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Introduction

Gravitational waves (GWs)

Laser interferometers
(Fabry-Perot)

• Spacetime fluctuations predicted by general relativity 

• Indirect observation using binary pulsar (Hulse & Taylor)

• Many ongoing/upcoming missions to detect GWs

「ガンマ線天文学 ～日本の戦略～」2010/11/16  「大型低温重力波望遠鏡LCGTで探る高エネルギー天体現象」

Schematic Figure

Free mass --> suspended mirror

To integrate strain ‘h’ --> long baseline arms.

Limited size --> Folding arms / Storage cavity

Against noises -->
• high power laser
• Cooling
• etc..
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Laser interferometers in the world

LIGO 
(Livingston) 

LIGO 
(Hanford) 

VIRGO 

LCGT 

�����

AIGO 

�����

Kamioka mine

under construction!!

INDIGO

GEO/ET

under consideration

KAGRA



Laser interferometers in space

NGO (New Gravitationa-wave Observatory)

BBO (Big-Bang Observer)

DECIGO 
(DECi-hertz Interferometer Gravitational wave Observatory) 

2020+???

2025+

2027+

Free from seismic noises low-frequency GWs
Advantage of space

(f = 10�4 � 1 Hz)



Targets

• Coalescence of BHs

• Inspiral/merging of binary systems 

GW observations as astronomical & cosmological tool

• Stochastic backgrounds :

Inflation

Phase transition,  cosmic string,  ...

(�gwh2 � 10�16)

a large benefit to ‘early universe physics’

BBO/DECIGO

(WD-WD, NS-NS, BH-NS, ...)



Plan of this talk

Refs.

S. Kawamura,  A. Nishizawa, S. Saito, M. Sakagami, 
N. Seto, T. Tanaka, K. Yagi

Collaborators

✦ Detection & characterization of GWBs 
from ground-based detectors

✦ Cosmology with space-based detectors :
dark energy and primordial GWs

PRD 85, 044047 (‘12)

PRL 99, 121101 (‘07); PRD 77, 103001 (‘08)



Statistical description of GWBs
GWBs:  defined as stationary and random 

superposition of plane waves

hij(�x, t) =
�

A=�,+

� �

��
df

�
d�̂ hA(f, �̂) ei 2� f(t��̂·�x/c) eA

ij(�̂)

random variable

polarization tensor

transverse & 
traceless

ensemble 
average

(un-polarized)



Spectrum of GWBs
[1/Hz]:     Power spectral density

Strain amplitude

Density parameter

In most of cosmological origins, GWB is isotropic: 

anisotropies

Amplitude is supposed to be small, indistinguishable from detector noises:

★ Cross-correlation with multiple detectors
★ Long-term monitoring (months~years)



Observational window

DECIGO

DECIGO%& !$"# (2010�11�25�, �����, ��)
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(Adv. LIGO, KAGRA, etc.)

DECIGO, BBO

eLISA/NGO ??



Observational window
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Cross correlation analysis

Interferometric signals h(t): GW signal
n(t): detector’s noise

hi(t) =
�

A=�,+

�
df

�
d�̂ Dab

i (f, �̂) eA
ab(�̂) hA(f) ei 2� f(t��̂·�xi/c)

Detector’s 
response tensor

Quadratic estimator

GW amplitude

S �
� T/2

�T/2
dt

� T/2

�T/2
dt� s1(t)s2(t�) Q(t� t�)

Optimal filter (given later)

(scalar)

Polarization 
tensor

Allen & Romano (’99)



Cross correlation analysis
mean

dispersion

µ � �S�

�2 � �[S � �S�]2�

ensemble 
average

Assumption

• Detector’s noises >> GWB signals

• Two detectors’ noises are uncorrelated, and are described 
as stationary Gaussian statistics

GW signal is dominant

dominated by noise
(� T )

SNR � µ

�
: signal-to-noise ratio



Signal-to-noise ratio

SNR =
2
5
�

T

�� �

��
df

{�(f)Sh(f)}2

Sn,1(f)Sn,2(f)

�1/2

Q̃(f) =
2
5�(f)Sh(f)

Sn,1(f)Sn,2(f)

noise spectral density for detector “i”

power spectral density  [1/Hz]

overlap reduction function

• Long-term observation is necessary

• detector’s noise is not the only important factor (next slide)

To increase SNR, 
LIGO

optimal filter



Overlap reduction function

Displacement btw. two detectors

f [Hz]
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i )In most 

case,

|��x| = 3001km
e.g., for LIGO pair

Reduction in sensitivity at 
(irrespective of detector’s sensitivity)

f � c/(2|��x|)

Abbott et al. (’04)
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SNR for ground-based detectors

Type I

Great circle

Great circle

Type II

SNR0 = 5.5
�

�gw

10�9

� �
Tobs

1 yr

�1/2normalized w.r.t.

Flanagan (’93), Seto & AT (’08)

β

detector 1

detector 2

Optimal configuration

co-located & co-aligned 
detector pair
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SNR for ground-based detectors

Type I

Great circle

Great circle

Type II

SNR0 = 5.5
�

�gw

10�9

� �
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�1/2normalized w.r.t.

Flanagan (’93), Seto & AT (’08)

β

detector 1

detector 2

Optimal configuration

co-located & co-aligned 
detector pair

Combining all advanced detectors, 

c.f.   LIGO+VIRGO: (Abbott et al. ’09)�gw � 6.9� 10�6

<



From detection to characterization

Un-polarized state

Tensor component

Isotropic GWB

Probing polarized states of GWB

Detecting scalar/vector/tensor GWBs

Mapping anisotropies

Relaxing several simplifications, characterization of stochastic 
GW is made possible

Kudoh & AT (’05); AT & Kudoh (’05); AT (’06)

Nishizawa, AT et al.  (’09, ’10)

Seto (’07); Seto & AT (’07, ’08)



Polarization basis
plus-mode cross-mode

L-mode R-mode

propagation 
direction

Unpolarized： Circularly polarized:

Equivalent



Stokes parameters
GW in Fourier space 

Ensemble 
average

: intensity

: linear polarization

: circular polarization

(spin 0)

(spin ±4)

hij(�x, t) =
�

A=L,R

� �
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df
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�
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2
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4�

spin-2 polarization 
tensor (L,R)

(spin 0)

Linear polarization states 
are inevitably anisotropic

(� � 4)

I- and V-modes possess isotropic component 
How well we can 

detect and identify ?

Note--.



SNR with non-zero polarization

SNR =
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gw (f) : energy density spectrum of GWB for I-, V-modes

�I,V (f) : Overlap reduction functions for  I-, V-modes
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Overlap reduction functions
LIGO pair (H, V)

LIGO (H) - AIGO LIGO (L) - KAGRA

Even if the detector pair is 
insensitive to I-modes, it 

could be sensitive to V-mode



Sensitivity to polarized GWBs

great circle

optimal configuration for V-mode

Type III

SNR0 = 5.5
�

�gw

10�9

� �
Tobs

1 yr

�1/2
normalized w.r.t.

Seto & AT (’07, ’08)



Sensitivity to polarized GWBs

LIGO(H) Virgo KAGRA AIGO

great circle

optimal configuration for V-mode

Type III

SNR0 = 5.5
�
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10�9

� �
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1 yr

�1/2
normalized w.r.t.

Seto & AT (’07, ’08)



Sensitivity to polarized GWBs

LIGO(H) Virgo KAGRA AIGO

Virgo
LIGO(L)

AIGO

LIGO(H)

Virgo
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Separate detection of I-, V-modes
Basic
idea

Taking a linear combination of 2 correlation signals
 out of 4 detectors 

I-mode

V-mode

With more than 4 detectors,  
separate detection of I-, and V-modes can be optimized:

I-mode

V-mode

Minimum. detectable 
amplitude 

(5 detectors)

Seto & AT (’08)



With cross correlation & long-term obs,

• detection capability of GWBs sensitively depends on
separation & geometric configuration of detectors

From ground to space

• a network of ground-based detecters would provide a nearly 
               optimal detection & characterization with  

Short summary

detection & characterization further depends on 

For space-based detectors,

Seto (’06); Kudoh et al. (’06); Seto (’07); Nishizawa et al.(’10)

foreground removal

orbital trajectory & constellation of space crafts

Cutler & Harms (’06); Yagi & Seto (’11)

(polarization states and/or scalar/vector/tensor modes)

�gwh2 � 10�9



The system can be treated as a point-particle system until last 3 min of 
coalescence

Dark clouds over deci-Hz

sources of confusion noise to be subtracted

A large number of  NS-NS binaries will be detected

very “clean” system (free from systematics) 

On the other hand,

6

FIG. 4: Number of NS-NS binaries (in the unit of 104) that
would be observed by DECIGO in each redshift bin of ∆z =
0.1 at a redshift z during 3 yr observation. As is manifest
from Eq. (18), the number of the binaries scales linearly with
Tobs.

FIG. 5: The Hubble parameter calculated with our fiducial
cosmological parameters (solid curve) and 1σ-error bars esti-
mated in the cases that we use all binaries observed by DE-
CIGO during the observation time, 1 yr (red), 3 yr (green),
and 10 yr (blue) (long observation time corresponds to the
smaller error bar).

standard siren has a nearly equal sensitivity to the Hub-
ble parameter with other complementary methods such
as BAO. Another noticeable point using the standard
sirens is that we can trace the redshift evolution of Hub-
ble parameter even at higher redshift z ! 1. Although
the number of high-z NS binaries is highly uncertain, the
standard sirens would be potentially powerful to probe
the early-time cosmic expansion, and should deserve fur-
ther investigation.

IV. SYSTEMATIC ERRORS

So far, we have discussed the accuracy of Hubble pa-
rameter taking only account of the distance error associ-
ated with the instrumental noise. However, there are sev-
eral effects which may systematically affect the measure-
ment of dipole anisotropies in the luminosity distance,
leading to increasing the error in the Hubble parameter.
Among them, a dominant contribution may come from
the gravitational lensing magnification induced by the
matter inhomogeneities of large-scale structure along the
line of sight (e.g., [25–28]), which systematically changes
the luminosity distance to each binary system. Another
important effect would be the peculiar velocity of the bi-
nary along the line of sight, which randomly contributes
to measurement error via Doppler effect. These system-
atic errors to the averaged luminosity distance are sum-
marized as

[
∆d(0)

L (z)

d(0)
L (z)

]2

= σ2
inst(z) + σ2

lens(z) + σ2
pv(z) , (19)

where σinst is the error associated with the GW experi-
ment in Sec. III A, σlens is the lensing error, and σpv is
the peculiar-velocity error.

