A Stringy Mechanism for a Small Cosmological Constant

Henry Tye with Yoske Sumitomo

Institute for Advanced Study, Hong Kong University of Science and Technology Cornell University

> October 3, 2012 IPMU, Tokyo, Japan

イロン イヨン イヨン イヨン

æ

Hong Kong University of Science and Technology

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Very Small A

2/42

Institute for Advanced Study of HKUST

Yoske Sumitomo and Henry Tye

A Stringy Mechanism for a Very Small A

æ

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

This talk is based on work with Yoske Sumitomo :

```
arXiv:1204.5177 (JCAP 1208\ (2012)\ 032) and arXiv:1209.5086
```

Applied to : Large Volume Flux Compactification Scenario in Type IIB String Theory

in particular : M. Rummel and A. Westphal, arXiv:1107.2115

Also: A. Aazami and R. Easther, hep-th/0512102;
X. Chen, G. Shiu, Y. Sumitomo and S.-H.H. Tye, arXiv:1112.3338;
T. Bachlechner, D. Marsh, L. McAllister and T. Wrase, arXiv:1207.2763.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

Background

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

イロト イポト イヨト イヨト

3

 There is very strong evidence that we are living in a de-Sitter vacuum with a very small positive cosmological constant Λ,

$$\Lambda \sim +10^{-122} M_P^4$$

Why dark energy contributes 70% of the content of our universe ?

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

イロト イポト イヨト イヨト

2

 There is very strong evidence that we are living in a de-Sitter vacuum with a very small positive cosmological constant Λ,

$$\Lambda \sim +10^{-122} M_P^4$$

Why dark energy contributes 70% of the content of our universe ? Why not 99.9999999....999999% ?

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

イロト イポト イヨト イヨト

 There is very strong evidence that we are living in a de-Sitter vacuum with a very small positive cosmological constant Λ,

$$\Lambda \sim +10^{-122} M_P^4$$

- Why dark energy contributes 70% of the content of our universe ? Why not 99.9999999....999999% ?
- There is strong evidence that our universe has gone through an inflationary period, when the vacuum energy is below the Planck scale but much higher than the TeV scale.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

What is considered to be a natural explanation for the observed dark energy ?

Given the scale of the underlying theory, how the observed value emerges ?

E.g., In gravity, we have M_P , so we have to explain why

 $\Lambda \sim +10^{-122} M_P^4$

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

2

What is considered to be a natural explanation for the observed dark energy ?

Given the scale of the underlying theory, how the observed value emerges ?

E.g., In gravity, we have M_P , so we have to explain why

$$\Lambda \sim +10^{-122} M_P^4$$

• In another theory with a different scale, it must generate both M_P and Λ .

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

What is considered to be a natural explanation for the observed dark energy ?

Given the scale of the underlying theory, how the observed value emerges ?

E.g., In gravity, we have M_P , so we have to explain why

$$\Lambda \sim +10^{-122} M_P^4$$

In another theory with a different scale, it must generate both M_P and Λ.
 E.g., Quintessence: To start, one has to put Λ = 0. That is a big fine-tuning.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

What is considered to be a natural explanation for the observed dark energy ?

Given the scale of the underlying theory, how the observed value emerges ?

E.g., In gravity, we have M_P , so we have to explain why

$$\Lambda \sim +10^{-122} M_P^4$$

• In another theory with a different scale, it must generate both M_P and Λ .

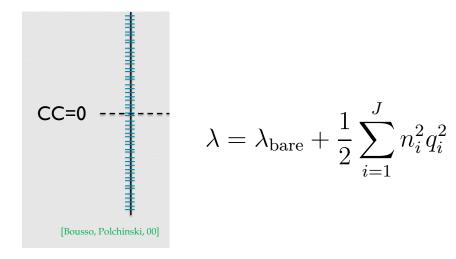
E.g., Quintessence: To start, one has to put $\Lambda=0.$ That is a big fine-tuning.

E.g., String theory has string scale M_S , so it must generate both M_P and Λ from M_S .

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

The situation in string theory : J types of 4-form fluxes $F^{i}_{\mu\nu\rho\sigma}$



Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

Pressing Question

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

String theory may have 10^{500} possible solutions. Surely many will have Λ at about the right value.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

イロト イポト イヨト イヨト

2

Pressing Question

String theory may have 10^{500} possible solutions. Surely many will have Λ at about the right value.

Why nature picks such a very small positive Λ ?

