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The Gauge/Bethe Correspondence
Relates susy gauge theories in 2d/4d to (quantum) integrable 
systems.

The susy vacua of the gauge theory correspond to a sector of 
the Bethe spectrum of the spin chain.

Correspondence works for all Bethe solvable integrable 
models.

Integrable model: spectrum determined by Bethe equations.
Gauge theory: ground states determined by eff. twisted 
superpotential.

Generators of chiral ring correspond to commuting 
Hamiltonians. Nekrasov, Shatashvili
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General case: quiver gauge theories
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Figure 2: Example quiver diagram for the Gauge/Bethe correspondence. Gauge groups are
labeled in black, matter fields in blue, the corresponding twisted masses in red.

3.3 The Dictionary

The main statement of [10, 11] is that the effective twisted superpotential �Weff(σ) can be
identified with the Yang–Yang counting function Y(λ), once the parameters of both theories
are properly matched. In this section, finally, we give the precise dictionary between the
quantities of the N = (2, 2) gauge theory and the integrable systems we have introduced.

The first observation is that the equation (2.7) for the vacua of the gauge theory and
the Bethe ansatz equation (3.25) for the rapidities have the same form. Most properties of
the gauge theory are determined by the symmetry group K of the integrable system. The
sector with particle numbers {Na}r

a=1 for each species leads to a product gauge group of
the form ∏r

a=1 U(Na). This results in a quiver gauge theory with r nodes, where the node a

carries the gauge group U(Na). Each effective length La gives rise to La fundamentals and La

anti–fundamental fields being attached to node a. The twisted masses of the bifundamental
and adjoint fields can be read off from the Cartan matrix of K. In the quiver diagram, we
only draw those lines between nodes a, b which correspond to a non–zero entry C

ab (i.e. to
non–zero twisted mass). We are thus lead to a quiver diagram of the type shown in Figure 2.
The twisted masses of the k–th fundamental and anti–fundamental field at node a are given
by the weight of the representation of the symmetry group K that the position k in the chain
is carrying, plus the possible inhomogeneity at position k. The boundary conditions for
closed spin chains, which are encoded in the ϑ̂a, enter the FI terms of the gauge theory.5

The Coulomb branch only depends on the effective twisted superpotential and is not
affected by the presence of an F–term. Nevertheless, in general the superpotential will break
(part of) the global symmetries which results in constraints on the possible values of the
twisted masses. These constraints are to be compared with those that come from the theory
of representations of the symmetry group K on the integrable model side (e.g. the Cartan
matrix containing only integer entries, or the allowed values for the highest weights).

All the relevant parameters and their matching are collected in Table 1.

5Periodic spin chains give rise to U(N) gauge groups, while open chains result in SO(N) or Sp(N) gauge
groups, depending on the boundary condition. The boundary conditions for open spin chains are not described
by ϑ̂a–parameters, which corresponds to the fact that the SO(N) and Sp(N) groups do not have a central
U(1)–factor and thus have no FI–terms.
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gauge theory integrable model

number of nodes in the

quiver
r r rank of the symmetry group

gauge group at a–th node U(Na) Na number of particles of species a
effective twisted

superpotential

�Weff(σ) Y(λ) Yang–Yang function

equation for the vacua e2πd �Weff = 1 e2πıdY = 1 Bethe ansatz equation

flavor group at node a U(La) La effective length for the species a
lowest component of the

twisted chiral superfield
σ(a)

i λ(a)
i rapidity

twisted mass of the

fundamental field
�mf(a)

k
ı
2
Λa

k + ν(a)
k

highest weight of the represen-

tation and inhomogeneity

twisted mass of the

anti–fundamental field
�mf̄

(a)
k

ı
2
Λa

k − ν(a)
k

highest weight of the represen-

tation and inhomogeneity

twisted mass of the

adjoint field
�madj(a) ı

2
Caa diagonal element of the Cartan

matrix

twisted mass of the

bifundamental field
�mb(ab) ı

2
Cab non–diagonal element of the

Cartan matrix

FI–term for U(1)–factor

of gauge group U(Na)
τa ϑ̂a boundary twist parameter for

particle species a

Table 1: Dictionary in the Gauge/Bethe correspondence.