There are several studies on the effect of lensing mag-
nification, particularly focusing on the distance measure-
ment from the type Ia supernovae. Holz and Linder
[26] estimated the lensing error on the distance measure-
ment by using Monte Carlo simulation, and assuming the
Gaussian form of lensing magnification probability, they
derived a fitting formula for the systematic error. Later,
the significance of non-Gaussian tail has been recognized
[29, 30], and it turned out that this effect reduces the lens-
ing error by a factor of 1.5 - 2, compared to the Gaussian
distribution. More recently, Hirata, Holz, and Cutler [29]
adopted a log-normal distribution for the magnification
probability and obtained the fitting formula for the (av-
eraged) distance error:

σlens(z) = 0.066
[
1 − (1 + z)−0.25

0.25

]1.8

. (20)

In what follows, we adopt the lensing error in Eq. (20).
As for the peculiar velocity error, the clustering of

galaxies induced by the gravity leads to a coherent and/or
virialized random motion, which gives rise to the Doppler
effect and affects the determination of cosmological red-
shift via the spectroscopic measurement. In addition,
binary barycentric motion itself in the host galaxy also
leads to the Doppler effect, which causes random fluctu-
ations in the luminosity distance. These two systematic
effects can be of the same order and can be translated
into the distance error as [31]

σpv(z) =
∣∣∣∣1 − (1 + z)2

H(z)dL(z)

∣∣∣∣ σv,gal .

at 0.1~1Hz

#
 o

f N
S-

N
S 

bi
na

ri
es

In general,
N(z) � Tobs

Safely subtracting these systems to 
detect GWBs, how well we can use 

them as cosmological tool ?

Q



NS-NS binary as a standard siren

3

標準音源 （standard siren）
[ Schutz 1986, Holz & Hughes 2005 ]

観測データより が分かる

： 光度距離が決まる

赤方偏移は不定

重力波によるハッブル図が書け、宇宙論的観測が可能。
（距離梯子は必要なし、標準光源としての SNe の検証）

電磁波の観測からホスト銀河 (赤方偏移) が分かれば、
 　 も決まる。

! 

Mc =
(m1 m2)

3 / 5

(m1 + m2)
1/ 5

が分かる

（遠くの軽い連星か近くの重い連星かは区別できない）

連星系からの重力波
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連星系からの重力波

chirp mass:

7

DECIGO で観測される中性子連星

z=0.1           S/N~700
z=1                     ~80
z=10                   ~20

Frequency [Hz]

St
ra
in 
[1
/r
Hz
]

NS 連星さえ存在して
いれば、ほとんどが
DECIGO で観測される

h+,� f, ḟand

Mz = (1 + z)Mc

DL(z)
Provided redshift information for host galaxies from optical follow-up, NS-NS 
binaries can be used as “standard siren” to trace cosmic expansion like SNe Ia

DECIGO

Quadrupole formula
Schutz (’86)



Ultra precision cosmology

merger) is required to uniquely identify the counterpart
[12,34,35]. Obviating the need for an independent identi-
fication of the counterpart sharply increases the expected
number of usable standard sirens, and hence significantly
improves the accuracy of the cosmological measurements.
Galaxy misidentifications will generally be seen as large
outliers, and thus their influence can be mitigated by the
use of robust statistics, such as the Hough Transform (see,
e.g., Storkey et al. [36])

III. ULTRAHIGH-PRECISION COSMOLOGICAL
PARAMETERS FROM BBO

A. The DL ! z relation

We begin by considering BBO’s measurements of the
luminosity distance-redshift relation (see Fig. 7). This
relation is a direct measure of the evolution history of the
Universe: redshift provides the size of the Universe at
emission, and luminosity distance provides the time since
emission. Thus a precise measurement of this relation is
sensitive to dark energy; indeed, it is this method that
enabled the initial discovery of the accelerating expansion
of the Universe now associated with dark energy.

We consider a fiducial population of 2:5" 105 NS/NS
binaries distributed according to Eq. (2), out to z ¼ 3. We
assume that the distance measurement errors due to detec-
tor noise for each individual binary are those shown in
Fig. 4. Because BBO does such an exquisite measurement
of distance, the errors on the true distance to a given binary
will be dominated by the effects of gravitational-lensing
magnification [37,38]. We incorporate the lensing errors
following the approach of [39], which is entirely appro-
priate given the very high-number statistics we are consid-
ering. For each individual binary we take the dispersion in
flux due to lensing to be given by !lensing ¼ 0:088z (see

Eq. 9 of [39]). We have explicitly checked that this ap-
proach is equivalent to drawing magnification values from
the full, non-Gaussian lensing probability distribution
functions derived in [38]. We assume that the sky localiza-
tion is sufficient for the identification of a unique host
galaxy (and hence redshift) for each binary (as in Fig. 4).
The redshift determination will need to be done indepen-
dently of BBO, in the electromagnetic band. While in
practice there will be some host galaxy misidentifications,
for simplicity in this study we assume that perfect redshifts
have been obtained for all of our sources. (This simplifi-
cation is partly based on our belief that a robust cosmo-
logical parameter-estimation method will substantially
mitigate the effects of a fractionally small set of misiden-
tifications—enough so that in estimating BBO’s perform-
ance, to a first approximation it is reasonable to neglect
them.) We Monte Carlo generate populations of observed
binaries, and then for each population we determine the
best-fit cosmological parameters (varying the number of
free parameters of interest). We repeat this procedure for a
large (> 105) number of runs, and plot the resulting error
contours. In what follows, the 1! contours contain 68.3%
of the best-fit values, and the 2! contours contain 95.5% of
the models.
We follow the common convention of parametrizing the

dark-energy equation of state in the two-parameter form
[40]

wðzÞ ¼ w0 þ wa
z

ð1þ zÞ : (16)

We fit each data set to five cosmological parameters: the
Hubble constant H0 ¼ h" 100 km=s=Mpc, the dark-
matter density !m, the dark-energy density !x, and the

FIG. 7 (color online). Distance versus redshift for a sample
BBO binary population. Distance is shown as distance modulus,
and includes both BBO errors and gravitational lensing. The red
curve is the true luminosity distance-redshift relation. Notice that
lensing causes a small number of binaries to become tremen-
dously magnified (to lower distance modulus), but there is a
lower limit to the amount of demagnification.

FIG. 6 (color online). Number of galaxies in the BBO error
cube, as a function of redshift. Even in the worst case, there is
less than one galaxy within 1! of a given binary on the sky, and
therefore it should be possible to robustly identify the unique
host galaxy.

CURT CUTLER AND DANIEL E. HOLZ PHYSICAL REVIEW D 80, 104009 (2009)

104009-8

dark-energy phenomenological parameters w0 and wa. As
is standard in assessing the power of proposed cosmology
missions, we include a forecasted Planck CMB prior,
which constrains the angular diameter distance at z ¼
1080 to 0.01%, and constrains !mh

2 to 1% [41,42].
Figure 8 shows the resulting constraints on h and !m,

assuming our fiducial population of binaries, and a 5-
parameter fit to the data. We find that BBO will measure
the Hubble constant to "0:1%, even when marginalizing
over two dark-energy parameters. For comparison, the best
current estimate of H0 is 74:2# 3:6 km= sec =Mpc (so
"5% uncertainty) [43,44]. It is to be noted that, if we fit
the data to a "CDM model (e.g., setting w0 ¼ $1 and
wa ¼ 0), we determine the Hubble constant to "0:025%.
As emphasized in [44], precision measurements of the
Hubble constant can be a key component of dark-energy
studies; BBOwould provide the most precise measurement
of H0 that has ever been contemplated.

In addition to the Hubble constant, BBO will directly
constrain the dark-energy equation of state. Figure 8 shows
the BBO constraint on w0 and wa, for our fiducial binary
sample, with the inclusion of Planck CMB priors. We find a
"0:01 constraint on w0 and a "0:1 constraint on wa. We
note that we have not assumed a flat Universe in these fits,
nor do we incorporate any other cosmological measure-
ments (beyond Planck). For comparison, we consider the
stage IV dark-energy missions (supernovae, baryon acous-
tic oscillations, and weak lensing), as listed by the dark-
energy task force [45], representing the state of the art in
future dark-energy missions. The combination of all stage
IV missions improves the task-force figure-of-merit by a
factor 8 to 15 with respect to stage II missions (see pp. 18–
20 and pp. 77–78 of [45]). For comparison, BBO finds an
equivalent figure-of-merit enhancement of "100, roughly
an order of magnitude better than all of the stage IV
missions, combined. It is also to be emphasized that there
are still fundamental concerns regarding possible system-

atic errors in all of the stage IV missions, and thus their
combined figure-of-merit is undoubtedly optimistic. As
discussed above, we expect the systematic errors associ-
ated with BBO measurements to be negligible, as it should
be possible to build BBO such that calibration errors are
much smaller than "10$4.

B. Weak gravitational lensing and growth of structure

In addition to providing precision measurements of the
fundamental cosmological parameters (H0, !m, !k, w0,
and wa), BBO will also directly measure the effects of
gravitational lensing, and thus place strong constraints on
the primordial dark matter power spectrum, PðkÞ, and the
growth of structure. The growth of inhomogeneities is
particularly sensitive to gravity, and thus is a powerful
way to constrain theories that modify gravity as an alter-
native to assuming a dark-energy component [46–48].
One of the most powerful ways to measure the growth of

density perturbations is through gravitational-lensing shear
maps. This is done by observing the shapes of large num-
bers (" 109) of background galaxies, and measuring the
subtle correlations in the shapes of these galaxies due to the
shear from gravitational lensing. The shear power spec-
trum at any redshift is sensitive not only to the distances
between observer, lens, and source (and thus, to the dark-
energy component), but also to the distribution of lenses.
This lens distribution is a direct measure of the dark-matter
power spectrum as a function of redshift, which is in turn
sensitive to the growth function of perturbations, and thus
the gravitational force [49,50].
BBO would provide definitive measurements of the

gravitational-lensing convergence power spectrum, com-
parable to state-of-the-art proposed measurements of the
lensing shear power spectrum. BBO measures an absolute
luminosity distance to each of the"105 binaries. The error
on this measurement is almost entirely dominated by the
effects of gravitational-lensing magnification. Once the

FIG. 8 (color online). Top: Measurement accuracy of the Hubble constant, h, and the dark-matter density,!m. The solid and dashed
curves map the 1! and 2! contours, respectively. The red star denotes the true underlying model. Bottom: Measurement accuracy of
the dark-energy equation-of-state parameters w0 and wa.
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form a ‘‘star of David’’; the other two are ahead and behind
by 2!=3 radians, respectively. Briefly, the idea behind this
orbital geometry is that the energy density of the primor-
dial GW background,!GWðfÞ, will be measured by cross-
correlating the outputs of the two overlapping constella-
tions in the star of David (much as LIGO attempts to
measure !GWðfÞ by cross-correlating the outputs of the
Livingston and Hanford interferometers [24]). The other
two constellations give BBO its angular resolution, which
is useful for characterizing and removing the merging
compact-binary foreground. The source’s angular position
on the sky is mostly determined by triangulation, using the
differences in arrival times of the GWs at the different
constellations.

