Future foam: Non-trivial topology from bubble collisions in eternal inflation

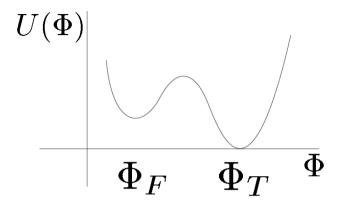
Yasuhiro Sekino (Okayama Institute for Quantum Physics)

Based on

R. Bousso, B. Freivogel, Y. Sekino, S. Shenker, L. Susskind, I.-S. Yang, and C.-P. Yeh, PRD78, 063538 (2008), arXiv: 0807.1947[hep-th]

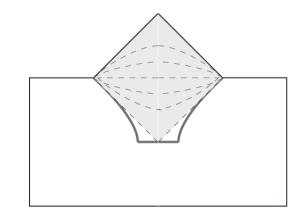
Bubble nucleation

(As a model for landscape,)
 Gravity coupled to a scalar field whose potential has a metastable vacuum:



Assume U(Φ_F)>0, U(Φ_T)=0.

- False vacuum: de Sitter space
- <u>Creation of Universe</u>:
 Tunneling (bubble nucleation); described
 by Coleman-De Luccia (CDL) instanton



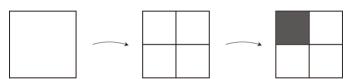
- Inside the bubble, open FRW universe
- Nucleation rate : $\Gamma \sim \exp(-(S_{\text{inst}} S_{\text{F}}))$

Eternal inflation

• If nucleation rate is small compared to expansion rate (H),

$$\Gamma < cH^4$$

true vacuum does not "percolate".

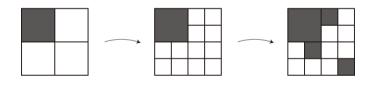


• Intuitive picture (Winitzki):

Fractal percolation model

white: false vacuum

black: true vacuum



Finite fractal dimension: $D_F = 2 - |\log(1 - \Gamma)|/\log 2$

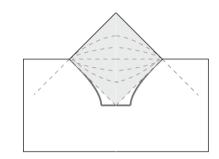
Eternal inflation:

Fraction of false vacuum goes to zero: $f(t) \sim e^{-c(\Gamma H^{-3})t}$ But its physical volume grows indefinitely,

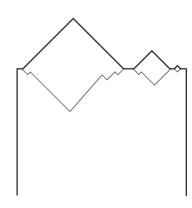
$$e^{3Ht}f(t) \sim e^{(3-c\Gamma H^{-4})Ht} \to \infty$$

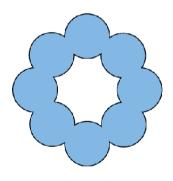
Bubble collisions

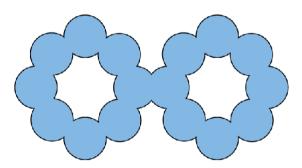
 Inevitable in eternal inflation (Infinite 4-volume inside past light-cone)



 Due to bubble collisions, true vacuum region ("pocket universe") which has non-trivial boundary topology may occur:



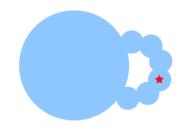




 We perform detailed study especially on interior geometry and causal structure; we take the thin-wall limit (in 3+1 dim);

Motivation for studying boundary topology

 Observational consequence: Identical objects on the sky (However, this is rare.)



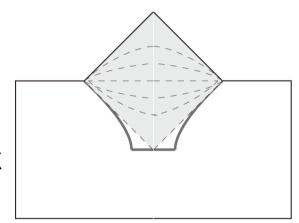
- Holographic description of eternal inflation
 FRW/CFT correspondence (Freivogel, Sekino, Susskind, Yeh, '06)
 - Dual theory: defined at the boundary (spatial infinity). (S^2 at the boundary of H^3 for the one bubble case) Importance of finding non-perturbative formulation:
 - "Definition" of de Sitter vacua
 - Mathematical framework for eternal inflation

FRW/CFT correspondence

(Freivogel, Sekino, Susskind, Yeh, '06)

Dual theory:

- Conformal field theory on S^2
- Contains 2D gravity (Liouville)
- (matter c) ~ (de Sitter entropy)
- The dual has 2 less dim than the bulk (Liouville plays the role of time)

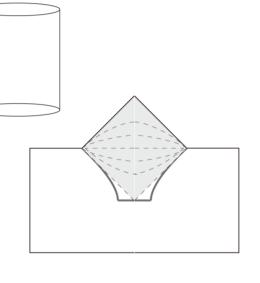


Evidence:

- -SO(3,1) symmetry
- Bulk correlators can be interpreted as CFT correlators.
- Energy momentum tensor has dimension 2.

