gabadadze, Porrati 00

brane
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Working example II: DGP

● Sub-horizon scales                  : effective 
scalar-tensor theory

– Massless field      -  brane-bending mode

–          quantifies displacement of brane in extra 
dimension

'

'(~x; t)
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Brane-bending mode

● Linearized solution:
– i.e. time-dependent G (grav. constant)

● When              , non-linear interactions of      
important:

● Leads to screening of field at high 
densities: Vainshtein mechanism

' =
2

3¯
ªN ; ¯(a) / H rc

±½=¹½ & 1 '

r2'+
r2c
3¯ a2

[(r2')2 ¡ (rirj')(rirj')] =
8¼Ga2

3¯
±½
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Vainshtein mechanism

● For spherically symmetric 
object,    is screened 
within 

– Vainshtein mechanism operates     
at fixed enclosed density

Vainshtein radius

ϕ profile for uniform spherer¤(r) =

µ
16GM(< r)r2c

9¯2

¶1=3

'

ªN
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From Theory to Data

● In order to confront these models with 
observations, need accurate predictions

– Standard tool for virtually any large-scale structure 
measurement: N-body simulations

– However: Chameleon, Vainshtein mechanisms 
generally active when 

● Require self-consistent N-body simulations 
to predict observables on non-linear scales

– Signatures of screening mechanisms interesting to 
look for in their own right

±½=¹½ & 1
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Simulating Modified Gravity

● Need self-consistent solution of 
nonlinear scalar field and dark matter

● Particle-mesh code:
– Density and potential are 

evaluated on cubic grid
– Given modified potential, 

propagation of particles 
unchanged
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Main task: solve for potential

● Newtonian potential      :
– Obtained via Fourier transform of density

● Scalar field    :
– Non-linear relaxation scheme (Newton-Raphson)

● Parallelized with multi-grid acceleration

● Finally:

● Non-linear relaxation time-consuming:
– CPU time ~20x that of ordinary GR simulations 

Oyaizu 08, FS 09a
Li, Zhao, Koyama 10ªN

'

ª = ªN +
1

2
'
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Results: Structure Formation

Slice through simulation
at z=0, size: 64 Mpc/h

GR – ΛCDM

Circles: 20 most massive 
             halos
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Results: Structure Formation

Slice through simulation
at z=0, size: 64 Mpc/h

f(R) with f
R0 

= 10-4

Circles: 20 most massive 
             halos
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Vainshtein in Action...

DGP simulation, 64 Mpc/h box, z=0

Brane-bending mode Newtonian potential
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Linear vs Non-linear Scales...

– Relative deviation of matter power spectrum from 
ΛCDM

f(R)

Full simulations

Simulations without 
chameleon mechanism

Validity of linear 
theory at z=0
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Linear vs Non-linear Scales...

f(R)

chameleon
Full simulations

Simulations without 
chameleon mechanism

– Relative deviation of matter power spectrum from 
ΛCDM
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Abundance of Dark Matter 
Halos

● Massive DM halos                      observable 
as galaxy clusters

● Abundance “exponentially sensitive” to 
P(k) normalization

– Excellent probe of growth of structure (once 
observable – halo mass relation is known)

(M & 1014M¯)
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Halo Abundance in f(R)

● Strong field (10-4):
– Large enhancement 

at high masses (as 
expected)

– Semi-analytical model 
works reasonably well

● DGP qualitatively 
similar

FS, Lima, Oyaizu, Hu, 2009
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Halo Abundance in f(R)

● Smaller field (10-5):
– Background field 

comparable to typical 
potentials 

– Chameleon begins to 
act at highest masses

FS, Lima, Oyaizu, Hu, 2009
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Halo Abundance in f(R)

● Weak field (10-6):
– Chameleon effect 

active at large 
masses

– Abundance of 
clusters not a good 
probe anymore

FS, Lima, Oyaizu, Hu, 2009
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Application: constraining f(R) 
with Cluster Abundance

● X-ray clusters from ROSAT survey
– Observable: N(>M

0
); ~35 clusters at z < 0.15

– Mass-observable scatter probably smallest in X-rays

● Treat f(R) effect as effective σ
8
 enhancement

– Spherical collapse model to predict scaling of f(R) 
effect with parameters

– CMB constrains primordial normalization

– SN, H
0
, BAO break parameter degeneracies

FS, Vikhlinin, Hu 09
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Application: constraining f(R) 
with Cluster Abundance