3.4 Example: tJ model

The tJ model [24] describes a system of electrons on a lattice with a Hamiltonian that

describes nearest–neighbor hopping (with coupling t) and spin interactions (with coupling

J). Consider a lattice of length L with periodic boundary conditions. Each site can be either

free (◦) or occupied by a spin up (↑) or down (↓) electron. Excluding double occupancy, the

Hilbert space at each point k is:

Hk = C(1|2)
, (3.27)

which corresponds to the fundamental representation of sl(1|2). It is convenient to introduce

anticommuting creation–annihilation pairs c†

k,s, ck,s, s = { ↑, ↓ } at each site, acting as

|s�k = c†

k,s |◦�k , for s = { ↑, ↓ }, (3.28)

where |◦�k is the vacuum, annihilated by ck,s. Let nk,s = c†

k,sck,s be the number of s electrons

at position k and nk = nk,↑ + nk,↓. We can further introduce sl(2) spin operators at each site:

S−
k = c†

k,↑ck,↓ , S+
k = c†

k,↓ck,↑ , Sz
k =

1

2

�
nk,↑ − nk,↓

�
. (3.29)

15

U(La) U(Lb)

U(Na) U(Nb)
ı

2 Λa

k
± ν

(a)
k

ı

2 Λb

k
± ν

(b)
k

ı

2 C
aa

ı

2 C
ab

ı

2 C
ba

ı

2 C
bb

Q
a

k
, Q

a

k

Φa

B
ab

B
ba

Figure 2: Example quiver diagram for the Gauge/Bethe correspondence. Gauge groups are
labeled in black, matter fields in blue, the corresponding twisted masses in red.
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by the weight of the representation of the symmetry group K that the position k in the chain
is carrying, plus the possible inhomogeneity at position k. The boundary conditions for
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The Coulomb branch only depends on the effective twisted superpotential and is not
affected by the presence of an F–term. Nevertheless, in general the superpotential will break
(part of) the global symmetries which results in constraints on the possible values of the
twisted masses. These constraints are to be compared with those that come from the theory
of representations of the symmetry group K on the integrable model side (e.g. the Cartan
matrix containing only integer entries, or the allowed values for the highest weights).

All the relevant parameters and their matching are collected in Table 1.

5Periodic spin chains give rise to U(N) gauge groups, while open chains result in SO(N) or Sp(N) gauge
groups, depending on the boundary condition. The boundary conditions for open spin chains are not described
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The Big Picture

For the integrable system, all N magnon sectors must be 
considered together.

Yet, there is evidence that it would make sense to do so.
Study the simplest example of the spin 1/2 XXX spin chain 
(Heisenberg model).

This is usually not done for U(N) gauge theories with 
different N.

The low energy limit of the corresponding gauge theory is 
given by the NLSM with target space the cotangent bundle 
of Gr(N,L).

Gr(N,L) = {W ⊂ CL|dimW = N} ,
T ∗Gr(N,L) = {(X,W ),W ∈ Gr(N,L), X ∈ End(CL)|X(CL) ⊂ W,X(W ) = 0}

U(1)U(2)U(3)

Its ground states are given by the cohomology of T*Gr(N,L)



L=4

1 2 430

E

N

H∗[T
∗Gr(1, 4)] � V2

irreps of su(2)

f

e

symmetry N, L−N

Gr(1, 4), Gr(3, 4)

Grassmannian 
duality!

The Big Picture

Study the spectrum of L=4 spin 1/2 XXX spin chain:

The Gauge/Bethe correspondence relates gauge theories 
with different gauge groups!



A Brane Realization

The symmetry of the integrable model becomes manifest in the 
D brane set up in the limit of coincident NS5 branes.

T S

NS5 NS5

D2

NS5 NS5

D1

D5 D5

F1

su(2)

In the last configuration, the fundamental strings are charged 
under the enhanced symmetry        for coinciding D5 branes.

Realize 2d gauge theories of the correspondence in string 
theory.