As explained in Cutler & Harms [4], for compact-binary
mergers the science output of each mini-LISA is in practice
equivalent to the output of two synthetic Michelson detec-
tors, represented by the time-delay interferometry (TDI)
variables X and ðY # ZÞ=

ffiffiffi
3

p
. We can therefore regard

BBO, which is made up of 4 mini-LISAs, as formally
equivalent to 8 synthetic Michelson interferometers. To
construct the instrumental noise curve, ShðfÞ, of each of
these synthetic Michelsons, we use Larson’s on-line
‘‘Sensitivity curve generator’’ [25] and plug in BBO’s
instrumental parameters, which are taken from the BBO
Concept Study [1] and also listed in Table I. These pa-
rameters will be subject to change as the mission evolves,
but for now they provide a convenient baseline. The BBO
Concept Study [1] also lists parameters for less and more
ambitious versions of the BBO mission, referred to as
‘‘BBO-lite’’ and ‘‘BBO-grand’’, respectively, but in this
paper we restrict attention to the intermediate version, or
‘‘standard BBO’’. In using the on-line generator, we have
specified that the high-frequency part of Sh is 4 times larger
than the contribution from photon shot noise alone; this
factor 4 accounts for high-frequency noise components
other than shot noise, such as beam pointing jitter and
stray light effects. This is the same choice made in Fig. 1
of the BBO proposal [1], and is consistent with the stan-

dard assumptions made in drawing the LISA noise curve.
This BBO instrumental noise curve is shown in Fig. 2.

B. Decigo

BBO is seen as a follow-on mission to LISA in the U.S.
and Europe, but in the Japanese GW community there is a
strong push to launch a deci-Hz GW mission first. The
current plan is for Decigo to be a factor$2–3 less sensitive
than BBO, but for it to launch earlier, in $2024. A small
Decigo precursor mission, Decigo Pathfinder (DPF), was
recently among the final two missions competing for the
second launch slot (in $2012) in the JAXA (the Japanese
space agency) small satellite science series, but lost that
competition. The DPF will now compete for the third
launch slot.
Our research to date has concentrated on BBO, but it

would be straightforward to generalize our BBO analysis
to a mission with Decigo-level sensitivity. Indeed, we
expect that pursuing a BBO-style mission, but with a
somewhat less ambitious sensitivity goal, might be advis-
able from a cost/benefit standpoint; Decigo may have a
comparable cosmological reach to BBO, if designed to
ensure excellent calibration accuracy. In follow-up work,

TABLE I. BBO parameters.

Symbol Value

Laser power P 300 W
Mirror diameter D 3.5 m
Optical efficiency " 0.3
Arm length L 5 % 107 m
Wavelength of laser light # 0:5 $m
Acceleration noise

ffiffiffiffiffiffiffiffi
Sacc

p
3 % 10#17 m=ðs2

ffiffiffiffiffiffi
Hz

p
Þ

FIG. 2. Amplitude of BBO’s instrumental noise,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShðfÞ

p
,

compared to the amplitude of the (presubtraction) NS binary
foreground (plotted for _n0 ¼ 10#7 Mpc#3 yr#1) and the sought-
for cosmic GW background (plotted for !GWðfÞ ¼ 10#16). To
reveal this cosmic background, the NS foreground must be
subtracted off, with fractional residual of & 10#2:5.

1 AU

FIG. 1. Big-Bang Observer (BBO) consists of four LISA-like
triangular constellations orbiting the Sun at 1 AU. The GW
background is measured by cross-correlating the outputs of the
two overlapping constellations, while time-of-flight across the
Solar System gives BBO its angular resolution. A schematic of
Decigo (a Japanese proposal similar to BBO) would be almost
identical, except that the constellations are 50 times smaller than
BBO’s, and their arms form Fabry-Perot cavities.
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Big assumption--Redshifts of binaries are all measured by follow-up obs.
w0

w
a

h

�
m

Nbinary = 2.5� 105

+CMB (Planck)

+CMB (Planck)

w(a) = w0 + wa(1� a)

But,
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図 3: NS residual の大きさ。横軸: ρth/ρ̄e(5), 縦軸:
RNS.
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Tobs = 3 yr (fmin = 0.0446Hz) Tobs = 5 yr (fmin = 0.0368Hz) Tobs = 10 yr (fmin = 0.0284 Hz)
rn ρ̄(5) ρth/ρ̄e(5) RNS ρ̄(5) ρth/ρ̄e(5) RNS ρ̄(5) ρth/ρ̄e(5) RNS

3 8.064 4.437 2.43 × 10−1 8.076 4.430 2.42 × 10−1 8.086 4.425 2.42 × 10−1

2 12.08 2.962 8.97 × 10−2 12.10 2.958 8.93 × 10−2 12.11 2.955 8.91 × 10−2

1 24.06 1.487 4.66 × 10−3 24.07 1.486 4.64 × 10−3 24.09 1.485 4.62 × 10−3

1/2 47.75 0.749 0 47.77 0.749 0 47.78 0.749 0
1/3 71.25 0.502 0 71.25 0.502 0 71.26 0.502 0
1/5 118.9 0.304 0 117.9 0.303 0 117.9 0.303 0

表 1: NS フォアグラウンドの residual, RNS.

4 標準音源 (X 測定)

重力波の振幅情報に含まれる dL だけではなく、位相情報に含まれる X という dL とは独立な観測量を用
いることにより、宇宙論パラメータ、特に、ダークエネルギーの状態方程式に対する制限について考える。

4.1 重力波波形
全天平均した連星からの重力波波形（Fourier domain）は次式で与えられる。

h̃(f) =
A

dL(z)
M5/6

z f−7/6eiΨ(f) . (20)

ここで、定数 A ≡ (
√

6π2/3)−1, 光度距離 dL、redshifted chirp mass Mz ≡ (1 + z)Mc, 連星軌道角運動量の向
きを向いた単位ベクトル L̂, 観測者から連星への単位ベクトル n̂ である。Ψ(f) は 1.5 PN まででは 8

Ψ(f) = 2πftc − φc −
π

4
+

3
128

(πMzf)−5/3

×
[
1 +

20
9

(
743
336

+
11
4

η)η−2/5(πMzf)2/3 − 16πη−3/5(πMzf) − 25
768

X(z)Mz(πfMz)−8/3

]

(21)

で与えられる。tc, φc は連星合体時の時間と位相である。(21)式の [· · · ] 内の第１項が Newtonian 項であり、
(πMzf)1/3 が掛かる毎に 0.5 PN ずつ高次項になる。[· · · ] 内の最後の項は宇宙膨張により重力波の到達時間

8連星のスピンは簡単のため、ゼロとしている。
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5

;
にずれが生じる効果によるものであり、つまり、

Ψacc(f) = − 25
32768

X(z)(πf)−13/3M−10/3
z ,

だけの位相のずれを生じる。ここで、X(z) は

X(z) ≡ 1
2

(
H0 −

H(z)
1 + z

)
, (22)

で定義されている。(22)式は [ȧ(0) − ȧ(z)]/2 とも書く事が出来、宇宙が加速膨脹しているならば X(z) > 0,
減速膨張しているならば X(z) < 0 となる。Ψacc(f) は −4 PN の効果であり、より低周波側で相対的に寄与
が大きくなる。(20)式の波形が観測されるのは、合体直前 (ISCO) の周波数 fmax までであり、

fmax =
[
63/2πMt(1 + z)

]−1
,

で与えられる。Mtotal は連星の全質量である。一方、観測出来る最小の周波数は、観測時間 Tobs と Mz によ
り決まり、

fmin = 0.233
(

1M"
Mz

)5/8 (
1 yr
Tobs

)3/8

Hz , (23)

で与えられる。1.4M" − 1.4M" の NS 連星が z < 5 にある場合、fmin は (23) 式で、fmax は検出器雑音で決
まり、ここでは 100Hz にとる。

4.2 検出器雑音
DECIGO 検出器雑音とWD フォアグラウンドとしては (7) 式を用いる。NS フォアグラウンドに関しては、

(12) 式と表 1にある RNS の値を用いる。つまり、雑音曲線としては

Sh(f) = Sinst
h (f) + Sex−gal

h (f)RWD(f) + SNS
h (f)RNS , (24)

を用いる。ここで注意しなければならないのは、観測される NS の S/N は個々の NS を差引いた後の residual
によって決まっていることである。そのため、やや optimistic な見積もりになっている 9。

4.3 宇宙論パラメータ
光度距離 dL(z) と宇宙膨張による位相補正 X(z) は

dL(z) = (1 + z)
∫ z

0

dz′

H(z′)
, (25)

X(z) =
1
2

(
H0 −

H(z)
1 + z

)
, (26)

であり、dL(z), X(z) は Hubble パラメータ H(z) が z の関数として決まれば、z の関数として一意に決まる。
簡単のため、平坦な宇宙を仮定すると H(z) は

H(z) = H0

{
Ωm(1 + z)3 + (1 − Ωm) exp

[
3

∫ z

0
dz′

1 + w(z′)
1 + z′

]}1/2

, (27)

で与えられる。w(z) は時間変化するダークエネルギーの状態方程式のパラメータであり、Chevalier-Polarski-
Linder (CPL) parametrization [9, 10]

w(z) = w0 + w1
z

1 + z
,

9前節の NS フォアグランド除去と同様に、簡単のため、検出器雑音レベルまでは NS の数もそれほど多くなく、S/N も比較的大
きいので容易に差引くことが出来ると仮定している。

6

Nishizawa, Yagi, AT & Tanaka (’12)

�t = �T + X(z)�T 2 X(z) � 1
2

�
H0 �

H(z)
1 + z

�

time to coalescence at observer�t :
�T = (1 + z)�te : redshifted time to coalescence at source



Cosmic acceleration from dL & X
amplitude phasedL(z) X(z)

• long observation timeBut, low S/N for phase drift measurement:

• improved detector sensitivity

7

宇宙論パラメータは決定出来るか？
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連星１個での決定精度
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! 

