THE Secret Lite OF SCATTERING AMPLITUDES

based on work with Lionel Mason and with Mat Bullimore

David Skinner - Perimeter Institute

Kavli IPMU - 21st May 2012

Monday, May 21, 2012

Scattering amplitudes are quantum mechanical overlap between states with prescribed asymptotic behaviour

- Point of contact between theorists and experimentalists
- Encode the dynamics of quantum systems
- Live at boundary of space-time - "holographic"

Perturbatively, scattering amplitudes are usually described in terms of Feynman diagrams

- Complexity directly attributable to gauge redundancy
- Necessary consequence of bulk space-time description of massless spin 1 fields

Quite remarkably, the *amplitude itself* was sometimes found to remain very simple

Standard techniques obscure the true nature of scattering amplitudes

TWISTORS & MHV DIAGRAMS

One reason twistors provide a good way to describe scattering amplitudes is because they trivialize the external massless field equations [Penrose]

 $\left\{ \begin{array}{l} \text{Analytic sol}^{n} \text{ of wave} \\ \text{eq}^{n} \text{ for massless} \\ \text{free field, helicity } h \end{array} \right\} \cong \left\{ \begin{array}{l} \text{Arbitrary} \text{ holomor}^{\text{phc}} \\ \text{function of twistors,} \\ \text{homogeneity } 2h-2 \end{array} \right\}$

Depends on three variables - field equations accounted for automatically $\Phi(x) = \phi \left\langle \lambda d\lambda \right\rangle \phi(Z) |_{X} \qquad Z^{A} |_{X} = \left(\mu^{\dot{\alpha}}, \lambda_{\alpha} \right) |_{X} = \left(x^{\beta \dot{\alpha}} \lambda_{\beta}, \lambda_{\alpha} \right)$ $\Box \Phi = \frac{\partial^2}{\partial x^{\mu} \partial x_{\mu}} \oint \langle \lambda d\lambda \rangle \phi(Z)|_{\mathbf{X}} = \oint \langle \lambda d\lambda \rangle \lambda^{\alpha}_{\mathcal{J}} \lambda_{\alpha} \left. \frac{\partial^2}{\partial \mu^{\dot{\alpha}} \partial \mu_{\dot{\alpha}}} \phi(Z) \right|_{\mathbf{Y}}$ vanishes since antisymmetric

• Globally, $\phi \in H^1(\mathbb{CP}^3 - X_\infty, \mathcal{O}(-2))$ on-shell

- Basis of ADHM construction of instantons; purely algebraic
- Related to many integrable systems by choices of symmetry reduction
- Similar construction for s.d. gravity HK / QK manifolds

Just as holomorphic functions arise as field equations of $S = \int \mathrm{D}^3 Z \wedge \phi \wedge \bar{\partial} \phi$, so too holomorphic bundles arise as field equations of holomorphic Chern-Simons theory $S = \int \Omega \wedge \operatorname{Tr} \left(\mathcal{A} \wedge \bar{\partial} \mathcal{A} + \frac{2}{3} \mathcal{A}^3 \right)$ [Witten] • $\Omega := \epsilon_{ABCD} Z^A dZ^B \wedge dZ^C \wedge dZ^D d^4 \chi$ is top hol. form on $\mathbb{CP}^{3|4}$ $\mathcal{A}(Z,\chi) = a(Z) + \chi^a \tilde{\gamma}_a(Z) + \frac{1}{2} \chi^a \chi^b \phi_{ab}(Z) + \frac{\epsilon_{abcd}}{3!} \chi^a \chi^b \chi^c \gamma^d(Z) + \frac{\epsilon_{abcd}}{4!} \chi^a \chi^b \chi^c \chi^d g(Z)$ $-\mathcal{N} = 4$ multiplet in twistor space [Ferber]

In axial gauge, Feynman diagrams are MHV diagrams

Reduces to standard form if A is harmonic on each X
 Similar construction for gravity^[Mason, DS]

THE AMPLITUDE / WILSON LOOP DUALITY

MHV Amplitudes are Null Polygonal Wilson Loops [Alday,Maldacena]