95% CL upper limit:

cf. constraints from linear 
regime:

FS, Vikhlinin, Hu 09
Ferraro, FS, Hu 10; 
see also Lombriser et al, 10 f(R) functional shape

jfR0j . 0:1
¸C . 2000Mpc
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Forecast for SZ cluster samples

● Significantly larger next generation 
cluster samples (> 1000)

– Number counts (dN/dz) and clustering (P(k)) of 
clusters

– Self-calibration of bias & scatter in mass-
observable relation

● f(R) effects enter through
– Mass function
– Halo bias & matter P(k)
– Effect on dynamical mass (-> later)

Sph. Collapse + halo model

Mak, Pierpaoli, FS, Macellari
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Planck SZ cluster constraints

Fiducial f
R0

F
or

ec
a

st
ed

 c
on

st
ra

in
t 

on
 f

R
0

Fully marginalized, 
assuming flat ΛCDM 
background

Combination 
dN/dz+P(k) breaks 
degeneracies w/ 
nuisance parameters

● Fischer-forecast as function of fiducial f
R0

Mak, Pierpaoli, FS, Macellari
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Halo Density Profiles

● Stacked halo 
profiles for ΛCDM 
and f(R)
– Inner halo profiles 

unchanged
– Some effects in infall 

region
● Observable 

through weak 
lensing

FS et al., 09
Li et al., 10

f
R0

=10-4
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Halo Profiles through Weak 
Lensing Shear

● Measurement of stacked halo density profiles
– From Sloan cluster (maxBCG) lensing 
– f(R) predictions through abundance matching
– Marginalize over scatter

Fully marginalized 95% CL 
constraint:

Allowed f(R) prediction

Mandelbaum et al.

Lombriser, FS, et al., 11

Mandelbaum et al.
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Halo Profiles through Weak 
Lensing Shear

Weak scaling with f
R0

 - could 

become competitive soon, e.g. 
with DES

Lombriser, FS, et al., 11

● Measurement of stacked halo density profiles
– From Sloan cluster (maxBCG) lensing 
– f(R) predictions through abundance matching
– Marginalize over scatter

Mandelbaum et al.
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Tests of Gravity: Today

● Specifically: 
constraints on f(R)

● Large-scale structure 
filling in significant 
amounts of “white 
space” !

● Goal: constraints 
comparable to Solar 
System

Lombriser, FS, et al., 11
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Tests of Gravity: Today

● Matter power spectrum, halo abundance, 
profiles: not specific to modified gravity

– Other non-standard ingredients can lead to similar 
effects (or cancel those of mod. gravity)

– e.g., neutrinos, primordial non-Gaussianity, ...

● We would like to have tests that directly 
target gravity
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Direct Tests of Gravity ?

DGP simulation, 64 Mpc/h box, z=0

Brane-bending mode Newtonian potential
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Direct Tests of Gravity ?

● Compare (non-rel.) dynamics with lensing:

ª = ªN +
1

2
Á ª¡© = ªN ¡©N

ª¡©

ª
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Direct Tests of Gravity ?

● Compare (non-rel.) dynamics with lensing:

– Linear regime: redshift distortions vs weak lensing

– Non-linear regime: dynamical mass vs lensing mass

Zhang et al 08, Reyes et al 2010

Schwab et al, Smith 09
FS, 2010

X-ray; SZ; galaxy dynamics in clusters;
dynamics within galaxies

ª = ªN +
1

2
Á ª¡© = ªN ¡©N
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ΛCDM simulations

Phase-Space around Clusters

● Distribution of V
los

 as 

function of r
perp

– Measured from 
spectroscopic galaxy 
sample

– Density distribution 
measured from lensing

Lam et al, 2012
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Phase-Space around Clusters

● RMS dispersion of V
los

 as function of r
perp

f(R)

Stronger effect than 
virial scaling

Eventually approaching 
linear scaling

/
p
Ge®=G

/ Ge®=G

Lam et al, 2012
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Conclusions

● Large scale structure offers numerous 
ways to probe gravity

– Much more information on non-linear scales
– Model-dependent constraints, though tests not 

model-dependent

● f(R) and DGP predictions worked out
– More work on N-body codes necessary

● Comparing dynamics with lensing allows 
for (semi-)direct test of gravity

– Effective for any scalar-tensor type models
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