"X
X

# 

$ 
% 

& 

' 
( 

n

~ 10)3

z が分からなくても、重力波でのみで宇宙論パラメータを
決定する事は原理的には可能だが、ultimate DECIGO の感度が必要
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以下では、電磁波観測から z が決まると仮定し、dL を用いて
H(z) を決定するための新しい方法を提案する。

w(a) = w0 + wa(1� a)
dark energy E.O.S

(=observe many binaries)



Self-consistent analysis

What is the required detector sensitivity for 
cosmological science on dark energy & primordial GWB ?

Taking the binary confusion noise into account,

Estimate fraction of un-resolved 
NS-NS binaries out to z=5

Estimate SNR for primordial GWB & expected constraint on dark 
energy in the presence of residual noises:

Assume detector’s sensitivity
DECIGO

confusion noise 
from WD-WD rn = 1/5

※ BBO corresponds to 

rn = 1

rn = 1/3

1/2
1/3

Nishizawa, Yagi, AT & Tanaka (’12)

Sinst
n (f) = r2

n Sfid
n (f)

Sinst
n (f) = r2
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RNS(f)

Sn(f) = Sinst
n (f) + SWD

n (f) + SNS
n (f)RNS(f)

step1

step2

step3



Result (1)
below SNR=20Fraction of un-resolved NS-NS binaries

1 year 3 year 5 yearrn

SNR=5

Yagi & Seto (’11)

Ncorr = 2

Sn(f)

RNS

SNR for Primordial GWB
Minimum detectable 

amplitude

Sn(f) = Sinst
n (f) + SWD

n (f) + SNS
n (f)RNS(f)

based on the Monte Carlo results by

Mpc�3yr�1
ṅ0 = 10�6

T/S ratio @ 
CMB scales

ṅ0 = 10�7r=0.1

r=0.01



Result (2)

4

A. Luminosity distance error

Let us first estimate the distance error of the stan-
dard siren, taking account of the instrumental noise of
the GW detector. Possible systematic errors will be dis-
cussed later. In GW experiments, a direct observable is
the waveform of the GW signal, and comparing it with a
theoretical template, we not only determine the system
parameters of GW source but also extract the cosmolog-
ical information.

For a single binary system, the Fourier transform of the
GW waveform is expressed as a function of frequency f
[17, 18],

h̃(f) =
A

dL(z)
M5/6

z f−7/6eiΨ(f) , (12)

where dL is the luminosity distance, and the quantity
Mz = (1 + z)η3/5Mt is the redshifted chirp mass with
the total mass Mt = m1 + m2 and the symmetric mass
ratio η = m1m2/M2

t . Here, the constant A is given by
A = (

√
6π2/3)−1, which is multiplied by the factor

√
4/5

for a geometrical average over the inclination angle of a
binary [36]. The function Ψ(f) represents the frequency-
dependent phase arising from the orbital evolution, and
at the order of the restricted 1.5 post-Newtonian (PN)
approximation, it is given by [17, 18]

Ψ(f) = 2πf tc − φc −
π

4
+

3
128

(πMzf)−5/3

×
[
1 +

20
9

(
743
336

+
11
4

η

)
η−2/5(πMzf)2/3

−16πη−3/5(πMzf)
]

, (13)

where tc and φc are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the Post-Newtonian order cor-
rections in powers of v ∼ (πMzf)1/3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter H(z) can be also
measured from this term [1, 19]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expantion in the subse-
quent analysis.

In Eqs. (12) and (13) , there are five unknown param-
eters to be determined observationally, i.e., Mz, η, tc, φc,
and dL. Except for the luminosity distance, the four pa-
rameters merely carry the information on the individual
property of the binary system. For simplicity, we con-
sider the equal-mass NS binaries with 1.4M", which lead
to Mz = 1.22(1 + z)M" and η = 1/4, and set the other
parameters to tc = 0 and φc = 0.

Since the GW observation can only determine the red-
shifted chirp mass Mz, the redshift of each binary has to
be measured from an electromagnetic counterpart. Ac-
cording to Cutler and Holz [4], the angular resolution of
BBO is ∼ 1 − 100 arcsec2, with which we can identify
the host galaxy of the binary. We thus suppose that the
redshift of any binary system is obtained from the electro-
magnetic observations. Note that the Doppler effect by
the local motion also affects the redshifted chirp mass,
and the dipole anisotropy might be measured through
the spatial distribution of the observed chirp mass if
the intrinsic scatter in the mass distribution of NS bina-
ries is very small. The feasibility to measure the dipole
anisotropy from the chirp mass might be interesting, but
we need a more detailed study on the formation history
of NS binaries, and we here simply ignore this effect in
the parameter estimation.

The fundamental basis to estimate the distance error
for a single binary is the Fisher matrix formalism. The
Fisher matrix for a single binary is given by [17, 20]

Γab = 4
8∑

i=1

Re
∫ fmax

fmin

∂ah̃∗
(i)(f) ∂bh̃(i)(f)

P (f)
df , (14)

where ∂a denotes a derivative with respect to a parameter
θa; Mz, η, tc, φc, and dL. The quantity h̃(i) represents the
GW signal obtained from the i-th interferometer. Since
two independent signals are obtained for each cluster [21],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum P (f). The analytical
fit of noise spectrum [37] is given by

P (f) = 4.21 × 10−50

(
f

1Hz

)−4

+ 1.25 × 10−47

+3.92 × 10−49

(
f

1Hz

)2

Hz−1 .

In Fig. 2, the noise spectrum of DECIGO is shown, to-
gether with the evolutionary tracks of the NS binary lo-
cated at three different redshifts, z = 0.1, 1, and 5. In
each track, the symbols indicate the frequency at the 10,
3 and 1 years before the time of binary coalescence (from
left to right). In this respect, the lower cutoff of the fre-
quency fmin should be incorporated into the integration
in Eq. (14), and is given by the function of observation
time Tobs as well as the redshift and mass:

fmin = 0.233
(

1M"
Mz

)5/8 (
1 yr
Tobs

)3/8

Hz . (15)

Note that the coalescence frequency of the NS binary is
typically ∼ kHz, and thus the upper cutoff of the fre-
quency naturally arises from the noise curve. For the
computational purpose, we set fmax = 100Hz.

Given the numerically evaluated Fisher matrix, the
marginalized 1-sigma error of a parameter, ∆θa is es-
timated from the inverse Fisher matrix

∆θa =
√

{Γ−1}aa. (16)

Fisher 
matrix

h̃(f) : GW waveform
(restricted 1.5PN)( )

6 params including dL, X

Sn(f)

The errors in dL(zi) & X(zi)
are translated to the uncertainties in cosmological parameters

obtained from Fisher matrix

(�m, w0, wa)

rn = 1

rn = 1/5

rn = 1/3

ṅ0 = 10�6 Mpc�1

GW alone
w(a) = w0 + wa(1� a)

Dark energy E.O.S 

(68%CL)
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the GW detector. Possible systematic errors will be dis-
cussed later. In GW experiments, a direct observable is
the waveform of the GW signal, and comparing it with a
theoretical template, we not only determine the system
parameters of GW source but also extract the cosmolog-
ical information.

For a single binary system, the Fourier transform of the
GW waveform is expressed as a function of frequency f
[17, 18],

h̃(f) =
A

dL(z)
M5/6

z f−7/6eiΨ(f) , (12)

where dL is the luminosity distance, and the quantity
Mz = (1 + z)η3/5Mt is the redshifted chirp mass with
the total mass Mt = m1 + m2 and the symmetric mass
ratio η = m1m2/M2

t . Here, the constant A is given by
A = (

√
6π2/3)−1, which is multiplied by the factor

√
4/5

for a geometrical average over the inclination angle of a
binary [36]. The function Ψ(f) represents the frequency-
dependent phase arising from the orbital evolution, and
at the order of the restricted 1.5 post-Newtonian (PN)
approximation, it is given by [17, 18]

Ψ(f) = 2πf tc − φc −
π

4
+

3
128

(πMzf)−5/3

×
[
1 +

20
9

(
743
336

+
11
4

η

)
η−2/5(πMzf)2/3

−16πη−3/5(πMzf)
]

, (13)

where tc and φc are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the Post-Newtonian order cor-
rections in powers of v ∼ (πMzf)1/3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter H(z) can be also
measured from this term [1, 19]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expantion in the subse-
quent analysis.

In Eqs. (12) and (13) , there are five unknown param-
eters to be determined observationally, i.e., Mz, η, tc, φc,
and dL. Except for the luminosity distance, the four pa-
rameters merely carry the information on the individual
property of the binary system. For simplicity, we con-
sider the equal-mass NS binaries with 1.4M", which lead
to Mz = 1.22(1 + z)M" and η = 1/4, and set the other
parameters to tc = 0 and φc = 0.

Since the GW observation can only determine the red-
shifted chirp mass Mz, the redshift of each binary has to
be measured from an electromagnetic counterpart. Ac-
cording to Cutler and Holz [4], the angular resolution of
BBO is ∼ 1 − 100 arcsec2, with which we can identify
the host galaxy of the binary. We thus suppose that the
redshift of any binary system is obtained from the electro-
magnetic observations. Note that the Doppler effect by
the local motion also affects the redshifted chirp mass,
and the dipole anisotropy might be measured through
the spatial distribution of the observed chirp mass if
the intrinsic scatter in the mass distribution of NS bina-
ries is very small. The feasibility to measure the dipole
anisotropy from the chirp mass might be interesting, but
we need a more detailed study on the formation history
of NS binaries, and we here simply ignore this effect in
the parameter estimation.

The fundamental basis to estimate the distance error
for a single binary is the Fisher matrix formalism. The
Fisher matrix for a single binary is given by [17, 20]

Γab = 4
8∑

i=1

Re
∫ fmax

fmin

∂ah̃∗
(i)(f) ∂bh̃(i)(f)

P (f)
df , (14)

where ∂a denotes a derivative with respect to a parameter
θa; Mz, η, tc, φc, and dL. The quantity h̃(i) represents the
GW signal obtained from the i-th interferometer. Since
two independent signals are obtained for each cluster [21],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum P (f). The analytical
fit of noise spectrum [37] is given by

P (f) = 4.21 × 10−50

(
f
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)−4

+ 1.25 × 10−47

+3.92 × 10−49

(
f
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)2

Hz−1 .