Twisted masses from bulk

1 Introduction

In this article, we study the low energy effective gauge theory describing the motions
of a stack of D2–branes extended in the x0, x1, x2 directions. Our aim is to give SUSY-
preserving real masses to the fields describing the motions of the D2–branes in the
directions x4, . . . , x7. We will do so by placing the D2–branes into a closed string back-
ground corresponding to the T–dual of a supersymmetric NS fluxbrane [1–7]. We will
point out that the fluxbrane is the string theory realization of an Ω–deformation [8–13] of
flat space in the directions x4, . . . , x7, where the deformation parameters fulfill ε1 = −ε2.

Our strategy is as follows. The (2 + 1)–dimensional gauge theory with real mass
terms that we consider can be understood as coming from the reduction of (3 + 1)–
dimensional gauge theories with Wilson line boundary conditions for a global symmetry.
This boundary condition in turn has a natural string theory interpretation in terms of
D3–branes embedded in flat space with discrete identifications. Such backgrounds have
been rediscovered a number of times, starting from the work of Melvin [1], and have
taken different names, such as fluxbranes or Ω–deformed flat space. Since the string theory
realization of the reduction from 3+1 to 2+1 dimensions can be achieved via a T–duality
in a direction parallel to the D3–brane, we can give a string theory construction of the real
mass in terms of D2–branes living in the T–dual of the fluxbrane background, that we
will refer to as a fluxtrap. The different interpretations are summarized in Figure 1. The
setup we will be using is summarized in Table 1.

The fluxtrap background described in this paper serves to give twisted masses
to the chiral multiplets in a brane construction realizing the two-dimensional gauge
theories in the gauge/Bethe correspondence of Nekrasov and Shatashvili [14, 15]. The
full construction including NS5–branes and D4–branes in the fluxtrap background will be
discussed briefly here, leaving more detailed elaboration to future work.1

1In an earlier paper [16], a brane construction was discussed based on the Hanany–Hori type of configu-
ration [17], which reproduced certain aspects of the gauge theories but omitted the twisted masses. That
construction differs in certain important ways from the one of relevance here, which reproduces all terms in
the action of the gauge theories of [14, 15] precisely, twisted masses included.

gauge theory string theory

4D Wilson line b.c.
D3–brane in fluxbrane

= Ω background

3D real mass D2–brane in fluxtrap

reduction T–duality

effective

theory

effective

theory

Figure 1: Gauge and string theory interpretation of the real mass in three and four
dimensions. The reduction in gauge theory is realized as a T–duality in string theory.

1

How to turn on twisted masses in the gauge theory on the 
worldvolume of the D2 branes?

Answer: they are inherited from the background!



Summary

fluxbrane BG

fluxtrap BG

T duality

+ D2, NS5 + D4, NS5

2d N=2 gauge theory
w. tw. masses

(2d Gauge/Bethe corr.)

4d N=2 gauge theory
in Omega BG

(4d Gauge/Bethe corr.)

M Theory lift

Gauge/Bethe correspondence relates susy gauge theories in 
2d/4d to (quantum) integrable systems.

Find/study string theory realization!
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The Bulk



The Fluxbrane Background

Use a flat bulk background with identifications: 

To disentangle periodicities, introduce new coordinates:
�
φ1 = θ1 −m �R�u ,
φ2 = θ2 +m �R�u ,

(x0, . . . , x3, ρ1, θ1, ρ2, θ2, �u, x9)

θ1 � θ1 + 2π k2 , θ2 � θ2 + 2π k3

x8 = �R�u , �u � �u+ 2πk1




�u � �u+ 2π k1 ,

θ1 � θ1 + 2πm �Rk1 ,

θ2 � θ2 − 2πm �Rk1 ,

impose identifications
fluxbrane parameter

This corresponds to the well known Melvin or fluxbrane 
background.



The Fluxbrane Background

Write down metric:

Locally, the metric is still flat, but some of the rotation 
symmetries are broken. 

�gµνd �Xµ �Xν = d�x2
0...3 +

7�

i=4

�
dxi +mV idx8

�2
+ dx2

8 + dx2
9

V i∂i = −x5∂x4 + x4∂x5 + x7∂x6 − x6∂x7 = ∂φ1 − ∂φ2

This corresponds to the Omega deformation of flat space in 
the (4567) directions with ε1 = −ε2 = m Nekrasov, Okounkov

Eliminate degrees of freedom which are incompatible with 
the identifications via T duality.



