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Inflation is a postulated era of accelerated expansion at t ! 1s that

solves many problems of big-bang cosmology (horizon, flatness, monopole,....)

• CMB radiation emitted at LSS, when hydrogen combined

• CMB polarization from last scatterings; could not be formed later

WMAP7

Super-horizon density-polarization

correlations on LSS

Causality preserved if earlier

period of accelerated

expansion ≡ inflation
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Axions are Ubiquitous in Particle Theory!

Pseudo-Nambu-Goldstone-Boson

Spontaneous breaking global U(1):
Φ = ve iφ/f .

U(1) x-form Φ → e iαΦ leads to shift
symmetry for angular variable:
φ → φ+ αf .

String Theory

Anti-symmetric 2-form: CMN

Contain axions on dim red: ci = 2π
∫

Σi
C .

Generic CY may contain ∼ 105 axions!
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FIG. 3: The potential height scale Λ corresponding to
P 1/2

R = 10−5 is shown as a function of the potential width
f for various numbers of e-foldingss N before the end of in-
flation. The (light blue) band corresponds to the values of
N consistent with the standard post-inflation cosmology for
ρRH > (1 GeV)4.

The spectral index for natural inflation is shown in Fig-
ure 4. For small f , ns is essentially independent of
N , while for f >

∼ 2mPl, ns has essentially no f depen-
dence. Analytical estimates can be obtained in these two
regimes:

ns ≈

{

1 − m2

Pl

8πf2 , for f <
∼

3
4
mPl

1 − 2
N , for f >

∼ 2mPl .
(12)

Previous analyses of COBE data, based in part on de-
terminations of this spectral index, have led to con-
straints on the width of the natural inflation potential
of f >

∼ 0.3mPl [17] and f >
∼ 0.4mPl [18], while analysis of

WMAP’s first year data requires f >
∼ 0.6mPl [15]. Values

of f below these constraints would lead to ns < 0.9, re-
ducing fluctuations at small scales and suppressing higher
order acoustic peaks (relative to lower order peaks) to
a level inconsistent with the CMB data. The WMAP
3-year data yield ns = 0.951+0.015

−0.019 (ns = 0.987+0.019
−0.037

when tensor modes are included in the fits) on the
k = 0.002Mpc−1 scale2. This WMAP3 result leads to
the somewhat tighter constraint f >

∼ 0.7mPl at 95% C.L.

2 As discussed in Section IV, the running of the spectral index ns

in natural inflation is so small that the value of ns at the scale
of the WMAP3 measurements is virtually identical to its value
on the horizon scale.
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FIG. 4: The spectral index ns is shown as a function of the
potential width f for various numbers of e-foldingss N before
the end of inflation. The (light blue) band corresponds to
the values of N consistent with the standard post-inflation
cosmology for ρRH > (1 GeV)4.

B. Tensor (Gravitational Wave) Fluctuations

In addition to scalar (density) perturbations, inflation
also produces tensor (gravitational wave) perturbations
with amplitude

P 1/2
T (k) =

4H√
πmPl

. (13)

Here, we examine the tensor mode predictions of natural
inflation and compare with WMAP data.

Conventionally, the tensor amplitude is given in terms
of the tensor/scalar ratio

r ≡
PT

PR
= 16ε , (14)

which is shown in Figure 5 for natural inflation. For
small f , r rapidly becomes negligible, while f → 8

N for
f & mPl. In all cases, r <

∼ 0.2, well below the WMAP
limit of r < 0.55 (95% C.L., no running).

As mentioned in the introduction, in principle, there
are four parameters describing scalar and tensor fluctu-
ations: the amplitude and spectra of both components,
with the latter characterized by the spectral indices ns

and nT (we are ignoring any running here). The am-
plitude of the scalar perturbations is normalized by the
height of the potential (the energy density Λ4). The ten-
sor spectral index nT is not an independent parameter
since it is related to the tensor/scalar ratio r by the infla-
tionary consistency condition r = −8nT. The remaining
free parameters are the spectral index ns of the scalar
density fluctuations, and the tensor amplitude (given by
r).
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Effective theory under control for H " f " Mp
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Figure 1: Contour plot of the potential, for Λ1 = 1.5 Λ2 , f = g2 = 0.7 Mp ,
g1 = 0.98 Mp (giving fξ ! 3 Mp ). See the main text for details.

3 Conclusions

We considered natural inflation with two axions (with two decay constants
f1 and f2) and two confining gauge groups. This allows us to circumvent a
serious problem of natural inflation coming from equation (3) and the poten-
tial importance of quantum gravitational effects. We conclude our discussion
by explaining that the present mechanism is not destroyed by such quantum
gravitational effects as long as fi < MP for all i.