In Fig. 2, the noise spectrum of DECIGO is shown, to-
gether with the evolutionary tracks of the NS binary lo-
cated at three different redshifts, z = 0.1, 1, and 5. In
each track, the symbols indicate the frequency at the 10,
3 and 1 years before the time of binary coalescence (from
left to right). In this respect, the lower cutoff of the fre-
quency fmin should be incorporated into the integration
in Eq. (14), and is given by the function of observation
time Tobs as well as the redshift and mass:

fmin = 0.233
(

1M"
Mz

)5/8 (
1 yr
Tobs

)3/8

Hz . (15)

Note that the coalescence frequency of the NS binary is
typically ∼ kHz, and thus the upper cutoff of the fre-
quency naturally arises from the noise curve. For the
computational purpose, we set fmax = 100Hz.

Given the numerically evaluated Fisher matrix, the
marginalized 1-sigma error of a parameter, ∆θa is es-
timated from the inverse Fisher matrix

∆θa =
√

{Γ−1}aa. (16)
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cussed later. In GW experiments, a direct observable is
the waveform of the GW signal, and comparing it with a
theoretical template, we not only determine the system
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For a single binary system, the Fourier transform of the
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[17, 18],
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where tc and φc are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the Post-Newtonian order cor-
rections in powers of v ∼ (πMzf)1/3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter H(z) can be also
measured from this term [1, 19]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expantion in the subse-
quent analysis.

In Eqs. (12) and (13) , there are five unknown param-
eters to be determined observationally, i.e., Mz, η, tc, φc,
and dL. Except for the luminosity distance, the four pa-
rameters merely carry the information on the individual
property of the binary system. For simplicity, we con-
sider the equal-mass NS binaries with 1.4M", which lead
to Mz = 1.22(1 + z)M" and η = 1/4, and set the other
parameters to tc = 0 and φc = 0.

Since the GW observation can only determine the red-
shifted chirp mass Mz, the redshift of each binary has to
be measured from an electromagnetic counterpart. Ac-
cording to Cutler and Holz [4], the angular resolution of
BBO is ∼ 1 − 100 arcsec2, with which we can identify
the host galaxy of the binary. We thus suppose that the
redshift of any binary system is obtained from the electro-
magnetic observations. Note that the Doppler effect by
the local motion also affects the redshifted chirp mass,
and the dipole anisotropy might be measured through
the spatial distribution of the observed chirp mass if
the intrinsic scatter in the mass distribution of NS bina-
ries is very small. The feasibility to measure the dipole
anisotropy from the chirp mass might be interesting, but
we need a more detailed study on the formation history
of NS binaries, and we here simply ignore this effect in
the parameter estimation.

The fundamental basis to estimate the distance error
for a single binary is the Fisher matrix formalism. The
Fisher matrix for a single binary is given by [17, 20]
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θa; Mz, η, tc, φc, and dL. The quantity h̃(i) represents the
GW signal obtained from the i-th interferometer. Since
two independent signals are obtained for each cluster [21],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum P (f). The analytical
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In Fig. 2, the noise spectrum of DECIGO is shown, to-
gether with the evolutionary tracks of the NS binary lo-
cated at three different redshifts, z = 0.1, 1, and 5. In
each track, the symbols indicate the frequency at the 10,
3 and 1 years before the time of binary coalescence (from
left to right). In this respect, the lower cutoff of the fre-
quency fmin should be incorporated into the integration
in Eq. (14), and is given by the function of observation
time Tobs as well as the redshift and mass:
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Note that the coalescence frequency of the NS binary is
typically ∼ kHz, and thus the upper cutoff of the fre-
quency naturally arises from the noise curve. For the
computational purpose, we set fmax = 100Hz.

Given the numerically evaluated Fisher matrix, the
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dard siren, taking account of the instrumental noise of
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cussed later. In GW experiments, a direct observable is
the waveform of the GW signal, and comparing it with a
theoretical template, we not only determine the system
parameters of GW source but also extract the cosmolog-
ical information.

For a single binary system, the Fourier transform of the
GW waveform is expressed as a function of frequency f
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where tc and φc are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the Post-Newtonian order cor-
rections in powers of v ∼ (πMzf)1/3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter H(z) can be also
measured from this term [1, 19]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expantion in the subse-
quent analysis.

In Eqs. (12) and (13) , there are five unknown param-
eters to be determined observationally, i.e., Mz, η, tc, φc,
and dL. Except for the luminosity distance, the four pa-
rameters merely carry the information on the individual
property of the binary system. For simplicity, we con-
sider the equal-mass NS binaries with 1.4M", which lead
to Mz = 1.22(1 + z)M" and η = 1/4, and set the other
parameters to tc = 0 and φc = 0.

Since the GW observation can only determine the red-
shifted chirp mass Mz, the redshift of each binary has to
be measured from an electromagnetic counterpart. Ac-
cording to Cutler and Holz [4], the angular resolution of
BBO is ∼ 1 − 100 arcsec2, with which we can identify
the host galaxy of the binary. We thus suppose that the
redshift of any binary system is obtained from the electro-
magnetic observations. Note that the Doppler effect by
the local motion also affects the redshifted chirp mass,
and the dipole anisotropy might be measured through
the spatial distribution of the observed chirp mass if
the intrinsic scatter in the mass distribution of NS bina-
ries is very small. The feasibility to measure the dipole
anisotropy from the chirp mass might be interesting, but
we need a more detailed study on the formation history
of NS binaries, and we here simply ignore this effect in
the parameter estimation.

The fundamental basis to estimate the distance error
for a single binary is the Fisher matrix formalism. The
Fisher matrix for a single binary is given by [17, 20]
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θa; Mz, η, tc, φc, and dL. The quantity h̃(i) represents the
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two independent signals are obtained for each cluster [21],
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cated at three different redshifts, z = 0.1, 1, and 5. In
each track, the symbols indicate the frequency at the 10,
3 and 1 years before the time of binary coalescence (from
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typically ∼ kHz, and thus the upper cutoff of the fre-
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GW cosmology in space
With a detector sensitivity comparable to BBO

�gw � 10�16

on dark energy FoM~100

• Detectable primordial GWB will be down to

• Foreground removal will be made satisfactory 

• Long-term obs. (10 yrs) will lead to a tight constraint

rn
= 1/3

ṅ0 = 10�6Mpc�3yr�1

Tobs = 5yr

fraction of optical follow-up

Nz

adding optical follow-up samples  
further improves FoM

※ Even a partial follow-up (<0.1% of total #) 
is enough to reach FoM=100

(rn � 1/3)

Of course,

(r<0.01)



Summary
Detection & characterization of GWBs 

and cosmology from space-based detectors

Ground-based

Space-based

network of multiple detectors would give a nearly 
optimal characterization of GWBs (polarization states)

it will provide a way to directly detect primordial GWBs. 
Further, a large amount of NS binaries may be used as 

alternative cosmological probe w/o optical follow-up,
though we still need a further investigation
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Angular resolution of BBO

stellation) are given explicitly in Secs. III and V of Cutler
[7]. The exact expressions depend on the two angles
ð!0;"0Þ that describe each constellation’s position around
the Sun, and the orientation of each detector-triangle
within its plane at some fiducial time, t0. For definiteness,
for the four mini-LISA’s we choose: ð!0;"0Þ ¼ ð0; 0Þ,
ð0;#Þ, ð2#=3; 2#=3Þ, and ð4#=3; 4#=3Þ.

The uncertainty in the source’s angular position, !"S

(in solid angle), is given by [32]

!"S ¼ 2#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!$SÞ2ð!%SÞ2 $ ð!$S!%SÞ2

q
: (14)

The 2# factor on the right-hand side of Eq. (14) is con-
ventional; with this definition, the probability that the
source lies outside an (appropriately shaped) error ellipse
enclosing solid angle !" is e$!"=!"S . That is, as defined
above, !"S is very good approximation to the size of the
1& error ellipse.

BBO’s median SNR angular resolution and distance
accuracy (both 1&) for NS and BH mergers and a range
of z are shown in Figs. 4 and 5, respectively. These figures
were produced as follows. Each NS was taken to have mass
1:4M%, and each BH to have mass 10M%. For BBO’s (sky-
averaged) noise spectral density, ShðfÞ, we adopted the
fitting function

ShðfÞ ¼ 6:15& 10$51f$4 þ 1:95& 10$48

þ 1:2& 10$48f2; (15)

where f is in units of Hz. For each z, we chose 250 random
angle sets ('S, %S, 'L, %L), and computed the SNR, the
Fisher matrix, and its inverse. Since the Fisher matrices are
nearly degenerate, we tested robustness by using both
Matlab’s standard matrix inversion function and Matlab’s
Cholesky-factorization inversion routine; these were found
to give essentially identical results. While we argued above
that the spin-spin coupling will have a negligible impact on

NS-NS waveforms for typical cases, as a further test of
robustness we added an additional spin-spin parameter
(usually denoted ‘‘&’’ in the literature), and recomputed
parameter-estimation accuracies. The results shown in
Figs. 4 and 5 turn out to be essentially independent of the
presence/absence of a spin-spin term in the waveform
model. Note that the results in Figs. 4 and 5 are in reason-
ably good agreement with the z ¼ 3 results in Table 5 of
Cornish & Crowder [22] (considering that we model the
high-frequency part of BBO’s noise curve somewhat
differently).
Let us suppose that BBO identifies a binary system

somewhere in the universe. We now determine the number
of potential host galaxies for the binary to be found in the
BBO error volume. We closely follow the approach of
Holz & Hughes [12], updating their value for the projected
number density to the Hubble Ultra Deep Field number:
dN=d" ¼ 1; 000 galaxies=arcmin2 [33]. Since BBO mea-
sures distances at the percent level, the depth of the BBO
error box is dominated by the distance uncertainty due to
gravitational lensing. Following Eqs. (6)–(8) and Fig. 8 of
[12], we calculate the total number of galaxies in the BBO
error box, per arcmin2. We then multiply this by the size of
the BBO error box (shown in Fig. 4), to arrive at the total
number of galaxies in the BBO error box, as a function of
redshift. This result is shown in Fig. 6. The largest number
of galaxies in a BBO error box is in the case of NS-NS
binaries at z( 1:5, but even in this case there is less than
‘‘half’’ of a galaxy present. Thus even at the ‘‘worst’’
redshift, the median occupation fraction is less than
one—it will be possible to identify the unique host for
the majority of BBO sources, and hence associate the
appropriate redshift for the majority of distance measure-
ments. This is in contrast to the case of LIGO or LISA,
where the error boxes are large enough that associated
electromagnetic activity (such as a gamma-ray burst, or
activity associated with a supermassive binary black hole

FIG. 5 (color online). BBO’s median 1& distance accuracy as
a function of redshift, z, for merging BH-BH, BH-NS, and NS-
NS binaries.

