

"HIGGS")

weak boson mass

SBB

Proton

0.94 GeV

W-boson • 81 GeV

0.94 GeV

old references:

Bjorken (1977) Fritzsch - Mandelbaum (1981) Abbott - Farhi (1981) Barbieri - Mohapatra (1981) Fritzsch – Kogerler - Schildknecht (1982) Kugo – Uehara - Yanagida (1984/5) Calmet - Fritzsch (2000)

new: H. Fritzsch 2010 - arXiv: 1010.1428 2011 - arXiv: 1105.3354 2012 - arXiv: 1203.5600

Masses of composite Weak bosons P analogy

Dynamical mixing of rho meson and photon:

mixing parameter m

 $m = e \frac{F_{\rho}}{M_{\gamma}}$

 $\left\langle 0 \left| \frac{1}{2} \left(\overline{u} \gamma_{\mu} u - \overline{d} \gamma_{\mu} d \right) \right| \rho_0 \right\rangle = \varepsilon_{\mu} M_{\rho} F_{\rho}$

 F_{ρ} : decay constant

$F_{\rho} \approx 220$ MeV

m: mixing parameter

 $M_{\rho^0}^{\ 2} = \frac{M_{\rho^+}^{\ 2}}{1-m^2} = \frac{3.1 \text{ MeV}}{\text{m} = 0.09}$

constituents

Constituents of W-bosons

haplos \Leftrightarrow simple

haplons confined by gauge force

gauge bosons

glutinos

glue gluten

duality diagram

QCD

TT.

TL

→ duality diagram of QHD

U

QHD

Standard Model

 $SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)$

problem maximal parity violation

$SU(2)_L \otimes U(1)$

$SU(2)_L \otimes SU(2)_R \otimes U(1)$

$SU(2)_L \otimes SU(2)_R \otimes U(1)$

mass of W_R : $\succ 1$ TeV

Standard Model

$SU(3)_c \otimes SU(2)_L \otimes U(1)$

$(SU(3)_c \otimes U(1)) \otimes SU(2)_L \otimes SU(2)_R$

 $\begin{pmatrix}
v & U_r & U_g \\
L & D_r & D_g
\end{pmatrix}$ $egin{array}{c} U_b \ D_b \end{array}$ $SU(2)_L \otimes SU(2)_R$

 $\begin{pmatrix} v & U_r & U_g \\ L & D_r & D_g \end{pmatrix}$ U_b ' $SU(4)_{c,l} \succ SU(3)_c \otimes U(1)$

$\begin{pmatrix} v & U_r & U_g & U_b \\ L & D_r & D_g & D_b \end{pmatrix} \begin{cases} SU(2) \end{cases}$ $SU(4) \Rightarrow U(1) \otimes SU(3)_c$

gauge group of QHD

with photon 2

m: mixing parameter

Standard Model

 M_{W}^{2} M_Z^2 $-\sin^2\theta$

 $M_{Z}^{2} = \frac{M_{W}^{2}}{1-m^{2}}$

Standard Model

 $M_z^2 = \frac{M_w^2}{1 - \sin^2 \theta_w}$

W decay constant

 $\left\langle 0 \left| \frac{1}{2} (\overline{\alpha} \gamma_{\mu L} \alpha - \overline{\beta} \gamma_{\mu L} \beta) \right| Z \right\rangle = \varepsilon_{\mu} M_{W} F_{W}$

experimental data:

$$M_{W} = 80.4...GeV$$
$$M_{Z} = 91.19...GeV$$
$$F_{W} = 124.6...GeV$$
$$\sin^{2} \theta_{W} = 0.2315$$
$$\alpha = \frac{e^{2}}{4\pi} \cong \frac{1}{128.9}$$
$$e \cong 0.3122$$

 $F_{\rho} \approx \Lambda_{c} \approx 220 \quad MeV$

 $F_W \approx 0.125 \ TeV$

$F_W \approx 0.130 \ TeV$ $\Lambda_I \approx 0.13 \Leftrightarrow 1.0 _ TeV$ uncertainty: gauge group of