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

イロト イポト イヨト イヨト

Pressing Question

String theory may have 10^{500} possible solutions. Surely many will have Λ at about the right value.

Why nature picks such a very small positive Λ ?

- We present a possible Stringy Mechanism why a very small Λ may be preferred.
- We use a simple but non-trivial model to illustrate the main idea. We believe this is the direction to go.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

Applied to String Theory

Consider a string model with a set of moduli {u_i}. Treat all parameters {a_j} in the model as random variables with some probability distributions.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

- Consider a string model with a set of moduli {u_i}. Treat all parameters {a_j} in the model as random variables with some probability distributions.
- Solve V(a_j, u_i) for the meta-stable vacuum, so all {u_i} are determined in terms of {a_j}. Determine Λ(a_j) = V_{min}(a_j) in terms of {a_j}.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary

 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

- Consider a string model with a set of moduli {u_i}. Treat all parameters {a_j} in the model as random variables with some probability distributions.
- Solve V(a_j, u_i) for the meta-stable vacuum, so all {u_i} are determined in terms of {a_j}. Determine Λ(a_j) = V_{min}(a_j) in terms of {a_j}.
- Find the probability distribution P(Λ) for Λ(a_j) as we sweep through allowed {a_j}.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

(ロ) (同) (E) (E) (E)

- Consider a string model with a set of moduli {u_i}. Treat all parameters {a_j} in the model as random variables with some probability distributions.
- Solve V(a_j, u_i) for the meta-stable vacuum, so all {u_i} are determined in terms of {a_j}. Determine Λ(a_j) = V_{min}(a_j) in terms of {a_j}.
- Find the probability distribution P(Λ) for Λ(a_j) as we sweep through allowed {a_j}.
- As we shall see in examples, $P(\Lambda)$ tends to peak at $\Lambda = 0$.

Basic Idea The Large Volume Scenario in Type IIB String Theory Single Kähler Modulus Model Multi-Complex Structure Moduli Summary 10^{500} possible solutions with different Λ values. Pressing Question The Stringy Mechanism

- Consider a string model with a set of moduli {u_i}. Treat all parameters {a_j} in the model as random variables with some probability distributions.
- Solve V(a_j, u_i) for the meta-stable vacuum, so all {u_i} are determined in terms of {a_j}. Determine Λ(a_j) = V_{min}(a_j) in terms of {a_j}.
- Find the probability distribution P(Λ) for Λ(a_j) as we sweep through allowed {a_j}.
- As we shall see in examples, $P(\Lambda)$ tends to peak at $\Lambda = 0$.
- It is simpler to find the value w₀(a_k) of the superpotential W(a_k, u_p) at the supersymmetric solution; then we see that P(w₀) tends to peak at w₀ = 0 as well.

Introduction
Basic IdeaBasic property
P(z) of $z = x_1 x_2$ and $z = x_1 x_2 x_3$
P(z)The Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus Model
Multi-Complex Structure Moduli
SummaryBasic property
<math>P(z) of $z = x_1 x_2$ and $z = x_1 x_2 x_3$
P(z)Non-interacting case: e.g., Sum of terms
Toy Model

This peaking behavior of $P(\Lambda)$ at $\Lambda = 0$ is quiet generic.

The Basic Idea is very simple :

It is based on the properties of the probability distribution of functions of random variables.

Does Λ has the right functional form ? Do the random parameters have the right range and distribution ?

イロト イポト イヨト イヨト

2

Introduction
Basic IdeaBasic property
P(z) of $z = x_1 x_2$ and $z = x_1 x_2 x_3$
P(z)The Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus Model
Multi-Complex Structure Moduli
SummaryBasic property
P(z) of $z = x_1 x_2$ and $z = x_1 x_2 x_3$
P(z)
Non-interacting case: e.g., Sum of terms
Toy Model

This peaking behavior of $P(\Lambda)$ at $\Lambda = 0$ is quiet generic.

The Basic Idea is very simple :

It is based on the properties of the probability distribution of functions of random variables.

Does Λ has the right functional form ? Do the random parameters have the right range and distribution ?

An example :

Consider a set of random variables x_i (i = 1, 2, ..., n). Let the probability distribution of each x_i be uniform in the range [-1, +1]. What is the probability distribution of their product z ?