The Fluxtrap Background

To arrive at the fluxtrap background, we perform a T duality 
in the 8 direction.
The bulk fields after T duality are

This background now only contains the physical degrees of 
freedom.

ds2 = d�x2
0...3 + dρ21 + dρ22 + ρ21dφ

2
1 + ρ22dφ

2
2 +

−m2
�
ρ21dφ1 − ρ22dφ2

�2
+ dx2

8

1 +m2 (ρ21 + ρ22)
+ dx2

9 ,

B = m
ρ21dφ1 − ρ22dφ2

1 +m2 (ρ21 + ρ22)
∧ dx8 ,

e−Φ =

�
1 +m2 (ρ21 + ρ22)

g23
√
α�

not anymore flat

B field has appeared



The Fluxtrap Background

The Killing spinor for a flat BG in type IIB is

�
�L = e−Φ/8 ( + Γ11)Π

flux
− exp[ 12φ1Γ45 +

1
2φ2Γ67] �0 ,

�R = e−Φ/8 ( − Γ11) ΓuΠ
flux
− exp[ 12φ1Γ45 +

1
2φ2Γ67] �1 ,

KIIB = exp[ 12φ1Γ45 +
1
2φ2Γ67] exp[

m �R�u
2

(Γ45 − Γ67)]�0

In order for this to be preserved in the BG with identifications, 
we must additionally impose the projector Πflux

± = 1
2 ( ± Γ4567)

Study supersymmetries preserved by fluxbrane/fluxtrap BG.

Half of the supersymmetries are left (16 real supercharges).

T dualize to type IIA: KIIA = �L + �R
const. 
Majorana 
spinors

Γu =
mρ1
∆

Γ5 −
mρ2
∆

Γ7 +
1

∆
Γ8 Gamma matrix in u direction

cplx Weyl 
spinor

KIIB = Πflux
− exp[ 12φ1Γ45 +

1
2φ2Γ67]�0



General Fluxtrap Backgrounds
It is also possible to construct more general fluxtrap 
backgrounds. So far, we used 

We need now two periodic variables giving rise to two shift 
parameters and perform two T dualities:

m1 = −m2 = m ∈ R

It is however possible to construct backgrounds with 

1. Complex fluxtrap BG:

�x8 = �R8 �u , �x9 = �R9 v

Preserves same amount of susy as real fluxtrap.
Corresponds to Omega BG with m = 1

2 (m1 − im2)

m1 �= −m2orm ∈ C






�v � �v + 2π k2 ,

θ1 � θ1 + 2πm2
�R9 k2 ,

θ2 � θ2 − 2πm2
�R9 k2 ,






�u � �u+ 2π k1 ,

θ1 � θ1 + 2πm1
�R8 k1 ,

θ2 � θ2 − 2πm1
�R8 k1 ,



General Fluxtrap Backgrounds

2. Fluxtrap BG with                    :m1 +m2 �= 0

For               to be independent while still preserving some 
susy, we need to introduce identifications in another plane 
with a third identification parameter which fulfills

m1, m2

m1 +m2 +m3 = 0





�u � �u+ 2π k1 ,

θ1 � θ1 + 2πm1
�R8 k1 ,

θ2 � θ2 + 2πm2
�R8 k1 ,

θ3 � θ3 − 2π (m1 +m2) �R8k1 .

Refined fluxtrap BG.

It is possible in the same way to also construct a complex 
refined fluxtrap, however the possible brane configurations 
which can be realized in it are very limited.

The refined fluxtrap preserves only half the susy of the 
fluxtrap (8 real supercharges)



Branes



2d Gauge Theories
Let’s first discuss the properties of the N=(2,2) gauge theories in 
2d we want to realize on the branes:

V = θ−θ̄−(A0 −A1) + θ+θ̄+(A0 + A1)− θ−θ̄+σ − θ+θ̄−σ

+iθ−θ+(θ̄−λ− + θ̄+λ+) + iθ̄+θ̄−(θ−λ− + θ+λ+) + θ−θ+θ̄−D

Φ = φ(y±) + θαψα(y±) + θ+θ−F (y±) y± = x± − iθ±θ̄±

x± = x0 ± x1

Σ = σ(ỹ±) + iθ+λ+(ỹ±)− iθ̄−λ−(ỹ±) + θ+θ̄−[D(ỹ±)− iA01(ỹ±)] + ...