$F_W \approx 0.13 \quad TeV$ $\Lambda_L \approx 0.13 \quad TeV$

* R L $\Lambda_R > 1$ TeV

New: isoscalar

 $(\overline{\alpha}\alpha + \overline{\beta}\beta)$

Experiment

400 GEV

cross section of Zproduction at LHC: ~ 60 nb

cross section for X-production: ~0.5 nb

Coupling of X to leptons and quarks:

Coupling of Z - boson

X – decay into muons→ Z – decay into muons:

 $\Gamma(Z \Longrightarrow \mu^+ \mu^-) \cong 84 \quad MeV$

 $\Gamma(X \Longrightarrow \mu^+ \mu^-) \cong 3.6 \quad GeV$

X-decays -> leptons quarks

 $\int (X \to \mu^{+} \mu^{-}) \cong \int (X \to e^{+} e^{-})$ $\simeq \int (X \rightarrow \overline{v_e} v_e)$

 $\Gamma(X \to \overline{u}u) \cong \Gamma(X \to \overline{J}U)$ $\approx 3 \times \Gamma(X \rightarrow \mu^{+}\mu^{-})$

1, W+, Z ₩, Z Expected: $\int (X \to W^+ W^-)$ $\Gamma(X \rightarrow ZZ)$ $\int (X \rightarrow \mu^{+}\mu^{-})$

other decays:

 $X \Longrightarrow W^+W^-Z$ $X \Longrightarrow W^+W^-\gamma$ $X \Longrightarrow ZZZ$ $X \Longrightarrow ZZ\gamma$ $X \Longrightarrow Z\gamma\gamma$ $X \Longrightarrow W^+W^-W^+W^ X \Longrightarrow W^+W^-ZZ$ $X \Longrightarrow W^+W^-Z\gamma$ $X \Longrightarrow W^+ W^- \gamma \gamma$ $X \Longrightarrow \dots$

Summation Total width of X: 200 GeV

Total width of Z: 2.5 GeV

branching ratio for decays into lepton pairs, e.g. muon pairs, might be less than 0.001.

Discovery of Xboson: search for decay into weak bosons

 $X \Longrightarrow Z + Z$

complexities of strong interactions $\sim 1 \text{ GeV}$

 $\Lambda_h \propto 0.3 _ TeV$ $= 1000 \cdot \Lambda_c$

complexities of **QHD** interactions ~ 1 TeV
EXCITED WEAK BOSONS

I(J) I:SU(2) J: angular momentum

p-wave bosons three SU(2) singlets

 $S = \frac{1}{\sqrt{2}} \left(\overline{\alpha} \,\alpha + \overline{\beta} \,\beta \right)$

S(0) = 0 (0) S(1) = 0 (1)S(2) = 0 (2)

p-wave bosons three SU(2) triplets $T^{+} = \overline{\beta}\alpha \qquad T^{-} = \overline{\alpha}\beta \qquad T^{0} = \frac{1}{\sqrt{2}}\left(\overline{\alpha}\alpha - \overline{\beta}\beta\right)$ T(0) = 1(0)T(1) = 1(1)T(2) = 1 (2)

p-wave mesons (QCD)

scalar:

vector:

tensor:

σ(~ 700)

 $h_1(1170)$ $f_2(1270)$

possible mass spectrum

isospin triplets in OCD

scalar:

vector:

tensor:

 $a_0(980)$ $b_1(1235)$ $f_2(1270)$

decays

$S(0) \Longrightarrow "W^+" + W^-$

$S(0) \Longrightarrow W^{+} + "W^{-}"$ $S(0) \Longrightarrow "Z" + Z$

$S(0) \Rightarrow W^{+} + W^{-}$ $S(0) \Rightarrow W^{-} + W^{+}$ $S(0) \Rightarrow W^{3} + W^{3}$

 $W^3 = \cos\theta_w Z + \sin\theta_w \gamma$

 $S(0) \Longrightarrow e^+ + e^ S(0) \Longrightarrow \mu^+ + \mu^ S(0) \Longrightarrow \dots$

$S(0) \Longrightarrow \overline{u} + u$ $S(0) \Longrightarrow \dots$

weak boson decay / leptonic decay

 $\frac{rate[S(0) \Rightarrow \mu^{+}\mu^{-}]}{rate[S(0) \Rightarrow WW]} = ?$

If this ratio is 1: decay into muons rate as large as rate for decay into weak bosons - not observed at LHC.