イロト イポト イヨト イヨト

Introduction
Basic IdeaBasic IdeaThe Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus Model
Multi-Complex Structure Moduli
SummaryBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$
P(z)Non-interacting case: e.g., Sum of terms
Toy Model

Suppose we have *n* random variables x_i ($i = 1, 2, \dots, n$), each with probability distribution $P_i(x_i)$, where $\int dx_i P_i(x_i) = 1$. Let

$$z = f(x_1, x_2, \cdots, x_n)$$

Then the probability distribution P(z) of z is given by

$$P(z) = \int dx_1 P_1(x_1) \, dx_2 P_2(x_2) \cdots dx_n P_n(x_n) \, \delta(f(x_i) - z)$$

$$\int P(z)dz = 1$$

so the probability distribution P(z) of z can always be properly normalized, even when P(z) diverges at z = 0 and/or elsewhere.

イロン イ部ン イヨン イヨン 三日

 $z = x_1 x_2$

Basic property P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ P(z)Non-interacting case: e.g., Sum of terms Toy Model

Let x_j to have a uniform distribution $P(x_j) = 1$ between 0 and 1. What is the probability distribution P(z) of the product $z = x_1x_2$?

Introduction

$$P(z) = \int_0^1 dx_1 \int_0^1 dx_2 \, \delta(x_1 x_2 - z) = \int_z^1 dx_1 \frac{1}{x_1} = \ln\left(\frac{1}{z}\right)$$

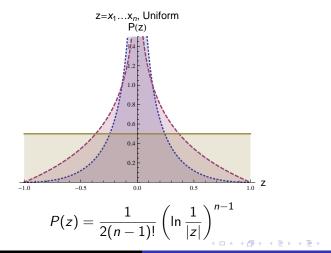
for $0 \le z \le 1$.

(ロ) (同) (E) (E) (E)

Basic property P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ P(z)Non-interacting case: e.g., Sum of terms Toy Model

Probability distribution of $z = x_1x_2$ and $z = x_1x_2x_3$

Introduction



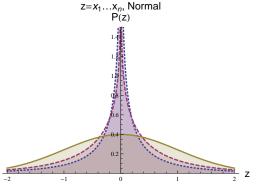


Figure: The product distribution P(z) is for $z = x_1$ (solid brown curve for normal distribution), $z = x_1x_2$ (red dashed curve), and $z = x_1x_2x_3$ (blue dotted curve), respectively. In general, the curves are given by the Meijer-G function.

イロト イポト イヨト イヨト

Introduction
Basic IdeaBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ The Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus Model
Multi-Complex Structure Moduli
SummaryBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ Volume Scenario in Type IIB String Theory
Single Kähler Modulus Model
Multi-Complex Structure Moduli
SummaryBasic property
P(z) non-interacting case: e.g., Sum of terms
Toy Model

Basic Properties

Let x_j to have a uniform distribution $P(x_j) = 1/L$ between 0 and L. What is the probability distribution P(z) of the product $z = x_1x_2$?

$$P(z) = \int_0^L \frac{dx_1}{L} \int_0^L \frac{dx_2}{L} \,\delta(x_1 x_2 - z) = \frac{1}{L^2} \ln\left(\frac{L^2}{z}\right)$$
for $0 \le z \le L^2$.

・ロン ・回と ・ヨン ・ヨン

æ

Introduction
Basic IdeaBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ The Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus ModelBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ Multi-Complex Structure Moduli
SummaryNon-interacting case: e.g., Sum of terms
Toy Model

Basic Properties

Let x_j to have a uniform distribution $P(x_j) = 1/L$ between 0 and L. What is the probability distribution P(z) of the product $z = x_1x_2$?

$$P(z) = \int_0^L \frac{dx_1}{L} \int_0^L \frac{dx_2}{L} \,\delta(x_1 x_2 - z) = \frac{1}{L^2} \ln\left(\frac{L^2}{z}\right)$$
for $0 \le z \le L^2$.

For $z = x_1 x_2 \dots x_n$, we have

$$\langle z^N \rangle = \langle x_1^N \rangle \langle x_2^N \rangle \cdots \langle x_n^N \rangle$$

イロト イポト イヨト イヨト

2

Introduction
Basic IdeaBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ The Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus ModelBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ Multi-Complex Structure Moduli
SummaryNon-interacting case: e.g., Sum of terms
Toy Model

Basic Properties

Let x_j to have a uniform distribution $P(x_j) = 1/L$ between 0 and L. What is the probability distribution P(z) of the product $z = x_1x_2$?

$$P(z) = \int_0^L \frac{dx_1}{L} \int_0^L \frac{dx_2}{L} \,\delta(x_1 x_2 - z) = \frac{1}{L^2} \ln\left(\frac{L^2}{z}\right)$$
for $0 \le z \le L^2$.