Boundary geometry

- Difference with AdS/CFT:
 - In AdS space, boundary condition should be fixed ("cold" boundary).
 - In our FRW, boundary condition of graviton should be integrated ("warm" boundary).
 Reason: Universe is embedded in de Sitter.
 (c.f. super-horizon correlations in de Sitter)



- If there can be universes w/ non-trivial boundary topology (and if the boundary is accessible to a single observer), we should include them in the dual theory:
 - Sum over topologies of base space of CFT.

Plan of the talk

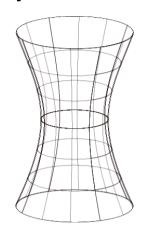
- Basic facts about bubble collisions
 - Two bubble collision: symmetries, assumptions on domain wall, causal structure, etc.
- Existence of non-trivial boundary topology
 - Heuristic argument: "Dust" wall approximation
 - Torus solution: sequence of collisions of radiation
 - "Coarse grained" smooth torus
- Multiple boundaries
- Implication for holographic duality

A bubble in de Sitter (CDL instanton)

• De Sitter space: hyperboloid in $\mathbb{R}^{4,1}$

$$-X_0^2 + X_1^2 + X_2^2 + X_3^2 + X_4^2 = \ell^2$$

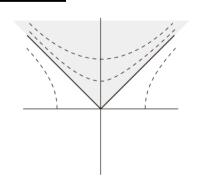
$$ds^2 = -dt^2 + \ell^2 \cosh^2(t/\ell) d\Omega_3^2$$

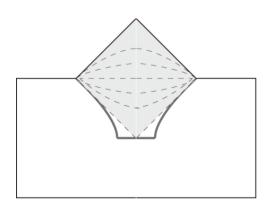


• <u>A bubble</u> (w/ zero vacuum energy, thin-wall limit; nucleated at t=0): plane at $X_4 = \text{const.} = \sqrt{\ell^2 - r_0^2}$ Preserves SO(3,1).

$$ds^2 = -dt^2 + t^2 dH_3^2$$

Part of Minkowski space Future asymptotics: "hat"

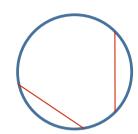




Collision of two bubbles

(Bousso, Freivogel, Yang, '07)

• Residual symmetry: SO(2,1) Two bubbles nucleated on the great circle (in the (X_3,X_4) plane)



• Parametrization of de Sitter w/ manifest H^2 :

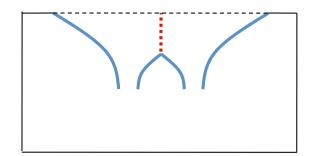
$$ds^{2} = -f^{-1}(t)dt^{2} + f(t)dz^{2} + t^{2}dH_{2}^{2}$$

$$f(t) = 1 + t^{2}/\ell^{2}, \quad (0 \le z \le 2\pi\ell)$$

$$\left(X_{a} = tH_{a} \ (a = 0, 1, 2), \quad X_{3} = \sqrt{t^{2} + \ell^{2}}\cos(z/\ell), \quad X_{4} = \sqrt{t^{2} + \ell^{2}}\sin(z/\ell)\right)$$

• Profile in the (t, z) space (H^2 is attached to each point):

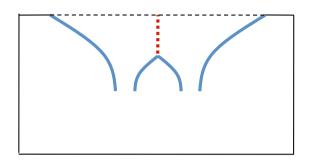
We want to find the interior geometry.



Finding interior geometry

• Flat space:

$$ds^2 = -dt^2 + dz^2 + t^2 dH_2^2$$



Assume a domain wall forms after collision (effectively).

Trajectory: $(t(\tau), z(\tau))$

Intrinsic geometry: $ds_{\mathrm{DW}}^2 = -d\tau^2 + R^2(\tau)dH_2^2$ $(R(\tau) = t(\tau))$

We patch another flat space across this domain wall.
 Israel junction condition:

$$K_{ab} - h_{ab}K = 8\pi G T_{ab}$$

 h_{ab} : induced metric on hypersurface

 K_{ab} : extrinsic curvature

Domain wall equation of state

- Domain wall: perfect fluid $T_b^a = (-\rho, p, p)$ Conservation: $\dot{\rho} = -2(\rho + p)(\dot{R}/R)$
- Dust wall (p=0): $(\rho R^2) = \text{const.}$
 - Energy density is diluted as R gets large.
 (This prevents gravitational collapse.)
- "Vacuum domain wall" $(\rho = -p)$: $\rho = \text{const.}$
 - Realized by a scalar kink. Produced in the collision of two bubbles of <u>different</u> vacua.
 - (We don't consider this in the later discussion of topologies, assuming there is only one kind of true vacuum.)