FIG. 4 (color online). BBO’s angular resolution as a function
of redshift, z. The three curves show BBO’s median 1& angular
resolution for three fiducial types of merging compact binaries:
BH-BH, BH-NS, and NS-NS.
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merger) is required to uniquely identify the counterpart
[12,34,35]. Obviating the need for an independent identi-
fication of the counterpart sharply increases the expected
number of usable standard sirens, and hence significantly
improves the accuracy of the cosmological measurements.
Galaxy misidentifications will generally be seen as large
outliers, and thus their influence can be mitigated by the
use of robust statistics, such as the Hough Transform (see,
e.g., Storkey et al. [36])

III. ULTRAHIGH-PRECISION COSMOLOGICAL
PARAMETERS FROM BBO

A. The DL ! z relation

We begin by considering BBO’s measurements of the
luminosity distance-redshift relation (see Fig. 7). This
relation is a direct measure of the evolution history of the
Universe: redshift provides the size of the Universe at
emission, and luminosity distance provides the time since
emission. Thus a precise measurement of this relation is
sensitive to dark energy; indeed, it is this method that
enabled the initial discovery of the accelerating expansion
of the Universe now associated with dark energy.

We consider a fiducial population of 2:5" 105 NS/NS
binaries distributed according to Eq. (2), out to z ¼ 3. We
assume that the distance measurement errors due to detec-
tor noise for each individual binary are those shown in
Fig. 4. Because BBO does such an exquisite measurement
of distance, the errors on the true distance to a given binary
will be dominated by the effects of gravitational-lensing
magnification [37,38]. We incorporate the lensing errors
following the approach of [39], which is entirely appro-
priate given the very high-number statistics we are consid-
ering. For each individual binary we take the dispersion in
flux due to lensing to be given by !lensing ¼ 0:088z (see

Eq. 9 of [39]). We have explicitly checked that this ap-
proach is equivalent to drawing magnification values from
the full, non-Gaussian lensing probability distribution
functions derived in [38]. We assume that the sky localiza-
tion is sufficient for the identification of a unique host
galaxy (and hence redshift) for each binary (as in Fig. 4).
The redshift determination will need to be done indepen-
dently of BBO, in the electromagnetic band. While in
practice there will be some host galaxy misidentifications,
for simplicity in this study we assume that perfect redshifts
have been obtained for all of our sources. (This simplifi-
cation is partly based on our belief that a robust cosmo-
logical parameter-estimation method will substantially
mitigate the effects of a fractionally small set of misiden-
tifications—enough so that in estimating BBO’s perform-
ance, to a first approximation it is reasonable to neglect
them.) We Monte Carlo generate populations of observed
binaries, and then for each population we determine the
best-fit cosmological parameters (varying the number of
free parameters of interest). We repeat this procedure for a
large (> 105) number of runs, and plot the resulting error
contours. In what follows, the 1! contours contain 68.3%
of the best-fit values, and the 2! contours contain 95.5% of
the models.
We follow the common convention of parametrizing the

dark-energy equation of state in the two-parameter form
[40]

wðzÞ ¼ w0 þ wa
z

ð1þ zÞ : (16)

We fit each data set to five cosmological parameters: the
Hubble constant H0 ¼ h" 100 km=s=Mpc, the dark-
matter density !m, the dark-energy density !x, and the

FIG. 7 (color online). Distance versus redshift for a sample
BBO binary population. Distance is shown as distance modulus,
and includes both BBO errors and gravitational lensing. The red
curve is the true luminosity distance-redshift relation. Notice that
lensing causes a small number of binaries to become tremen-
dously magnified (to lower distance modulus), but there is a
lower limit to the amount of demagnification.

FIG. 6 (color online). Number of galaxies in the BBO error
cube, as a function of redshift. Even in the worst case, there is
less than one galaxy within 1! of a given binary on the sky, and
therefore it should be possible to robustly identify the unique
host galaxy.
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Noise curves: DECIGO & BBO

10!3 10!2 10!1 100 101 10210!25

10!24

10!23

10!22

10!21

10!20

10!19

10!18

図 1: DECIGO (赤)と BBO (青)の雑音曲線。DECIGOの場合は rn = 1としたもの。実線（黒）は
√

Sex−gal
h .

白色矮星 (WD)

まずは WD の寄与のみを考える。雑音のパワースペクトルは銀河系内の WD の寄与 [2] と系外の WD の
寄与 [3] から成り、

Sh(f) = min
[

Sinst
h (f)

exp(−κNf/Tobs)
, Sinst

h (f) + Sgal
h (f)RWD(f)

]
+ Sex−gal

h (f)RWD(f) , (4)

Sgal
h (f) = 2.1 × 10−45

(
f

1Hz

)−7/3

Hz−1 , (5)

Sex−gal
h (f) = 4.2 × 10−47

(
f

1Hz

)−7/3

Hz−1 , (6)

と表される。ここで、κ ≈ 4.5, Nf = 2 × 10−3(f/1Hz)−11/3 Hz−1, RWD(f) = exp[−2(f/0.05Hz)2] であ
る。本レポートでは、Tobs を 1 − 10 yr,

√
Sinst

h をデフォルト雑音曲線から 1/5 − 5 倍スケールさせるが、
f = 5 × 10−3 Hz 以上では系内の WD の寄与は無視することが出来、

Sh(f) = Sinst
h (f) + Sex−gal

h (f)RWD(f) , (7)

で良く近似出来る 2。これはデシヘルツ帯を考える際には妥当な近似である。

中性子星連星 (NS)

Phinney 2001 [6] によると、NS のエネルギー密度は

ΩNS
gw(f) =

8π5/3

9H2
0

M5/3
c f2/3n0 , (8)

n0 =
∫ ∞

0

ṅ(z)
(1 + z)4/3H(z)

dz , (9)

2f = 5 × 10−3 Hz 以上では系内の WD の寄与は 10% である。
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∆ΩNS
gw(f, z) は

∆ΩNS
gw(f, z) =

dΩNS
gw(f, z)
dz

, (16)

ΩNS
gw(f, z) ≡ 8π5/3

9H2
0

M5/3
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(1 + z′)4/3H(z′)

dz′ . (17)

ここで、Θ はステップ関数である。(14) 式の RNS は f にも ṅ0 にも依っていないことに注意する。ρ2(z) の
角度平均をとったものを

ρ̄2(z) ≡ 〈ρ2(z)〉 , (18)

すると、赤方偏移 z にある edge-on の連星に対する S/N は

ρ̄2
e(z) ≡ 〈ρ2(z)〉edge−on =

5
16

ρ̄2(z) . (19)

で与えられる 5。Yagi & Seto [8] では ρ̄e(z) を用いて RNS を ρth/ρ̄e(5) の関数として数値的に求めている。
結果を図 3-4に示す。ここでは ρth = 20 と固定し、DECIGO の干渉計８台6 を用いて ρ̄e(5) に対応する RNS

を求めたのが表 1である。この時 ρ̄e(5) を求めるのに、NS フォアグランドは考慮していない 7。

5h+ ∝ 1+cos2 θ
2 , h× ∝ cos θ なので、g(θ) ≡

“
1+cos2 θ

2

”2
+ cos2 θ とすると、〈g(θ)〉 = 4

5 , g(θ)|edge−on = 1
4 である。

6８台の干渉計の雑音は全て同じとし、雑音曲線には (1) 式をスケールさせたものを用いている。
7本来は NS フォアグランドも考慮して、NS を１つずつ差引きながら反復的に NS の residual を求めるべきであるが、ここでは

簡単のため、検出器雑音レベルまでは NS の数もそれほど多くなく、S/N も比較的大きいので容易に差引くことが出来ると仮定して
いる。
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FIG. 4: Number of NS-NS binaries (in the unit of 104) that
would be observed by DECIGO in each redshift bin of ∆z =
0.1 at a redshift z during 3 yr observation. As is manifest
from Eq. (18), the number of the binaries scales linearly with
Tobs.

FIG. 5: The Hubble parameter calculated with our fiducial
cosmological parameters (solid curve) and 1σ-error bars esti-
mated in the cases that we use all binaries observed by DE-
CIGO during the observation time, 1 yr (red), 3 yr (green),
and 10 yr (blue) (long observation time corresponds to the
smaller error bar).

standard siren has a nearly equal sensitivity to the Hub-
ble parameter with other complementary methods such
as BAO. Another noticeable point using the standard
sirens is that we can trace the redshift evolution of Hub-
ble parameter even at higher redshift z ! 1. Although
the number of high-z NS binaries is highly uncertain, the
standard sirens would be potentially powerful to probe
the early-time cosmic expansion, and should deserve fur-
ther investigation.

IV. SYSTEMATIC ERRORS

So far, we have discussed the accuracy of Hubble pa-
rameter taking only account of the distance error associ-
ated with the instrumental noise. However, there are sev-
eral effects which may systematically affect the measure-
ment of dipole anisotropies in the luminosity distance,
leading to increasing the error in the Hubble parameter.
Among them, a dominant contribution may come from
the gravitational lensing magnification induced by the
matter inhomogeneities of large-scale structure along the
line of sight (e.g., [25–28]), which systematically changes
the luminosity distance to each binary system. Another
important effect would be the peculiar velocity of the bi-
nary along the line of sight, which randomly contributes
to measurement error via Doppler effect. These system-
atic errors to the averaged luminosity distance are sum-
marized as

[
∆d(0)

L (z)

d(0)
L (z)

]2

= σ2
inst(z) + σ2

lens(z) + σ2
pv(z) , (19)

where σinst is the error associated with the GW experi-
ment in Sec. III A, σlens is the lensing error, and σpv is
the peculiar-velocity error.