For $z = x_1 x_2 \dots x_n$, we have

$$\langle z^N \rangle = \langle x_1^N \rangle \langle x_2^N \rangle \cdots \langle x_n^N \rangle$$

Since $\langle x_j \rangle = \int_0^L dx_j (x_j/L) = L/2$, so $\langle z \rangle = (L/2)^n$.

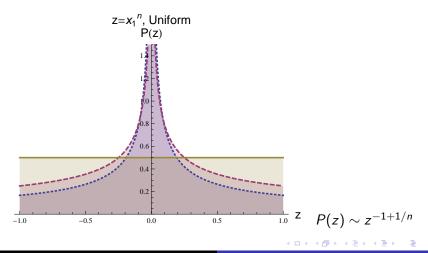
イロト イポト イヨト イヨト

2

Basic property P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ P(z)Non-interacting case: e.g., Sum of terms Toy Model

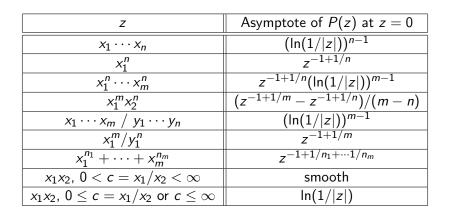
Probability distribution P(z) for $z = x_1^n$

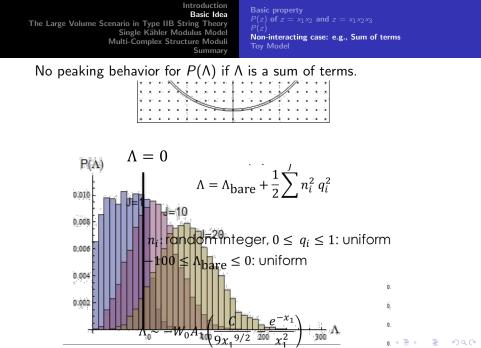
Introduction



Basic property P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ P(z)Non-interacting case: e.g., Sum of terms Toy Model

Probability distribution P(z)





Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Very Small A 18/42

Introduction
Basic IdeaBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$
P(z)The Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus Model
Multi-Complex Structure Moduli
SummaryBasic property
<math>P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$
P(z)
Non-interacting case: e.g., Sum of terms
Toy Model

<ロ> (四) (四) (三) (三) (三)

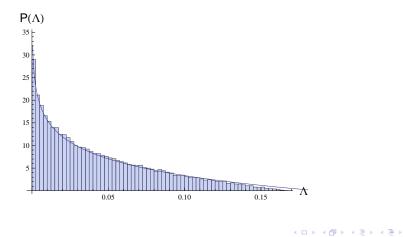
Introduction
Basic IdeaBasic property
P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$
P(z)The Large Volume Scenario in Type IIB String Theory
Single Kähler Modulus Model
Multi-Complex Structure Moduli
SummaryBasic property
<math>P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$
P(z)Non-interacting case: e.g., Sum of terms
Toy Model

$$V(\phi) = a\phi - \frac{b}{2}\phi^2 + \frac{c}{3!}\phi^3$$

If ϕ is arbitrary $\rightarrow P(V = \Lambda)$ is smooth at $\Lambda = 0$.

Preference for Small Λ

Basic property P(z) of $z = x_1x_2$ and $z = x_1x_2x_3$ P(z)Non-interacting case: e.g., Sum of terms **Toy Model**



Introduction

æ

$$V = e^{K} \left(K^{I\bar{J}} D_{I} W D_{\bar{J}} \bar{W} - 3|W|^{2} \right),$$

$$K = -2 \ln(\mathcal{V} + \hat{\xi}/2) - \ln(S + \bar{S}) - \sum_{j} \ln(U_{j} + \bar{U}_{j})$$

$$\mathcal{V} = VoI/\alpha'^{3} = \gamma_{1}(T_{1} + \bar{T}_{1})^{3/2} - \sum_{i=2} \gamma_{i}(T_{i} + \bar{T}_{i})^{3/2},$$

$$\hat{\xi} = -\frac{\zeta(3)\chi(M)}{4\sqrt{2}(2\pi)^{3}} \left(\frac{S + \bar{S}}{2}\right)^{3/2},$$

$$W = W_{0}(U_{i}, S) + \sum_{i=1}^{N_{K}} A_{i}e^{-a_{i}T_{i}},$$

$$W_{0}(U_{i}, S) = c_{1} + \sum_{j} b_{j}U_{j} - s(c_{2} + \sum_{j} d_{j}U_{j})$$