Solving the junction condition

• Junction condition:
$$\Delta K_{\tau}^{\tau} = -4\pi G(\rho + p)$$

$$\Delta K_1^1 = \Delta K_2^2 = -4\pi G\rho$$

• Extrinsic curvature:
$$\Delta K_1^1 = \frac{1}{2}g^{11}\partial_n g_{11} = \frac{\sqrt{\dot{t}^2 - 1}}{t}$$

• Energy density:
$$\rho = \rho_0/t^2$$
 (for dust wall)

- "Effective potential" for t: $\dot{t}^2 + V_{\text{eff}}(t) = 0$
 - For dust wall,

$$V_{\text{eff}}(t) = -1 - \frac{4\pi^2 G^2 \rho_0^2}{t^2}$$

As
$$t \to \infty$$
, $\dot{t} \to 1$, $\dot{z} \to 0$

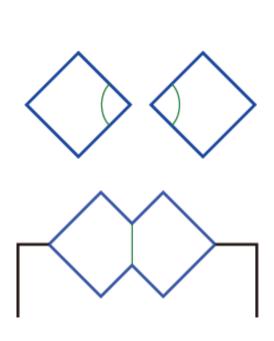
- $+ v_{\text{eff}}(t) = 0$
 - For vacuum domain wall,

$$V_{\rm eff}(t) = -1 - 4\pi^2 G^2 \rho t^2$$

As
$$t \to \infty$$
, $\dot{t} \sim \dot{z} \to \infty$

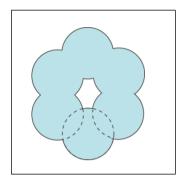
Causal structure

- <u>Dust wall case</u>: the geometry approaches empty open FRW (spatial geometry: H^3). (Right figure: DW seen in the H^3 slicing)
 - DW approaches minimal surface in H^3
 - A time-like observer can see the whole true vac. region.
- For the vacuum wall case,
 - Domain wall is "repelled from either side" (Vilenkin, Ipser, Sikivie, '84).
 - There are two time-like infinities.
 (Right figure: causal structure)



Existence of non-trivial topology (qualitative argument; dust wall assumption)

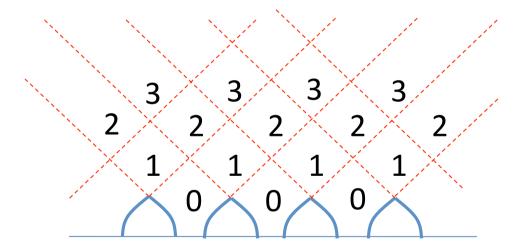
Future (conformal) infinity of de Sitter:
 A bubble cuts out a ball



- Interior geometry:
 - If dust walls don't intersect, local geometry around the wall will be the same as in the 2-bubble case.
 - Dust walls don't intersect if the boundary S^1 's don't.
- We can produce arbitrary genus without letting boundary S^1 's intersect with each other.
 - Smooth geometry with arbitrary boundary genus should exist.

Torus solution: sequence of collisions

- Special configuration preserving SO(2,1):
 Bubbles nucleated at t=0, along the great circle of S^3 with equal spacing.
- Assumption: At the collision, bubbles walls instantaneously annihilates, emitting a shell of radiation.



- Geometry behind the radiation is modified.
- Solve the geometry recursively.

Iteration of junction conditions

• Metric:

$$ds^{2} = -f(t)dt^{2} + f^{-1}(t)dz^{2} + t^{2}dH_{2}^{2}$$

 $f(t) = 1 + t^{2}/\ell^{2}$ (de Sitter)
 $f(t) = 1 - t_{n}/t \equiv f_{n}(t)$ (in region n ; t_{n} : const.)

Junction condition (consistency condition):

$$f_{n+2}(t_{*,n+2})f_n(t_{*,n+2}) = (f_{n+1}(t_{*,n+2}))^2$$

 $t_{*,n}$: time of the *n*-th collision

In the weakly curved limit (f ~1),

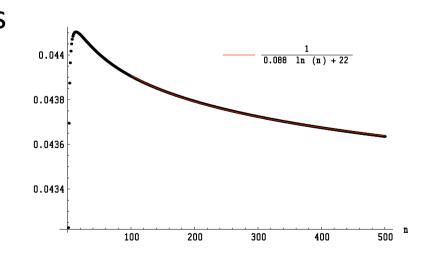
$$t_{n+2} - t_{n+1} = t_{n+1} - t_n$$
 \Rightarrow $t_n = nt_1 \sim n(\Delta z)^3/\ell^2$
 $t_{*,n} \sim n\Delta z$, (2\Delta z : initial separation)

Properties of the solution

In the weakly curved limit, deviation from flat space is

$$t_n/t_{n,*} \sim (\Delta z/\ell)^2$$

- In the case of many bubbles with fine spacing, interior geometry is close to flat. (This is because bubbles collide quickly and do not have much energy when they collide.)
- At late time, geometry approaches flat space logarithmically. (From 2nd order, or numerical analysis.)



