Symmetric WIMP dark matter and Baryogenesis

To appear soon...

Nicolás Bernal[↑], François-Xavier Josse-Michaux[∗], Lorenzo Ubaldi[↑]

 $^{ op}$ Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,

Germany

* Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico,

Technical University of Lisbon, Portugal

IPMU -- Aug 8th, 2012

Facts

- Baryon Asymmetry of the Universe (BAU) $Y_B \equiv n_B / s \simeq 8.5 \times 10^{-11}$
- Baryonic matter abundance $\Omega_{\rm B}h^2 = 0.02260 \pm 0.00053$
- Dark matter (DM) abundance $\Omega_{DM}h^2 = 0.1123 \pm 0.0035$

•
$$\Omega_{DM} / \Omega_{B} \sim 5 \Rightarrow$$
 common origin?

Asymmetric Dark Matter

hep-ph/0410114, hep-ph/0510079, arXiv: 0807.4313, arXiv: 0901.4117, arXiv: 0909.2035, arXiv: 0909.5499, arXiv: 0911.4463, arXiv: 1005.1655, arXiv: 1008.1997, arXiv: 1008.2399, arXiv: 1008.2487, arXiv: 1009.0983, arXiv: 1009.2690, arXiv: 1009.3159, arXiv: 1011.1286, arXiv: 1012.1341, arXiv: 1101.4936, arXiv: 1104.1429, arXiv: 1104.5548, arXiv: 1016.4319, arXiv: 1106.4320, arXiv: 1106.4834, arXiv: 1108.3967, arXiv: 1201.2699, arXiv: 1202.0283, arXiv: 1203.1247, arXiv: 1204.5752, arXiv: 1205.0673, arXiv: 1205.2844 ...

- Relate the asymmetries in the dark and visible sectors
- Non-trivial structure of dark sector

Are there attempts to make a connection between symmetric DM and BAU?

Baryomorphosis McDonald, 1009.3227 and 1108.4653

 Dark Matter Assimilation D'Eramo, Fei, Thaler, 111.5615

• WIMPy Baryogenesis Cui, Randall, Shuve, 112.2704

A WIMPy baryogenesis miracle

Cui, Randall, Shuve, 1112.2704

Wednesday, August 8, 12

Cui, Randall, Shuve, 1112.2704

Two miracles in one framework!

I.WIMP miracle weak-scale DM, thermal relic abundance

2.WIMPy baryogenesis miracle DM annihilation generates the baryon asymmetry

Cui, Randall, Shuve 1112.2704

Wednesday, August 8, 12

Cui, Randall, Shuve 1112.2704

Sakharov conditions

$\sqrt{1.B-number violation}$

$\sqrt{2. CP violation}$

3. Out of thermal equilibrium

Departure from thermal equilibrium?

Don't be fooled!!

The departure from equilibrium is very small and not visible by eye on these plots, but it's good enough for our purpose.

Cui, Randall, Shuve 1112.2704

Sakharov conditions

$\sqrt{1.B-number violation}$

$\sqrt{2. CP violation}$

$\sqrt{3}$. Out of thermal equilibrium

Cui, Randall, Shuve 1112.2704

Washout processes

Central result

"If washout processes freeze out before WIMP freezeout, then a large baryon asymmetry may accumulate, and its final value is proportional to the WIMP abundance at the time that washout becomes inefficient."

 $\Rightarrow \qquad m_{\psi} \gtrsim m_x$

Also, $m_{\psi} < 2m_x$ so that the annihilation DM + DM $\rightarrow \psi$ + quark is kinematically allowed.

Our work

Fundamental ingredients for WIMPy baryogenesis

						\bigcirc
Dark		$SU(3)_c$	$SU(2)_L$	$Q_{U(1)y}$	$Q_{U(1)_B}$	\mathbb{Z}_4
matter	X	1	1	0	0	+i
Exotic	\overline{X}	1	1	0	0	-i
heavy —	ψ	3	1	+2/3	+1/3	$\left +1 \right $
quark	$\overline{\psi}$	$\overline{3}$	1	-2/3	-1/3	$\left +1 \right $
Sterile	n	1	1	0	0 or +1	+1
majorana	$\overline{\overline{u}}$	$\overline{3}$	1	-2/3	-1/3	-1
fermion	\overline{d}	$\overline{3}$	1	+1/3	-1/3	$\left -1 \right $

$$\psi \to d\bar{d}n$$

The discrete symmetry

• Start with a \mathbb{Z}_n

$$Q_X = \exp\left(\frac{2\pi i}{n}q_X\right), \quad Q_\psi = \exp\left(\frac{2\pi i}{n}q_\psi\right), \quad Q_{\bar{u}} = \exp\left(\frac{2\pi i}{n}q_{\bar{u}}\right)$$

- Require DM stability $\rightarrow q_X \neq 0$
- Forbid proton decay $\rightarrow q_{\text{quarks}} \neq 0, \quad q_{\text{leptons}} = 0$
- Avoid dangerous decays of $\psi \rightarrow q_{\psi} \neq q_{\text{quarks}}, \quad q_{\psi} = 0$
- Allow the operators $(XX)(\psi \bar{u})$ AND $(XX)(\psi^{\dagger} \bar{u}^{\dagger})$ at the same time $\rightarrow 2q_X + q_{\bar{u}} = 0 \pmod{n}, \quad 2q_X - q_{\bar{u}} = 0 \pmod{n},$

• Solution $q_X = n/4$, $q_{\bar{u}} = n/2 \rightarrow n = 4k \rightarrow \mathbb{Z}_4$

Complex charge \rightarrow Dirac fermion

The effective lagrangian

 $L_{eff} = \frac{1}{\Lambda^2} \sum_{i} \lambda_i^2 \mathcal{O}_i \quad \text{dim 6 operators, i = 1, ..., 20}$

e.g. $\mathcal{O}_1 = (XX)(\psi \bar{u})$ and so on ...