æ

Typical Manifolds Studied

$$\chi(M) = 2(h^{1,1} - h^{2,1})$$

Manifold	$N_{K}=h^{1,1}$	$N_{cs} = h^{2,1}$	χ
$\mathcal{P}^{4}_{[1,1,1,6,9]}$	2	272	-540
\mathcal{F}_{11}	3	111	-216
\mathcal{F}_{18}	5	89	-168
$\mathcal{CP}^{4}_{[1,1,1,1,1]}$	1	$\mathcal{O}(100)$	$\mathcal{O}(-200)$

・ロト ・日本 ・モト ・モト

æ

 Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.

イロト イヨト イヨト イヨト

Approach

- Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.
- ▶ Introduce the dilation *S*, $N_K = h^{1,1}$ number of Kähler moduli T_k , and $N_{cs} = h^{2,1}$ number of complex structure moduli U_i .

(日) (同) (E) (E) (E)

Approach

- Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.
- ▶ Introduce the dilation *S*, $N_K = h^{1,1}$ number of Kähler moduli T_k , and $N_{cs} = h^{2,1}$ number of complex structure moduli U_i .
- All parameters introduced are treated as random variables with some probability distributions.

(日) (同) (E) (E) (E)

Approach

- Consider the above simplified Large Volume Scenario (LVS) in Type II B string theory.
- ▶ Introduce the dilation *S*, $N_K = h^{1,1}$ number of Kähler moduli T_k , and $N_{cs} = h^{2,1}$ number of complex structure moduli U_i .
- All parameters introduced are treated as random variables with some probability distributions.
- ▶ Find the supersymmetric solution w₀ = W₀|_{min} of W₀ for the complex structure moduli and insert this w₀ into V to stabilize the Kähler moduli.
- ► The functional form of Λ = V_{min} (and w₀ = W₀|_{min}) in terms of the parameters are non-trivial.

Single Kähler Modulus Model

- $T_1 = t_1 + i\tau_1$, with $\tau_1 = 0$
- Consider the superpotential

$$W = W_0 - A_1 e^{-x}$$

where W_0 and A are (random) parameters and $x = a_1 t_1$ is the Kähler modulus.

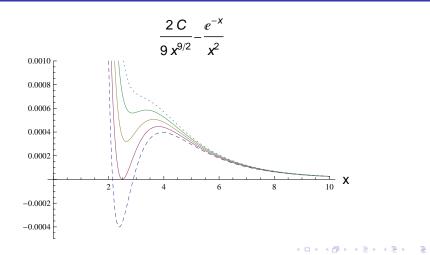
• A stable vacuum can exist at $x = x_m$

$$\Lambda = V_{min} = BW_0A_1\hat{\xi}(x_m - 2.5)$$

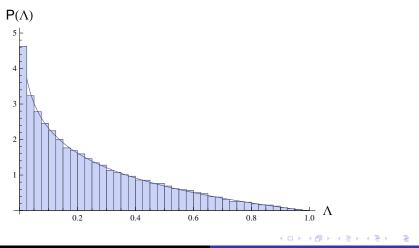
where B is a constant.

• Let us treat W_0 and A_1 as random variables where $W_0/A_1 \sim C$ is constrained: $3.65 \lesssim C \lesssim 3.89$, $2.50 \le x_m \lesssim 3.11$

The form of V(x) with $W_0A_1 \leq 0$



$P(\Lambda) \propto \ln \left(1/|\Lambda| ight)$ at $\Lambda \sim 0$



K and W_0 Supersymmetric Solution Probability Distribution $P(w_0)$ Probability Distribution $P(\Lambda)$ $P(\Lambda)$ as a function of $h^{2,1} = N$ $P(\Lambda)$ as a function of $h^{1,1}$

Multi-Complex Structure Moduli case

$$egin{aligned} &\mathcal{K} = -2\ln(\mathcal{V} + \hat{\xi}/2) - \ln(S + ar{S}) - \sum_{j}\ln(U_{j} + ar{U}_{j}) \ &W = W_{0}(U_{i},S) + \sum_{i=1}^{N_{K}}A_{i}e^{-a_{i}T_{i}} \ &W_{0}(U_{i},S) = c_{1} + \sum_{j}b_{j}U_{j} - s(c_{2} + \sum_{j}d_{j}U_{j}) \end{aligned}$$

Now consider the case with N_{cs} complex structure moduli U_i + the dilaton S + 1 Kähler modulus x. We solve for U_i and S at the supersymmetric point and then insert the resulting $w_0 = W_{0,min}$ into the Kähler uplift case to solve for x. There are 2n + 6 parameters.