Torus solution: "coarse grained" version

- We patch flat space with de Sitter across a (smooth) toroidal domain wall (symmetry: U(1) x U(1)).
- Interior (flat) metric ("bulk" of torus):

$$ds^{2} = -\gamma dt^{2} + t^{2}d\theta_{1}^{2} + dr_{2}^{2} + r_{2}^{2}d\theta_{2}^{2}$$
$$(0 \le \theta_{1}, \theta_{2} \le 2\pi; \ \gamma : \text{ const.})$$

Intrinsic geometry of DW:

$$ds_{\text{DW}}^2 = -d\tau^2 + r_1^2(\tau)d\theta_1^2 + r_2^2(\tau)d\theta_2^2$$

• To parametrize de Sitter with U(1) x U(1) sym, recall:

$$d\Omega_3^2 = d\alpha^2 + \sin^2 \alpha d\theta_1^2 + \cos^2 \alpha d\theta_2^2 \qquad (0 \le \alpha \le \pi/2)$$

Torus solution

Size of the two boundary circles:

$$r_1(\tau) = \frac{1}{\gamma} \left[\epsilon \sinh(\tau/\epsilon) + \sqrt{1 + \gamma^2} \sqrt{\ell^2 - \epsilon^2} \right]$$

 $r_2(\tau) = \epsilon \cosh(\tau/\epsilon)$

Meaning of parameters:

At $\tau = 0$ ("nucleation time"), $\dot{r}_2 = 0, r_2 = \epsilon$ (Many bubbles with size ϵ are nucleated along a circle with radius $r_1(0)$.)

 $\gamma \to 0$: Late nucleation, $\gamma \to \infty$: Nucleation at the minimal S^3

• Both circles grows to infinite size (except when $\gamma \to \infty$).

Asymptotic aspect ratio: $r_2/r_1 = \gamma$

Summary of our analysis so far

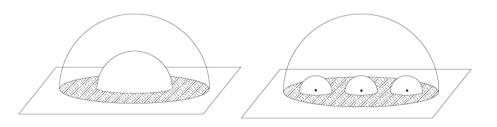
- For the torus case, we have constructed explicit geometry.
- Boundary with any genus will occur.

Interior geometry will be

$$ds^2 = -dt^2 + t^2 ds_{H/\Gamma}^2$$

 $H/\Gamma: H^3$ modded out by discrete element of isometry

Boundary of H/Γ can have arbitrary genus. (Krasnov, '00)

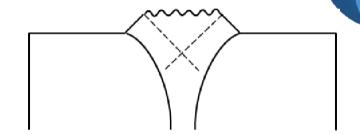


• A time-like observer can see the whole boundary (since orbifolding makes causal contact easier).

Multiple boundaries

Two spherical boundaries? (Kodama, Maeda, Sasaki, Sato, '82)
 Initial condition: "Shell" of bubbles
 (for simplicity, assume spherical sym.)

From Birkhoff's theorem,
 interior metric = Schwarzschild



- Singularity develops between two boundaries.
 (A time-like observer can see only one boundary.)
- Higher genus case: open question
 - Could there be multiple boundaries accessible to one observer? If there is, confusing in terms of dual theory. (Maldacena-Maoz, '04)

Implications for holographic duality

- Proposal for the dual theory (FSSY '06):
 - 2D gravity (Liouville field) coupled to a large number of matter ("super-critical")
 - (central charge) ~ (de Sitter entropy)
- We have to sum over genera of the base space, and integrate over the moduli (as in string perturbation).
 - We find peculiar behaviors compared to string theory.

Peculiarities in summing over topologies

Moduli dependence for the torus case:

- In the bulk, long thin torus is suppressed (we need many bubbles to produce it): $\sim \Gamma^{\tau_2}$ $(\tau_2 \equiv r_2/r_1)$
- In super-critical string, there are "pseudo-tachyons". They seem to cause divergence at $\tau_2 \to \infty$ (Aharony-Silverstein, Hellerman-Swanson, '06)

Nature of the genus expansion:

- "String coupling": We need at least two or three bubbles to increase genus by one: $g_s \sim \Gamma^k$ (k=2 or 3)
- The series may converge. Consider sum over bubbles (of the same size): $\sum \Gamma^n e^{bn}$ (b: order 1)

Conclusions

Summary

- There can be universe w/ arbitrary boundary genus.
- There could be multiple boundaries. (Spherical case: separated by singularity.)
- The dual theory should involve sum over genera of the base space.

Open questions

- Multiple boundaries (w/o singularity in bulk) exist?
- Interpretation of the moduli dependence
- Euclidean solution with non-trivial boundary topology?