There are several studies on the effect of lensing mag-
nification, particularly focusing on the distance measure-
ment from the type Ia supernovae. Holz and Linder
[26] estimated the lensing error on the distance measure-
ment by using Monte Carlo simulation, and assuming the
Gaussian form of lensing magnification probability, they
derived a fitting formula for the systematic error. Later,
the significance of non-Gaussian tail has been recognized
[29, 30], and it turned out that this effect reduces the lens-
ing error by a factor of 1.5 - 2, compared to the Gaussian
distribution. More recently, Hirata, Holz, and Cutler [29]
adopted a log-normal distribution for the magnification
probability and obtained the fitting formula for the (av-
eraged) distance error:

σlens(z) = 0.066
[
1 − (1 + z)−0.25

0.25

]1.8

. (20)

In what follows, we adopt the lensing error in Eq. (20).
As for the peculiar velocity error, the clustering of

galaxies induced by the gravity leads to a coherent and/or
virialized random motion, which gives rise to the Doppler
effect and affects the determination of cosmological red-
shift via the spectroscopic measurement. In addition,
binary barycentric motion itself in the host galaxy also
leads to the Doppler effect, which causes random fluctu-
ations in the luminosity distance. These two systematic
effects can be of the same order and can be translated
into the distance error as [31]

σpv(z) =
∣∣∣∣1 − (1 + z)2

H(z)dL(z)

∣∣∣∣ σv,gal .

Cutler & Harm (’06)
Schneider et al. (’01)

For single binary 5

FIG. 2: Sky-averaged DECIGO noise curve. (Arm angle 60◦

is taken into account.) Diagonal lines represent frequency
evolutions of a NS-NS binary at z = 5 (solid, red), z = 1
(dotted, green), and z = 0.1 (dashed, blue). Diamonds on
the lines from the right to the left denote the frequency of the
binary 1 yr, 3 yr, and 10 yr before the merger.

In Fig. 3, the resultant error of the luminosity distance
for a single binary, σinst, is plotted against a source red-
shift, assuming the observation time 1 yr (solid curve),
3 yr (dotted curve), and 10 yr (dashed curve). The over-
lap of these three curves indicates that σinst hardly de-
pends on the observation time, because the observation
time appears only through the cutoff frequency fmin with
the fractional power of 3/8 and the improvement of the
precision is generally slow. Even for a single binary sys-
tem, the precision of a few percent level is easily achiev-
able for the distance measurement in the absence of sys-
tematic errors, and this is also true for a rather high-z
binary.

B. Accuracy of Hubble parameter

Given the uncertainty of the averaged luminosity dis-
tance for each binary, the accuracy of the Hubble param-
eter is estimated from Eq. (11), and with the ensemble
over the ∆N(z) independent binary systems in the vicin-
ity of the redshift z, we can get an improved constraint
on the Hubble parameter at each redshift bin.

Here, to derive the measurement error of the Hubble
parameter, we adopt the following fitting form of the NS-
NS merger rate given by Ref. [22]:

ṅ(z) = ṅ0 r(z) ; r(z) =






1 + 2z (z ≤ 1)
3
4 (5 − z) (1 < z ≤ 5)
0 (5 < z)

,

(17)

where the function r(z) is estimated based on the star
formation history inferred from the UV luminosity [23].
The quantity ṅ0 represents the merger rate at present.

FIG. 3: Measurement accuracy of the luminosity distance
with a single binary as a function of redshifts. The curves
tagged σinst are those determined only by instrumental noise
and with the observation time 1 yr (red, solid curve), 3 yr
(green, dotted curve), and 10 yr (blue, short-dashed curve),
respectively. The lensing error and the peculiar velocity error
are represented by magenta (long-dashed) and light blue (dot-
dashed) curves.

Though it is still uncertain, we adopt the most recent
estimate, ṅ0 = 10−6 Mpc−3 yr−1, as a reliable and confi-
dent estimate based on extrapolations from the observed
binary pulsars in our Galaxy [24]. Then, the number of
NS binaries in the redshift interval [z −∆z/2, z +∆z/2]
observed during Tobs, ∆N(z), is given by [22]

∆N(z) = Tobs

∫ z+∆z/2

z−∆z/2
dVc(z′) ṅ(z′)

dt

dz′
(18)

where dVc means the comoving volume element defined
as dVc(z) = 4πr2(z)dz/H(z) with the comoving radial
distance r(z) = dL(z)/(1 + z).

In Fig. 4, observed redshift distribution of NS binaries
∆N(z) is plotted, assuming the 3 year observation and
the redshift width ∆z = 0.1. The total number of NS bi-
naries is ∼ 106, which is much larger than the expected
number of type Ia supernovae. Note that the number
of merger events increases with Tobs, and thus the ac-
curacy of the Hubble parameter is improved by a factor
T 1/2

obs . Combining this and the distance error in previ-
ous subsection, Fig. 5 shows the expected errors for the
Hubble parameter measured from the dipole anisotropy.
The three different error bars in each redshift bin repre-
sent the results from the 1-, 3-, and 10-year observations
(from large to small sizes). The Figure implies that up
to the redshift z = 1, the Hubble parameter can be ac-
curately measured with a precision of 2 − 5%, 1 − 3%,
and 0.7 − 1.5% for the observation time of 1, 3, and 10
years, respectively. Even at z = 2, the Hubble parameter
can be measured with a precision of 18%, 10%, and 6%
for the observation time of 1, 3, and 10 years, respec-
tively. This is quite impressive in the sense that a GW

で与えられる 3。Mc はチャープ質量で、Mt = m1 + m2 と η = m1m2/M2
t を用いて Mc = η3/5Mt と定義さ

れる。連星の合体率の z 分布 ṅ(z) としては、Schneider et al. 2001 [6] の数値計算を線形フィッティングした
もの [7],

ṅ(z) = ṅ0 s(z) ; s(z) =






1 + 2z (z ≤ 1)
3
4(5 − z) (1 < z ≤ 5)
0 (5 < z)

, (10)

を用いる。基準となる宇宙論モデルとして平坦な ΛCDM で Ωm = 0.3 (ΩΛ = 0.7) を採用すると、(8) 式は

ΩNS
gw(f) = 3.74 × 10−11h−3

72

(
Mc

1.22M"

)5/3 (
f

1Hz

)2/3 (
ṅ0

10−6 Mpc−3 yr−1

)
, (11)

または

SNS
h (f) = 1.55 × 10−47h−1

72

(
Mc

1.22M"

)5/3 (
f

1Hz

)−7/3 (
ṅ0

10−6 Mpc−3 yr−1

)
, (12)

を得る。h72 は H0 = h72 × 72 km s−1 Mpc−1 により定義される。NS 連星フォアグラウンドの大きさはパラ
メータ ṅ0 に強く依存する。

2.3 考察
図 2に検出器雑音と confusion noise をまとめて示してある。NS フォアグラウンドは差引きを行う前のもの

をプロットしてある。後で定量的に議論するが、1/2 ≤ rn であれば、ほとんど差引くことが出来るため、NS
による confusion noise は全く問題にならない。一方、WD フォアグラウンドはこれ以上差引くことが出来ず、
低周波側で confusion noise となり、雑音曲線に寄与する。したがって、検出器雑音を rn 倍スケールさせても
f ≤ 0.1Hz ではあまり変化はなく、実質的にショット雑音のみをスケールさせることになる。

3 NS フォアグラウンドの除去
観測データから個々の NS 連星の重力波シグナルを差引けるかどうかはどれだけ精度良く連星パラメータ
を推定出来るかで決まる。つまり、S/N がある閾値以上であれば差引くことが出来る。Yagi & Seto [8] では、
各 z で連星の傾き角も考慮してモンテカルロ法による数値計算を行い、差引くことが出来ずに residual とし
て残ってしまう NS フォアグラウンドの割合を求めた。S/N は

ρ2(z) = 4
8∑

α=1

∫ fmax

fmin

|h̃(f)|2

Sh(f)
df , (13)

で与えられ4、ρi(z) を赤方偏移 z にある連星の i 番目のサンプル (傾き角はランダム) に対する S/N, ρth を
差引くために必要な S/N の閾値とすると、residual の大きさは次の量で特徴付けられる。

RNS =
∫ ∞
0 dz F (z)∆ΩNS

gw(f, z)
∫ ∞
0 dz ∆ΩNS

gw(f, z)
, (14)

F (z) ≡
∑

i ρ
2
i (z)Θ[ρth − ρi(z)]∑

i ρ
2
i (z)

. (15)

3この導出では、NS フォアグラウンドが stochastic GWB であり、(i) isotropic, (ii) unpolarized, (iii) stationary, (iv) Gaussian
といった GWB でよく用いられる仮定を満たしているとしている。厳密には正しくないが、まあ良い気もする。

4Yagi & Seto [8] の計算では、fmin = 0.2Hz, fmax = 100 Hz としている。しかし、RNS は ρth/ρ̄e(5) の関数として決まるため、
fmin の違いは結果にはほとんど影響しない。
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Waveform of GWs

4

A. Luminosity distance error

Let us first estimate the distance error of the stan-
dard siren, taking account of the instrumental noise of
the GW detector. Possible systematic errors will be dis-
cussed later. In GW experiments, a direct observable is
the waveform of the GW signal, and comparing it with a
theoretical template, we not only determine the system
parameters of GW source but also extract the cosmolog-
ical information.

For a single binary system, the Fourier transform of the
GW waveform is expressed as a function of frequency f
[17, 18],

h̃(f) =
A

dL(z)
M5/6

z f−7/6eiΨ(f) , (12)

where dL is the luminosity distance, and the quantity
Mz = (1 + z)η3/5Mt is the redshifted chirp mass with
the total mass Mt = m1 + m2 and the symmetric mass
ratio η = m1m2/M2

t . Here, the constant A is given by
A = (

√
6π2/3)−1, which is multiplied by the factor

√
4/5

for a geometrical average over the inclination angle of a
binary [36]. The function Ψ(f) represents the frequency-
dependent phase arising from the orbital evolution, and
at the order of the restricted 1.5 post-Newtonian (PN)
approximation, it is given by [17, 18]

Ψ(f) = 2πf tc − φc −
π

4
+

3
128

(πMzf)−5/3

×
[
1 +

20
9

(
743
336

+
11
4

η

)
η−2/5(πMzf)2/3

−16πη−3/5(πMzf)
]

, (13)

where tc and φc are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the Post-Newtonian order cor-
rections in powers of v ∼ (πMzf)1/3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter H(z) can be also
measured from this term [1, 19]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expantion in the subse-
quent analysis.