Introduction	K and W_0
Basic Idea	Supersymmetric Solution
The Large Volume Scenario in Type IIB String Theory	Probability Distribution $P(w_0)$
Single Kähler Modulus Model	Probability Distribution $P(\Lambda)$
Multi-Complex Structure Moduli	$P(\Lambda)$ as a function of $h^{2,1} = N$
Summary	$P(\Lambda)$ as a function of $h^{1,1}$

$$D_{S}W_{0} = \partial_{S}W_{0} + K_{S}W_{0} = 0, \qquad D_{i}W_{0} = 0$$
$$W_{0}(u_{i}, s) = c_{1} + \sum_{j} b_{j}u_{j} - s(c_{2} + \sum_{j} d_{j}u_{j})$$

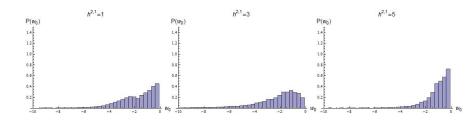
Solution :

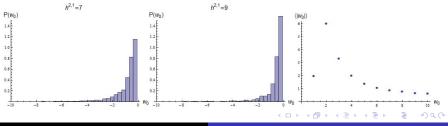
$$(N_{cs} - 2)\frac{c_1 + sc_2}{c_1 - sc_2} = \sum_{i=1}^{N_{cs}} \frac{b_i + sd_i}{b_i - sd_i}$$
$$w_0 = W_0|_{\min} = \frac{2(c_1 + sc_2)\Pi_1^n(b_i - sd_i)}{\sum_i (b_i + sd_i)\Pi_{j \neq i}(b_j - sd_j)}$$

Then insert w_0 into the V for the Kähler moduli and solve :

$$\Lambda = \frac{e^{-5/2}}{9} \left(\frac{2}{5}\right)^2 \frac{-w_0 a_1^3 A_1}{\gamma_1^2} \left(x_m - \frac{5}{2}\right)$$

Introduction	K and W_0
Basic Idea	Supersymmetric Solution
The Large Volume Scenario in Type IIB String Theory	Probability Distribution $P(w_0)$
Single Kähler Modulus Model	Probability Distribution $P(\Lambda)$
Multi-Complex Structure Moduli	$P(\Lambda)$ as a function of $h^{2,1} = N$
Summary	$P(\Lambda)$ as a function of $h^{1,1}$

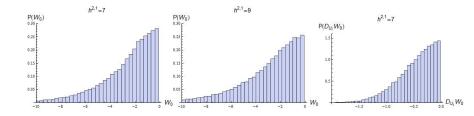


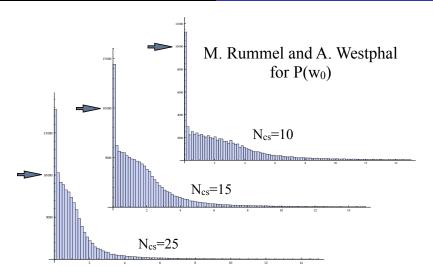


Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Very Small A 29/42

 $\begin{array}{c} \mbox{Introduction} & K \mbox{ and } W_0 \\ \mbox{Supersymmetric Solution} \\ \mbox{Supersymmetric Solution} & Probability Distribution $P(w_0)$ \\ \mbox{Supersymmetric Solution} & Probability Distribution $P(w_0)$ \\ \mbox{Probability Distrbution $P(w_0)$ \\ \mbox{Probability D$

If $P(W_0)$ and $P(D_iW_0)$ are truly independent :



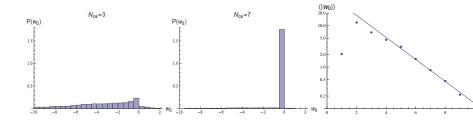


Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Very Small A 31/42

S Q (

K and W_0 Supersymmetric Solution **Probability Distribution** $P(w_0)$ Probability Distribution $P(w_0)$ $P(\Lambda)$ as a function of $h^{2,1} = N$ $P(\Lambda)$ as a function of $h^{1,1}$