 $rate[S(0) \Rightarrow \mu^{+}\mu^{-}] = \varepsilon$ $rate[S(0) \Rightarrow WW]$

ε ≺1 *e.g*. $\varepsilon \leq 0.001$

Ieading decay modes

 $S(0) \Rightarrow W + W$ $S(0) \Rightarrow Z + Z$ $S(0) \Rightarrow Z + \gamma$ $S(0) \Rightarrow \gamma + \gamma$

100 %

Experiment

 $\frac{S(0) \Rightarrow \gamma + \gamma}{S(0) \Rightarrow W^{+} + W^{-}} \approx 0.04 \pm 0.015$

Expected < S(0): 0.05

"Higgs" -boson

 $H \Longrightarrow \gamma + \gamma$ ≈ 0.015 $H \Longrightarrow W^+ + W$

S(0) production cross section at the LHC (from two photon decay)

125 GeV "Higgs" boson

decay into leptons electrons: muon: tauons 0.00002:1:286

125 GeV S(0)

electrons : muon : tauons

decays of S(1) M = 320 Gev $S(1) \Longrightarrow W^+ + W^ S(1) \Longrightarrow Z + Z$ $S(1) \Longrightarrow Z + Z + \gamma$ $S(1) \Longrightarrow Z + Z + Z$ $S(1) \Longrightarrow Z + \gamma + \gamma$ $S(1) \Longrightarrow \gamma + \gamma + \gamma$

$S(1) \Rightarrow \chi + \chi$ Landau-Yang-Theorem

decays of T-bosons M= 290 GeV

 $T(0)^+ \Longrightarrow W^+ + Z$ $T(0)^+ \Longrightarrow W^+ + \gamma$ $T(0)^+ \Longrightarrow W^+ + \gamma + \gamma$ $T(0)^+ \Longrightarrow W^+ + Z + \gamma$ $T(0)^+ \Longrightarrow W^+ + Z + Z$ $T(0)^+ \Longrightarrow W^+ + \ldots + \ldots + \ldots$

W constituents also inside leptons and quarks

QHD

→ leptons and quarks
Composite

QHD

simplest theory:

eptons - quarks

(fermion + scalar)

Fritzsch - Mandelbaum (1981) Abbott - Farhi (1981) Barbieri - Mohapatra (1981)

lepton-quark-family

 $\begin{pmatrix} v & U_r & U_g \\ L & D_r & D_g \end{pmatrix}$ U_{h} $SU(2)_L \otimes U(1)$

 $\begin{pmatrix}
v & U_r & U_g \\
L & D_r & D_g
\end{pmatrix}$ $egin{array}{c} U_b \ D_b \end{array}$ $SU(2)_L \otimes SU(2)_R$

SU(4)

inside quarks

V U_b U_r U_{g} L D_b D_r D_{g} $\left(\left(lpha l
ight)
ight)$ $\left(\left(eta l
ight)
ight)$ (αb) (αr) (αg) (βb) (βr) (βg)

How many lepton-quark families? →rank of

QHD group

bound states of two scalars

comparison with proton - proton inelastic scattering:

SIZE

proton : 10^{-14} *cm*

 $\sigma(pp)_{inel} \approx 60mb$

comparison with proton - proton inelastic scattering:

SIZE: quark :10⁻¹⁷ cm

$\sigma(qq) \approx 10^{-6} 60 \quad mb = 60 \quad nb$

T(0): 0.33 TeV T(0,+) => W(+) Z**Т(1): 0.46 ТеV** T(1,0) => ZZZ

* L

1.48 TeV