In Eqs. (12) and (13) , there are five unknown param-
eters to be determined observationally, i.e., Mz, η, tc, φc,
and dL. Except for the luminosity distance, the four pa-
rameters merely carry the information on the individual
property of the binary system. For simplicity, we con-
sider the equal-mass NS binaries with 1.4M", which lead
to Mz = 1.22(1 + z)M" and η = 1/4, and set the other
parameters to tc = 0 and φc = 0.

Since the GW observation can only determine the red-
shifted chirp mass Mz, the redshift of each binary has to
be measured from an electromagnetic counterpart. Ac-
cording to Cutler and Holz [4], the angular resolution of
BBO is ∼ 1 − 100 arcsec2, with which we can identify
the host galaxy of the binary. We thus suppose that the
redshift of any binary system is obtained from the electro-
magnetic observations. Note that the Doppler effect by
the local motion also affects the redshifted chirp mass,
and the dipole anisotropy might be measured through
the spatial distribution of the observed chirp mass if
the intrinsic scatter in the mass distribution of NS bina-
ries is very small. The feasibility to measure the dipole
anisotropy from the chirp mass might be interesting, but
we need a more detailed study on the formation history
of NS binaries, and we here simply ignore this effect in
the parameter estimation.

The fundamental basis to estimate the distance error
for a single binary is the Fisher matrix formalism. The
Fisher matrix for a single binary is given by [17, 20]

Γab = 4
8∑

i=1

Re
∫ fmax

fmin

∂ah̃∗
(i)(f) ∂bh̃(i)(f)

P (f)
df , (14)

where ∂a denotes a derivative with respect to a parameter
θa; Mz, η, tc, φc, and dL. The quantity h̃(i) represents the
GW signal obtained from the i-th interferometer. Since
two independent signals are obtained for each cluster [21],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum P (f). The analytical
fit of noise spectrum [37] is given by

P (f) = 4.21 × 10−50

(
f

1Hz

)−4

+ 1.25 × 10−47

+3.92 × 10−49

(
f

1Hz

)2

Hz−1 .

In Fig. 2, the noise spectrum of DECIGO is shown, to-
gether with the evolutionary tracks of the NS binary lo-
cated at three different redshifts, z = 0.1, 1, and 5. In
each track, the symbols indicate the frequency at the 10,
3 and 1 years before the time of binary coalescence (from
left to right). In this respect, the lower cutoff of the fre-
quency fmin should be incorporated into the integration
in Eq. (14), and is given by the function of observation
time Tobs as well as the redshift and mass:

fmin = 0.233
(

1M"
Mz

)5/8 (
1 yr
Tobs

)3/8

Hz . (15)

Note that the coalescence frequency of the NS binary is
typically ∼ kHz, and thus the upper cutoff of the fre-
quency naturally arises from the noise curve. For the
computational purpose, we set fmax = 100Hz.

Given the numerically evaluated Fisher matrix, the
marginalized 1-sigma error of a parameter, ∆θa is es-
timated from the inverse Fisher matrix

∆θa =
√

{Γ−1}aa. (16)
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ical information.

For a single binary system, the Fourier transform of the
GW waveform is expressed as a function of frequency f
[17, 18],

h̃(f) =
A

dL(z)
M5/6

z f−7/6eiΨ(f) , (12)

where dL is the luminosity distance, and the quantity
Mz = (1 + z)η3/5Mt is the redshifted chirp mass with
the total mass Mt = m1 + m2 and the symmetric mass
ratio η = m1m2/M2

t . Here, the constant A is given by
A = (

√
6π2/3)−1, which is multiplied by the factor

√
4/5

for a geometrical average over the inclination angle of a
binary [36]. The function Ψ(f) represents the frequency-
dependent phase arising from the orbital evolution, and
at the order of the restricted 1.5 post-Newtonian (PN)
approximation, it is given by [17, 18]

Ψ(f) = 2πf tc − φc −
π
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where tc and φc are the time and phase at coalescence,
respectively. The first term in the bracket in Eq. (13)
corresponds to Newtonian-order dynamics and the other
remaining terms represent the Post-Newtonian order cor-
rections in powers of v ∼ (πMzf)1/3. In principle, there
additionally appears a phase correction due to cosmic
expansion, and the Hubble parameter H(z) can be also
measured from this term [1, 19]. Although the inclusion
of the phase correction slightly changes the size of the
errors in binary parameters, it does not seriously affect
the estimation of the luminosity distance dL. In addition,
the sensitivity of the phase correction to the Hubble pa-
rameter is rather small. Thus, we may safely ignore the
phase correction due to cosmic expantion in the subse-
quent analysis.

In Eqs. (12) and (13) , there are five unknown param-
eters to be determined observationally, i.e., Mz, η, tc, φc,
and dL. Except for the luminosity distance, the four pa-
rameters merely carry the information on the individual
property of the binary system. For simplicity, we con-
sider the equal-mass NS binaries with 1.4M", which lead
to Mz = 1.22(1 + z)M" and η = 1/4, and set the other
parameters to tc = 0 and φc = 0.

Since the GW observation can only determine the red-
shifted chirp mass Mz, the redshift of each binary has to
be measured from an electromagnetic counterpart. Ac-
cording to Cutler and Holz [4], the angular resolution of
BBO is ∼ 1 − 100 arcsec2, with which we can identify
the host galaxy of the binary. We thus suppose that the
redshift of any binary system is obtained from the electro-
magnetic observations. Note that the Doppler effect by
the local motion also affects the redshifted chirp mass,
and the dipole anisotropy might be measured through
the spatial distribution of the observed chirp mass if
the intrinsic scatter in the mass distribution of NS bina-
ries is very small. The feasibility to measure the dipole
anisotropy from the chirp mass might be interesting, but
we need a more detailed study on the formation history
of NS binaries, and we here simply ignore this effect in
the parameter estimation.

The fundamental basis to estimate the distance error
for a single binary is the Fisher matrix formalism. The
Fisher matrix for a single binary is given by [17, 20]

Γab = 4
8∑

i=1

Re
∫ fmax

fmin

∂ah̃∗
(i)(f) ∂bh̃(i)(f)

P (f)
df , (14)

where ∂a denotes a derivative with respect to a parameter
θa; Mz, η, tc, φc, and dL. The quantity h̃(i) represents the
GW signal obtained from the i-th interferometer. Since
two independent signals are obtained for each cluster [21],
DECIGO has the eight interferometric signals in total,
each of which is supposed to have an identical detector
response and noise power spectrum P (f). The analytical
fit of noise spectrum [37] is given by

P (f) = 4.21 × 10−50

(
f

1Hz

)−4

+ 1.25 × 10−47

+3.92 × 10−49

(
f

1Hz

)2

Hz−1 .

In Fig. 2, the noise spectrum of DECIGO is shown, to-
gether with the evolutionary tracks of the NS binary lo-
cated at three different redshifts, z = 0.1, 1, and 5. In
each track, the symbols indicate the frequency at the 10,
3 and 1 years before the time of binary coalescence (from
left to right). In this respect, the lower cutoff of the fre-
quency fmin should be incorporated into the integration
in Eq. (14), and is given by the function of observation
time Tobs as well as the redshift and mass:

fmin = 0.233
(

1M"
Mz

)5/8 (
1 yr
Tobs

)3/8

Hz . (15)

Note that the coalescence frequency of the NS binary is
typically ∼ kHz, and thus the upper cutoff of the fre-
quency naturally arises from the noise curve. For the
computational purpose, we set fmax = 100Hz.

Given the numerically evaluated Fisher matrix, the
marginalized 1-sigma error of a parameter, ∆θa is es-
timated from the inverse Fisher matrix

∆θa =
√

{Γ−1}aa. (16)
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cal

det
ect

or

res
pon

se
and

noi
se

pow
er

spe
ctr

um
P (f)

. The
ana

lyt
ica

l

fit
of

noi
se

spe
ctr

um
[37

] is
giv

en
by

P (f)
=

4.2
1×

10
−50

( f

1H
z

)−4 + 1.2
5×

10
−47

+3.9
2×

10
−49

( f

1H
z

) 2 Hz−
1 .

In
Fig.

2,
the

noi
se

spe
ctr

um
of

DECIG
O

is sho
wn,

to-

get
her

with
the

evo
lut

ion
ary

tra
cks

of
the

NS bin
ary

lo-

cat
ed

at
thr

ee
diff

ere
nt

red
shi

fts,
z =

0.1
, 1,

and
5.

In

eac
h tra

ck,
the

sym
bol

s ind
ica

te
the

fre
que

ncy
at

the
10,

3 and
1 yea

rs bef
ore

the
tim

e of b
ina

ry
coa

les
cen

ce
(fro

m

left
to

rig
ht)

. In
thi

s res
pec

t, t
he

low
er

cut
off

of
the

fre
-

que
ncy

fm
in

sho
uld

be
inc

orp
ora

ted
int

o the
int

egr
ati

on

in
Eq.

(14
), and

is giv
en

by
the

fun
cti

on
of

obs
erv

ati
on

tim
e Tob

s
as

well
as

the
red

shi
ft and

mass
:

fm
in

= 0.2
33
( 1M

"

Mz

) 5/
8
( 1 yr

Tob
s

) 3/
8 Hz .

(15
)

Note
tha

t the
coa

les
cen

ce
fre

que
ncy

of
the

NS bin
ary

is

typ
ica

lly
∼

kH
z,

and
thu

s the
up

per
cut

off
of

the
fre

-

que
ncy

nat
ura

lly
ari

ses
fro

m
the

noi
se

cur
ve.

For
the

com
pu

tat
ion

al
pu

rpo
se,

we set
fm

ax
= 100

Hz.

Give
n the

num
eri

cal
ly

eva
lua

ted
Fish

er
matr

ix,
the

marg
ina

lize
d 1-s

igm
a err

or
of

a par
am

ete
r,
∆θa

is
es-

tim
ate

d fro
m

the
inv

ers
e Fish

er
matr

ix

∆θa
=
√ {Γ

−1 }aa
.

(16
)

restricted 1.5PN

A:  sky-averaged amplitude over 
inclination of binary system

(detector response is also taken into account)

redshifted chirp massMz :
� :

tc, �c : time & phase at coalescence

symmetric mass ratio

(1 + z)µ3/5m2/5
tot

µ/mtot