$$u_i = w_0/2b_i(1-sr_i)$$
 leads to $b_i = -f(N_{cs})$



・ロト ・回ト ・ヨト ・ヨト

æ

Introduction	K and W_0
Basic Idea	Supersymmetric Solution
The Large Volume Scenario in Type IIB String Theory	Probability Distribution $P(w_0)$
Single Kähler Modulus Model	Probability Distribution $P(\Lambda)$
Multi-Complex Structure Moduli	$P(\Lambda)$ as a function of $h^{2,1} = N$
Summary	$P(\Lambda)$ as a function of $h^{1,1}$

$$V = e^{K} \left(K^{I\bar{J}} D_{I} W D_{\bar{J}} \overline{W} - 3 |W|^{2} \right) \sim \frac{-w_{0} a_{1}^{3} A_{1}}{2\gamma_{1}^{2} 2^{N_{cs}+1} s \prod u_{i}} \left(\frac{2C}{9x_{1}^{9/2}} - \frac{e^{-x_{1}}}{x_{1}^{2}} \right)$$

$$C = \frac{-27w_0\hat{\xi}a_1^{3/2}}{64\sqrt{2}\gamma_1A_1}$$
$$x_1 = a_1t_1$$

For $\Lambda = V_{min} \ge 0$ (with b_i fixed), $\langle \Lambda \rangle \sim e^{-2.56 h^{2,1} + 7.40}$ For $h^{2,1} = N_{cs} = 113$, we'll have a small enough Λ .

(本間) (本語) (本語) (語)

Introduction	K and W_0
Basic Idea	Supersymmetric Solution
The Large Volume Scenario in Type IIB String Theory	Probability Distribution $P(w_0)$
Single Kähler Modulus Model	Probability Distribution $P(\Lambda)$
Multi-Complex Structure Moduli	$P(\Lambda)$ as a function of $h^{2,1} = N$
Summary	$P(\Lambda)$ as a function of $h^{1,1}$

$$V = e^{K} \left(K^{I\bar{J}} D_{I} W D_{\bar{J}} \overline{W} - 3 |W|^{2} \right) \sim \frac{-w_{0} a_{1}^{3} A_{1}}{2\gamma_{1}^{2} 2^{N_{cs}+1} s \prod u_{i}} \left(\frac{2C}{9x_{1}^{9/2}} - \frac{e^{-x_{1}}}{x_{1}^{2}} \right)$$

$$C = \frac{-27w_0\hat{\xi}a_1^{3/2}}{64\sqrt{2}\gamma_1A_1}$$
$$x_1 = a_1t_1$$

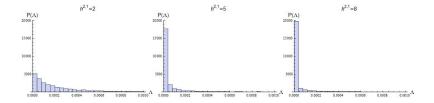
For $\Lambda = V_{min} \ge 0$ (with b_i fixed), $\langle \Lambda \rangle \sim e^{-2.56 h^{2,1} + 7.40}$ For $h^{2,1} = N_{cs} = 113$, we'll have a small enough Λ .

However, for larger $h^{2,1}$, the drop of $\langle \Lambda \rangle$ slows down appreciably. Pointed out to us by Rummel and Westphal

K and W_0 Supersymmetric Solution Probability Distribution $P(w_0)$ Probability Distribution $P(\Lambda)$ P(Λ) as a function of $h^{2,1} = N$ $P(\Lambda)$ as a function of $h^{1,1}$

$P(\Lambda)$ as a function of $h^{2,1}$

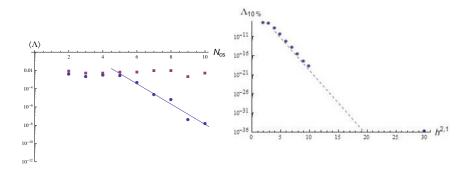
Imposing the conditions $V_{barrier} \leq 1$, s > 1 and $u_i \geq 0$, for meta-stable vacua :



イロト イヨト イヨト イヨト

Introduction	K and W_0
Basic Idea	Supersymmetric Solution
The Large Volume Scenario in Type IIB String Theory	Probability Distribution $P(w_0)$
Single Kähler Modulus Model	Probability Distribution $P(\Lambda)$
Multi-Complex Structure Moduli	$P(\Lambda)$ as a function of $h^{2,1} = N$
Summary	$P(\Lambda)$ as a function of $h^{1,1}$

 $P(\Lambda)$ is sharply peaked at $\Lambda = 0$ but with a long tail. So we ask : what is the cut-off $\Lambda_{10\%}$ if $\int_{0}^{\Lambda_{10\%}} P(\Lambda) d\Lambda = 10\%$?