Amplitude given by area of minimal surface in AdS₅

• For n = 4, 5 agrees with expectation from BDS ansatz

The duality between scattering amplitudes and Wilson Loops was also found to hold at weak coupling

[Drummond,Henn,Korchemsky,Sokatchev;Brandhuber,Heslop,Travaglini; Bern,Dixon,Kosower,Roiban,Spradlin,Vergu,Volovich]

Underlying reason for duality obscure

Not clear how to extend to arbitrary helicity amplitudes

Space-time vertices \longleftrightarrow Twistor lines Null edges of polygon \longleftrightarrow Twistor vertices

The twistor data is *unconstrained*: given arbitrary Z_i , the twistor lines intersect by construction, so the corresponding space-time vertices are inevitably null separated.

The duality extends to all helicities if one constructs a supersymmetric extension of the Wilson Loop^[Mason,DS]

 $(\bar{\partial} + \mathcal{A})|_{X} U(\sigma_{1}, \sigma_{2}) = 0 \qquad U(\sigma_{1}, \sigma_{1}) = id$ $\mathcal{N} = 4 \text{ twistor superfield}$

Formally, we write $U(\sigma, \sigma_0) = P \exp\left(-\int \omega \wedge \mathcal{A}\right)$

where ω is unique meromorphic 1-form with simple poles at $\{\sigma_0, \sigma\}$

$$\begin{split} \mathrm{U}(\sigma_1, \sigma_2) \mathrm{U}(\sigma_2, \sigma_3) &= \mathrm{U}(\sigma_1, \sigma_3) & \text{concatenation} \\ \mathrm{U}(\sigma_2, \sigma_1) &= \mathrm{U}(\sigma_1, \sigma_2)^{-1} & \text{inverse} \\ \mathrm{U}(\sigma_1, \sigma_2) &\to g^{-1}(\sigma_1) \mathrm{U}(\sigma_1, \sigma_2) g(\sigma_2) & \text{gauge transform} \end{split}$$

[Bullimore, DS]

BCFW Recursion for null polygonal superloops

Deform external momenta $p_i \rightarrow p_i(r)$ subject to the constraints $\sum p_i(r) = 0$ $p_i^2(r) = 0$

In twistor space there are no constraints - we just vary the Z_i freely

As the curve varies, the Wilson Loop obeys $\bar{\delta}W[C] = -\int_{C} \omega \wedge d\bar{Z}^{\bar{\imath}} \wedge \bar{\delta}\bar{Z}^{\bar{\jmath}} \operatorname{Tr} \left[\mathcal{F}_{\bar{\imath}\bar{\jmath}}(\mathcal{Z}) \operatorname{P} \exp\left(-\int_{C} \omega \wedge \mathcal{A}\right) \right]$

 Behaviour of correlator is controlled by loop equations [Migdal,Makeenko; Polyakov]

Wilson Loops in real Chern-Simons compute knot invariants such as the HOMFLYPT polynomial ^[Witten]

Naively, varying the curve doesn't change this topological quantity

Loop equations give derivation of the skein relations - *i.e.* **recursion relations** for the knot polynomial [Cotta-Ramusino,Guadagnini,Martellini,Mintchev] In pure holomorphic Chern-Simons theory, the loop equations give^[Bullimore,DS]

 $\left\langle \bar{\delta} \mathrm{W}[C(r)] \right\rangle = - \int_{C} \omega \wedge \left\langle \mathrm{Tr} \, \mathcal{F}^{(0,2)}(Z) \, \mathrm{P} \exp\left(-\int \omega \wedge \mathcal{A}\right) \right\rangle_{\mathrm{hCS}}$ $= -\int_{C} \omega \wedge \left\langle \operatorname{Tr} \frac{\delta S_{\mathrm{hCS}}}{\delta \mathcal{A}(Z)} \operatorname{P} \exp \left(-\int \omega \wedge \mathcal{A} \right) \right\rangle_{\mathrm{hCS}}$ $= \int_{C \times C} \omega \wedge \omega' \wedge \overline{\delta}^{3|4}(Z, Z') \langle W[C_1] W[C_2] \rangle_{hCS}$ only get contribution if C(r)integrate by parts self-intersects as we deform $= \int_{C \times C} \omega \wedge \omega' \wedge \bar{\delta}^{3|4}(Z, Z') \langle W[C_1] \rangle \langle W[C_2] \rangle$ in planar limit