ỹ± = x± ∓ iθ±θ̄±A01 = ∂0A1 − ∂1A0 + [A0, A1]

Vector multiplet:

Chiral multiplet:

Twisted chiral multiplet:

vector field cplx scalar

cplx aux. field

Dirac fermion

real aux. field

cplx scalar

Dirac fermion



2d Gauge Theories

�
d2xdθ̄−dθ+ �W

���
θ̄+=θ−=0

+ h.c.

Lkin =
�

d4θ

�
�

k

X†
k eV Xk −

1
2e2

Tr(Σ†Σ)

�
,

Ltw =
�

d4θ (X†eθ−θ̄+ emX+h.c.X)

Twisted F term:

Kinetic term of action:

Twisted masses:

Want to consider the Coulomb branch.

Action: D terms, F terms, twisted F terms

twisted superpotential

Calculate eff. action for slowly varying      fieldsσ

Integrate out all massive matter fields.



2d Gauge Theories

exp

�
2π

∂�Weff(σ)
∂σi

�
= 1

Integrate out massive fields (S is quadratic in Q)

Vacuum equation:

Most general action (at most 4 fermions, 2 derivatives):

Seff(Σ) = −
�

d4θKeff(Σ,Σ) +
1

2

�
d2θ�Weff(Σ) + h.c. .

eiSeff(Σ) =

�
DQeiS(Σ,Q)

This calculation is exact (protected by supersymmetry).

�Weff(Σ) =
1

2π
(Σ− �mQ) (log(Σ− �mQ)− 1)− ıτ Σ



2d Gauge Theories

We can construct N=2 gauge theories in 2d by studying the low 
energy theory on the worldvolume of D2 branes suspended 
between NS5 branes.

efficient for computations where the description as a twisted compactification is un-
wieldy. There is hope that this solution will further the investigation of the remarkable
relationships among gauge theories first noted in [11, 12].

The results of this article were announced in a talk at the “Branes and Bethe Ansatz
in Supersymmetric Gauge Theory Workshop”, March, 2011 [30].
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A The fluxtrap deformation of a set of NS–fivebranes

A.1 Bulk fields

In order precisely to specify the brane configuration described in outline in section 5 of this
paper, we need to consider D2–branes stretched between parallel NS5–branes. Consider a
stack of parallel NS5–branes in flat space, extended in the directions x1, x6, x7, x8, x9 (see
Table 2). Since the configuration preserves rotations in the 45 and 67 planes it is possible
to repeat the same fluxbrane construction as in Section 3. The fields in the bulk in the
non–trivial directions read:

�ds
2
= U

�
dx2

2 + dx2
3 + dρ2

1 + ρ2
1

�
dφ1 + m�R d�u

�2
�
+ dρ2

2 + ρ2
2

�
dφ2 − m�R d�u

�2
+ �R2 d�u2 ,

(A.1)

B = bi dxi ∧
�

dφ1 + m�R d�u
�

, (A.2)

Φ = log(�R g2
3) +

1
2

log U , (A.3)

direction 0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
fluxtrap × × × × ×
D2 × × ×
D4 × × × × ×

Table 2: Embedding of the D2–brane with respect to the NS5 fluxtrap.

30

����σ����
φ

Separation of NS5s in 3 direction: FI term

Separation of NS5s in 2 direction: 1/g2



2d Gauge Theories

Why is the fluxtrap called a fluxtrap? 

The D2s are trapped at the origin.

Adding only D2 branes to the fluxtrap preserves 8 
supercharges (static embedding).

Adding also NS5 branes preserves 4 supercharges, N=(2,2)
�
�L = e−Φ/8 ( + Γ11)ΠNS5

− Πflux
− Γ1208 exp[

1
2 (φ1 + φ2)Γ67]� ,

�R = e−Φ/8 ( − Γ11)ΓuΠNS5
+ Πflux

− exp[ 12 (φ1 + φ2)Γ67]� .