-

K and W_0 Supersymmetric Solution Probability Distribution $P(w_0)$ Probability Distribution $P(\Lambda)$ $P(\Lambda)$ as a function of $h^{2,1} = N$ $P(\Lambda)$ as a function of $h^{1,1}$

$<\Lambda> versus \ \Lambda_{10\%}$

$$\int_0^{\Lambda_{10\%}} P(\Lambda) \, d\Lambda = 10\%$$

That is, there is a 10% chance that $\Lambda_{10\%} \geq \Lambda \geq 0.$

At
$$\mathit{h}^{2,1}=10$$
, $<\Lambda>\sim 10^{-8}$ while $\Lambda_{10\%}\sim 10^{-19}$

At
$$h^{2,1}=$$
 30, $<\Lambda>\sim 10^{-11}$ while $\Lambda_{10\%}\sim 10^{-36}$

That is, for 30 complex structure moduli, there is a 10% chance that Λ is smaller than 10^{-36} .

イロン 不同と 不同と 不同と

 Introduction
 K and W_0

 Basic Idea
 Supersymmetric Solution

 The Large Volume Scenario in Type IIB String Theory
 Probability Distribution $P(w_0)$

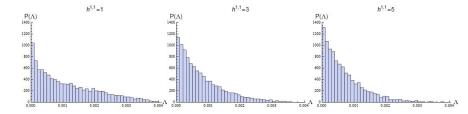
 Single Kähler Modulus Model
 Probability Distribution $P(\Lambda)$

 Multi-Complex Structure Moduli
 $P(\Lambda)$ as a function of $h^{2,1} = N$

 Summary
 $P(\Lambda)$ as a function of $h^{1,1}$

$P(\Lambda)$ as a function of $h^{1,1}$

When W_0 and A_i in the model are treated as random variables with uniform distributions in the range [-1, 1]:

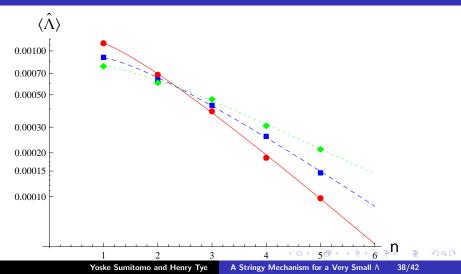


 $P(\Lambda = 0)$ is increasing (slowly) as $h^{1,1}$ increases.

イロト イポト イヨト イヨト

K and W_0 Supersymmetric Solution Probability Distribution $P(w_0)$ Probability Distribution $P(\Lambda)$ $P(\Lambda)$ as a function of $h^{2,1} = N$ $P(\Lambda)$ as a function of $h^{1,1}$

Expectation value of Λ with peaking W_0



Expectation value of Λ with peaking W_0

$$\begin{split} \langle |\Lambda| \rangle_{N_{K}=1} = & 0.00251 n^{0.436} e^{-0.791 n}, \\ \langle |\Lambda| \rangle_{N_{K}=2} = & 0.00170 n^{0.457} e^{-0.633 n}, \\ \langle |\Lambda| \rangle_{N_{K}=3} = & 0.00125 n^{0.342} e^{-0.464 n}. \end{split}$$

If the parameters A_i for the Kähler moduli are also peaked, as expected, then we need a lot less moduli.

イロト イポト イヨト イヨト

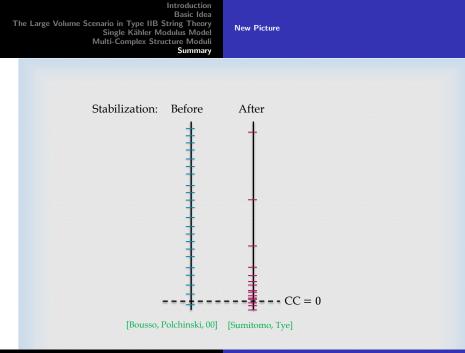
New Picture

Summary

- At high vacuum energies, no meta-stable vacua (because most extrema are unstable)
- At very low vacuum energies, meta-stable vacua begin to appear

イロン イヨン イヨン イヨン

æ



New Picture

Summary and Remarks

- At high vacuum energies, no stable vacua (because most extrema are unstable)
- At very low vacuum energies, meta-stable vacua begin to appear

Technical questions to be further studied :

- What is the back-reaction due to SUSY breaking ?
- What about higher (α' and loop) corrections ?
- How about the cosmological light moduli problem ?

The picture is very encouraging: many directions to be explored.

イロト イポト イヨト イヨト