For comparison:

$$L = L_{kin} + L_{mass} - \frac{i}{2}\lambda_{X\alpha}S_{\alpha}(XX + \bar{X}\bar{X}) + i\lambda_{B\alpha}S_{\alpha}\bar{u}\psi$$

Cui Bandall Shuve III 2 2704

What's new?

- We have a total of 20 dim-6 operators (not all of which are important).
- They allow for the possibility of
 - t-channel DM annihilation into quark + exotic quark (on top of the s-channel);
 - DM annihilation into quark + antiquark (that does not contribute to the asymmetry);
 - tree-level processes for direct detection.
- We can study a class of models that extends and generalizes the one given in Cui, Randall, Shuve
 12.2704

Our goal is

to constrain these models, after reasonable, simplifying assumptions, using

- LHC data
- cosmological data (Boltzmann eqs. study)
- direct detection data

understand if regions of the parameter space survive where the models work

Wednesday, August 8, 12

$$L_{eff} = \frac{1}{\Lambda^2} \sum_i \lambda_i^2 \mathcal{O}_i$$

Reasonable, simplifying assumptions

 $\begin{array}{ll} \lambda_s & \mbox{coupling for all s-channel DM annihilation (into quark + exotic quark) operators} \\ \lambda_t & \mbox{coupling for all t-channel DM annihilation (into quark + exotic quark) operators} \\ \lambda_{WO} & \mbox{coupling for all washout operators} \end{array}$

 $\frac{\lambda_i}{\Lambda} < (100 \text{ GeV})^{-1}$

Validity of EFT approach

$$\frac{\lambda_i}{\Lambda} k_{max} < 1 \qquad k_{max} \sim 100 \text{ GeV}$$

$$\Lambda = 10 \,\text{TeV} \quad \rightarrow \quad \lambda_i < 100$$

Cosmological bounds

Generation of the asymmetry

$$\epsilon = \frac{\sigma(XX \to \psi\bar{u}) + \sigma(\bar{X}\bar{X} \to \psi\bar{u}) - \sigma(XX \to \psi^{\dagger}\bar{u}^{\dagger}) - \sigma(\bar{X}\bar{X} \to \psi^{\dagger}\bar{u}^{\dagger})}{\sigma(XX \to \psi\bar{u}) + \sigma(\bar{X}\bar{X} \to \psi\bar{u}) + \sigma(XX \to \psi^{\dagger}\bar{u}^{\dagger}) + \sigma(\bar{X}\bar{X} \to \psi^{\dagger}\bar{u}^{\dagger})}$$

$$\epsilon \propto \frac{\mathrm{Im}(\lambda_{WO}^2)}{\Lambda^2} \frac{(s - m_{\psi}^2)^2}{16\pi s}$$

The washout coupling has to be complex

$$\lambda_{WO} = |\lambda_{WO}| e^{i\delta}$$

Washout

DM relic density

 $\lambda_{\rm DM} \equiv \lambda_s = \lambda_t$

DM relic density + BAU

$$|\lambda_{WO}| > 10$$

$$|\lambda_{WO}| = 10$$

$$|\lambda_{WO}| = 4$$

$$|\lambda_{WO}| = 3.5$$

 $\delta = \frac{\pi}{4}$ $\operatorname{Re}(\lambda_{WO}) = \operatorname{Im}(\lambda_{WO})$

DM relic density + BAU

Preliminary $\Lambda = 10 \text{ TeV}, |\lambda_{WO}| = 5$

Direct detection bounds

$$\frac{1}{\Lambda^2} (\lambda_7^2 (X \bar{u}) (X^{\dagger} \bar{u}^{\dagger}) + \lambda_8^2 (\bar{X} \bar{u}) (\bar{X}^{\dagger} \bar{u}^{\dagger}) + \text{h.c.})$$

Translated into 4-component-spinor notation

 $\frac{\lambda_8^2 - \lambda_7^2}{4\Lambda^2} (\bar{\chi}\gamma^\mu \chi \bar{U}\gamma_\mu U + \bar{\chi}\gamma^\mu \chi \bar{U}\gamma_\mu \gamma_5 U) + \frac{\lambda_8^2 + \lambda_7^2}{4\Lambda^2} (\bar{\chi}\gamma^\mu \gamma_5 \chi \bar{U}\gamma_\mu U + \bar{\chi}\gamma^\mu \gamma_5 \chi \bar{U}\gamma_\mu \gamma_5 U)$

These operators contribute to I. DM annihilation into a pair of quarks and 2. to SI and SD direct detection

(2) constrains the couplings 7 & 8 to be somewhat small, which is good anyway for (1), given that we want the annihilation into q + exotic q to dominate over q + qbar.

Direct detection bounds

Can we constrain λ_s and λ_t looking at one-loop contributions to direct detection?

The 2 diagrams cancel!!

Similar story for t-channel operators.

NO BOUNDS FROM DIRECT DETECTION

Summary

- WIMPy baryogenesis is an interesting mechanism that relates the baryon asymmetry to the WIMP thermal relic density
- For the models we considered the mechanism works
- in a good portion of the parameter space
- Think about different, maybe even simpler models that implement the mechanism?