ΠNS5
± = 1

2 ( ± Γ2345)

In the static embedding,                                     the e.o.m. are 
solved for the D2 branes sitting in x3 = x4 = x5 = x6 = x7 = 0

x0 = ζ0, x1 = ζ1, x2 = ζ3



2d Gauge Theories

The fluxtrap deformation gives rise to the twisted masses!

Start with (kappa fixed) DBI action (democratic formulation):

After expanding to quadratic order in the fields, we get

twisted mass terms!

dilaton B field



Realizing the global symmetries

An important ingredient of the Gauge/Bethe correspondence is 
the symmetry group of the integrable system, which also 
relates gauge theories with different gauge groups.

The example with two NS5 branes treated so far corresponds 
to the simplest case with symmetry group su(2).

Spin chains can have any Lie group as symmetry, even 
supergroups. Can we realize all those via a brane construction?

So far, we are able to reproduce the A and D series.



SU(r) Quiver Gauge Theories

An SU(r) quiver gauge theory corresponds to a spin chain with 
SU(r) symmetry. Such a theory can be constructed by varying 
the brane set up.

the Bethe Ansatz equation [11]:

La

∏
k=1

λ(a)
i + i

2
�
Λa

k + νa
k
�

λ(a)
i − i

2
�
Λa

k − νa
k
� =

(r,Nb)

∏
(b,j)=(1,1)
(b,j) �=(a,i)

λ(a)
i − λ(b)

j + i
2 Cab

λ(a)
i − λ(b)

j − i
2 Cab

, a = 1, 2, . . . , r ; i = 1, 2, . . . , Na ,

(1.3)
where Cab are the elements of the Cartan matrix of the symmetry group. The observation
of [1–3] is that the same equations describe the ground states of a corresponding two-
dimensional quiver gauge system on a circle (for details see Table 4). It is important to
note that the twisted masses (which are the counterparts of the parameters Λ, ν, C) induce
an effective twisted superpotential �W whose minima correspond to the normalizable ground
states. These ground states are in one-to-one correspondence with the spectrum of the
chain and will be identified in the following with bps configurations in the string theory
construction (see [7]).

2 The A series

Generalizing the SU(2) or A1 case to Ar is very straightforward. We will therefore use
this section to remind the reader of the fluxtrap construction [7].

The Cartan matrix of Ar series (SU(r + 1)) has the form

A =





2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 −1 . . . 0
... . . . . . . . . . ...
0 0 . . . −1 2 −1
0 0 . . . 0 −1 2





, (2.1)

which gives rise to the Dynkin diagram in Figure 2a. The a-th node of the Dynkin diagram
translates directly to the a-th node of the quiver gauge theory. Its color group U(Na) is
determined by the superselection sector; the length parameter fixes the flavor group U(La)
which is attached to the a-th node by fundamental and antifundamental fields Qa

k, Qa
k,

k = 1, . . . La. Each arrow between nodes a and b of the quiver diagram corresponds to

1 r − 1 r
. . .

(a)

U(N1) U(Nr−1) U(Nr)

U(L1) U(Lr−1) U(Lr)

. . .

(b)

Figure 2: Dynkin diagram (a) and quiver diagram (b) for the Ar series. In the quiver
diagram, nodes are gauge groups and squares flavor groups. Each arrow represents a
bifundamental and each dotted line a pair fundamental–antifundamental. Each node carries
also an adjoint field (not represented).

3

bifundamental fields

fundamentals 
and anti-

fundamentals

gauge group

flavor groups

0 1 2 3 4 5 6 7 8 9

fluxbrane × × × × ×
NS5 × × × × × ×
D2 × × ×

N = (2, 2) D4 × × × × ×
N = (1, 1) D4’ × × × × ×

Table 1: Type iia Brane configuration for the 2d N = (2, 2) and N = (1, 1) theories living

on the D2 branes and reproducing the A series symmetry. The crosses in the fluxbrane row

mark the directions in which no identifications are imposed.

a bifundamental field Ba,b of U(Na)× U(Nb). Moreover, each node can carry an adjoint

field Φa (not pictured).