For this deformation, the loop equations give

$$\langle W[C_n] \rangle = \langle W[C_{n-1}] \rangle + \sum_{i=3}^{n-1} [n-1, n, 1, i-1, i] \langle W[C_i] \rangle \langle W[C'_i] \rangle$$

This is tree-level BCFW recursion.

- The amplitudes are natural holomorphic analogues of knot invariants, with BCFW recursion as a skein relation!
- Repeating the derivation for the full twistor action (including MHV vertices) leads to all-loop generalization

Caron-Huot, Trnka; Bullimore, DS]

Resulting expressions contain spurious, non-local poles

Superloop in sd $\mathcal{N} = 4$ \longleftrightarrow Tree superamplitude

Superloop in full $\mathcal{N} = 4$ \longleftrightarrow Planar superamplitude

GRASSMANNIANS

conformal symmetry

momentum space

momentum twistor space

dual conformal symmetry

Dual descriptions are each representations of a more invariant underlying picture

Describes scattering without relying on a space-time interpretation!

Original		Dual		Infinite
Superconformal	+	Superconformal	—	Dimensional
Symmetry		Symmetry		Yangian

[Beisert,Ricci,Tseytlin,Wolf; Berkovits,Maldacena; Drummond,Henn,Plefka]

• Reflection of integrability of planar $\mathcal{N} = 4$ SYM

The Yangian is represented on (either) twistor space by $J^{(0)} = \sum_{i} \mathcal{Z}_{i} \frac{\partial}{\partial \mathcal{Z}_{i}} \qquad J^{(1)} = \sum_{i>j} \mathcal{Z}_{i} \left(\mathcal{Z}_{j} \cdot \frac{\partial}{\partial \mathcal{Z}_{i}} \right) \frac{\partial}{\partial \mathcal{Z}_{j}} - (i \leftrightarrow j)$

plus infinitely many higher generators

 Grassmannian formula is uniquely fixed by Yangian [Drummond,Ferro] The amplitudes are defined by a polytope [Hodges]

Different triangulations give different representations

At loop level, ℓ -loop amplitudes are given in terms of polylogarithms of transcendentality 2ℓ

 Polylogarithms represent relative homology classes on Grassmannians^[Goncharov; Hain,MacPherson]

Suggests loops proper may be obtained from the Grassmannian integral on contours with boundary

TOWARDS STRONG COUPLING

At strong coupling the MHV amplitude is given by a minimal surface in AdS₅^[Alday,Gaiotto,Maldacena,Sever,Vieira]

The strongly-coupled superamplitude should be given by IIB action for a minimal surface on supercoset

 Much simpler than including vertex operators & perturbing around bosonic background
 work in progress...

Monday, May 21, 2012

Integrability along super null rays is worldline κ -symmetry [Witten]

• Agrees with restriction of Type IIB worldsheet κ -symmetry to boundary [Ooguri,Rahmfeld,Robins,Tannenhauser]

Sigma model into coset described by graded Lax connection. Pohlmeyer reduce to account for Virasoro constraints of string^[Grigoriev,Tseytlin; Mikhailov,Schafer-Nameki]

[Gaiotto,Moore,Neitzke]

 Expect a flat PSL(4|4; C) connection on CP¹, wildly ramified at a single point

 Different supertwistors associated to each Stokes sector

work in progress...

CONCLUSIONS

Scattering amplitudes have many remarkable properties that are completely invisible from the perspective of Feynman diagrams

They are also among precious few observables that can still exist in a diffeomorphism invariant quantum theory

Reformulating amplitudes in ways that do not rely on space-time is important preparation for the case that there *is* no space-time

Hopefully, the great technical progress is a good sign that we're on the right track...

Monday, May 21, 2012