Brane construction. One can construct the Ar quiver gauge theory in type iia string

theory by placing r + 1 parallel NS5–branes extended in the 16789 directions into a flat

background [12] (see Figure 5 and Table 1). When the NS5s coincide, the six-dimensional

N = (2, 0) type iia theory acquires a SU(r + 1) symmetry that acts on the tensionless

strings. Imposing periodic boundary conditions for x1, we can T–dualize and obtain a

system of coincident NS5–branes in type iib, which now has standard SU(r + 1) gauge

symmetry2 [13]. This is the enhanced SU(r + 1) symmetry that acts on the ground states

of the effective theory of the probe D2–branes.

Suspended between the a-th and (a + 1)-st NS5–brane is a stack of Na D2–branes

extended in the 12 directions. The motions of the open strings within the a-th stack of

D2–branes in the 67 directions are described by the adjoint fields Φa, while the strings

going from the a-th to the (a + 1)-st stack correspond to the bifundamental fields B. This

configuration preserves eight supersymmetries, which correspond to an N = (4, 4) gauge

theory in two dimensions. Gauge invariance and supersymmetry fix the superpotential

couplings of adjoints and bifundamentals to

W =
r−1

∑
a=1

Ba,a+1Φa+1Ba+1,a − Ba+1,aΦaBa,a+1
. (2.2)

The flavor groups live on stacks of La D4–branes. They can be added in two different

ways:

1. D4’–branes extended in the 1389 directions break half of the supersymmetry and

lead to an N = (2, 2) gauge theory on the D2–branes. In this case, the D4–branes can

be made to coincide with one of the NS5 in the x2 direction in which the NS5–branes

are separated, and broken in two. We can then distinguish upper-half D4’–branes

(x3 > 0) and lower-half D4’–branes (x3 < 0). The strings from the D2–branes to the

upper-half D4’–branes are described by fundamental fields Qa
k and those going to

the lower-half D4’–branes by antifundamental fields Qa
k.

2The periodicity of x1 translates into periodic boundary conditions for the two-dimensional gauge theory.

This is necessary in order to reproduce the Bethe Ansatz equations.
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SU(r) Gauge Theories

r+1 NS5 with stacks of D2s suspended in between.

. . .

NS5(1) NS5(r) NS5(r+1)

D4 D2
D4

D2

N1
Nr−1

Nr

L1

Lr

adjoint fields

bifundamental fields

fundamentals and 
antifundamentals



SO(2r) Quiver Gauge Theories
SO(2r) quiver gauge theories can be constructed from SU(r) 
theories with a further variation.

We have thus constructed a brane realization of the full Ar quiver gauge theory

which includes all the parameters of the corresponding integrable model, in particular

the twisted masses. The symmetry group of the spin chain is reflected in the symmetry of

the background containing the parallel NS5–branes. The Gauge/Bethe correspondence

implies the action of the background Ar symmetry on the probe branes such that the

raising and lowering operators E
±
a change the gauge group at the a-th node:

E
±
a : U(Na) �→ U(Na ± 1) . (2.24)

3 The D series

The Cartan matrix of the Dr series (SO(2r)) has the form

A =





2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 −1 0

.

.

.
. . .

. . .
. . .

.

.

.

0 0 . . . 2 −1 −1

0 0 . . . −1 2 0

0 0 . . . −1 0 2





, (3.1)

which gives rise to the Dynkin diagram in Figure 4a.

Looking at the Dynkin diagram, we see that up to the second last node, it is the

same as the one of the Ar series. Up to this node we can therefore replicate the brane

construction of the last section, consisting of parallel NS5–branes with stacks of D2–

branes between them. Let us concentrate on the nodes r − 2, r − 1 and r. From the Dynkin

diagram, we learn that there should be no bifundamental fields between the last two

nodes, but extra bifundamental fields between nodes r − 2 and r. To achieve this, we need

to make use of a somewhat more exotic object, which is best described as the S–dual

of a D5–brane coincident with an O5–plane [15–19]. For further convenience, we will

1 r − 2

r − 1

r
. . .

(a)

U(N1) U(Nr−2)

U(Nr−1)

U(Nr)

U(L1) U(Lr−2)

U(Lr−1)

U(Lr)

. . .

(b)

Figure 4: Dynkin diagram and quiver diagram for Dr series. In the quiver diagram, nodes

are gauge groups and squares flavor groups. Each arrow represents a bifundamental and

each dotted line a pair fundamental–antifundamental. Each node carries also an adjoint

field (not represented).
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0 1 2 3 4 5 6 7 8 9

fluxbrane × × × × ×
NS5 × × × × × ×
NO5 × × × × × ×
D2 × × ×

N = (2, 2) D4 × × × × ×
N = (1, 1) D4’ × × × × ×

Table 3: Type iia Brane configuration for the 2d N = (2, 2) and N = (1, 1) theories living

on the D2–branes and reproducing the D series symmetry. The crosses in the fluxbrane

and NO5 rows mark the directions in which no identification is imposed.

• the fluxbrane identifications on flat space,






�u � �u + 2πk1 ,

θ1 � θ1 + 2πm�Rk1 ,

θ2 � θ2 − 2πm�Rk1 ,

(3.3)

which are disentangled by introducing the angles

φ1 = θ1 − m�R�u , φ2 = θ2 + m�R�u . (3.4)

We need to verify that it is possible to define the action of I4 on the coordinates φi, which

automatically implement the fluxbrane identifications. Using the definition of φ1 and φ2,

it is immediate to see that the orbifold action remains simple,

I4 : (x2, x3, ρ1, φ1, ρ2, φ2, �u) �→ (−x2,−x3, ρ1, φ1 + π, ρ2, φ2, �u) . (3.5)

We conclude thus that the orbifold action is compatible with the fluxbrane construction

and it is formally the same as in flat space when written for the disentangled coordinates.

At this point we can T–dualize the system in the direction x8 and obtain the NO5–

NS5–fluxtrap background in which the movement of the D2–branes is described by a

N = (2, 2) two–dimensional gauge theory with a twisted mass term m for the adjoints.

Under T–duality, both the D3’–branes and the D5–branes turn into D4–branes. In the

N = (2, 2) case, the respective fundamentals and antifundamentals acquire a twisted

mass −m/2 via the superpotential coupling as in Equation (2.5). In the N = (1, 1) case,

generic twisted masses can be obtained by breaking the D4’–branes into an upper and a

lower part (see the configuration outlined in Table 3). The identification of the remaining

parameters is the same as in the previous section.

Once more, the Gauge/Bethe correspondence implies an action of the SO(2r) group

on the quiver gauge theories that we have realized. Raising and lowering operators E
±
a

change the number of colors at the corresponding nodes by one as in Equation (2.24).
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SO(2r) Gauge Theories

Preserves same supersymmetries as NS5

. . .

NS5(1) NS5(r−2) NS5(r−1) NO5

D4 D2
D4

D2

D4

D4
D2+

D2−
N1

Nr−3

Nr−2

Nr−1

Nr

L1

Lr−2 Lr−1

M

NO5 : I4 × (−1)
FLNO5: S dual of a D5 coincident with an O5, here

6d theory on NO5 has SO(2) symmetry: +,- charged D2s

adjoint fields

adjoint fields

bifundamental fields
bifundamental fields

Sen; Kapustin; Hanany, Zaffaroni

Fluxbrane identifications are compatible with orbifold action.

U(Nr−1 +Nr) → U(Nr−1)× U(Nr)



Summary



Summary

We choose a flat background with identifications 
(fluxbrane/Melvin BG). After T Duality, it turns into a 
fluxtrap background.
By placing D2 branes suspended between NS5 branes into 
the background, we arrive at an N=(2,2) gauge theory in 2d, 
with twisted masses, as studied in the Gauge/Bethe 
correspondence.
The symmetry group of the corresponding integrable 
system is encoded in the brane configuration.

By instead placing D4 branes into the fluxtrap, we get an 
N=2 gauge theory in 4d in the Omega BG (4d Gauge/Bethe).

This configuration can be lifted to M Theory.



Summary

fluxbrane BG

fluxtrap BG

T duality

+ D2, NS5 + D4, NS5

2d N=2 gauge theory
w. tw. masses

(2d Gauge/Bethe corr.)

4d N=2 gauge theory
in Omega BG

(4d Gauge/Bethe corr.)

M Theory lift

Gauge/Bethe correspondence relates susy gauge theories in 
2d/4d to (quantum) integrable systems.

Find/study string theory realization!



Thank you for your attention!