The anomalous couplings to two nonabelian groups can be different, with
effective decay constants f1ε1, f1ε2, f2ε3, and f2ε4, where

Laxion coupling =
a1

f1

(

(1/ε1)

32π2
F1F̃1 +

(1/ε2)

32π2
F2F̃2

)

+

+
a2

f2

(

(1/ε3)

32π2
F1F̃1 +

(1/ε4)

32π2
F2F̃2

)

(12)

and FF̃ = 1
2εµνρσFµνFρσ . Note, however, that (1/εi) are just the expressions

for the axion couplings to the anomaly (which are e.g. determined by the axial
charges of fermions), while the decay constants corresponding to the Goldstone
bosons are simply f1 and f2. Thus, the axionic couplings to matter are de-

termined by f1 and f2, namely ∼ (1/fi)(∂µai)J
(matter)i
µ . For the gravitational

effects, the decay constants are appearing in the form fi/MP , and hence for
fi # MP quantum gravitational effects are negligible in our scenario. The ef-

7

(in the last expression we have assumed ε ! η , which is appropriate as long
as φ is close to the maximum). Hence, the spectrum “reddens” as f decreases.
The WMAP limit on the spectral index |ns − 1| <

∼ 0.1 (as computed in [10])
translates into the bound [11] 6

f >
∼ 3 Mp . (3)

It is legitimate to wonder whether such a high value is compatible with an
effective field theory description [7, 12]. In particular, it can be expected that
for high f quantum gravity effects will break the global axionic symmetry [13].
In that sense, equation (3) is the main stumbling block for natural inflation.
String theory realizations have further problems to accomodate a large f , as
emphasized in [7]. For instance, in the simplest version where the inflaton is
associated to the model independent axion of heterotic string compactifications,
the scale f is related to the value of the dilaton field, and the required value of
f is in the strong coupling regime, where the supergravity description breaks
down.

Some versions of inflation, as for instance the hybrid [2] or the assisted [14]
ones, make a nontrivial use of two or more scalar fields. As we show in this paper,
the presence of two or more axions can also have interesting consequences, and
it can result in a solution to the problems mentioned above. More precisely, it is
possible to obtain some directions characerized by an effective axion scale which
is much larger than the ones of the original fields. To illustrate the general idea,
it is sufficient to consider two axionic fields θ , ρ (the extension to more fields is
trivial), with a potential

V = Λ4
1

[

1 − cos

(

θ

f1
+

ρ

g1

)]

+ Λ4
2

[

1 − cos

(

θ

f2
+

ρ

g2

)]

(4)

It is easy to see that, when the condition

f1/g1 = f2/g2 (5)

is met, the same linear combination of the two axions (denoted by ψ) appears
in both terms of (4). Hence, the orthogonal combination ξ is a flat direction
of V . In general, the lifting of the potential along ξ is suppressed as long as
the condition (5) holds at an approximate level. In this case the field ξ can be
a good inflaton candidate, even when the scales f1,2 , g1,2 are all smaller than
Mp . This is the main result of our paper. It allows us to circumvent the bound
in equation (3) and thus removes a severe problem of natural inflation.

The equality (5) can be accidental, or due to a symmetry between the mech-
anisms responsible for the breaking of the two shift symmetries θ → θ+C , ρ →
ρ+C′ . In the second case, the flat direction ξ will be lifted due to the breaking
of this symmetry, so that a small breaking will ensure that the ξ direction is
sufficiently flat.

6The amplitude of the fluctuations (δρ/ρ ∼ 10−5) does not set a further direct limit on f ,
since it also depends on the scale of the potential Λ . If the bound (3) is saturated, the correct
amplitude is obtained for Λ " 1015 GeV [11].
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∆V ∝ φ from brane wrapping

The model

Linear potential for the inflaton

The shift symmetry can be broken in the presence of boundaries.

Consider a D5-brane wrapped on a two-cycle Σ.
The DBI action

−T5

∫
d6xe−Φ

√
det (Gind +Bind)

The shift a(x) → a(x) + const of a(x) =
∫
ΣB2

stores some potential energy.

V (b) = T5

√
L4 + a2 ∼ T5a for large a

This generates the linear inflaton potential (and
breaks SUSY). COBE normalization and control
require to red-shift T5
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Couplings restricted by:

L ⊃
∂µ φ

f
ψ̄ γµ γ5 ψ +

φ

f
Fµν F̃ µν

• Shift symmetry

• Parity

• gauge invariance

Until recently, only perturbative decay from such couplings considered

2nd coupling → continuous gauge production during inflation

Anber, Sorbo ’09

NG from inverse decay δA + δA → δφ

Barnaby, MP ’11

Barnaby, Namba, MP ’11
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φ
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Couplings restricted by:

• Shift symmetry

• Parity

• Gauge invariance

Lint =
C

f
∂µφ ψ̄ γµ γ5 ψ +

α

f
φ Fµν F̃ µν

Interaction Effects
Interaction b/w ϕ and A± induces 3 effects:

1 ϕ(0) → A + A, non-perturbative depletion ∝ ϕ̇(0)

=⇒ Exponential growth of A
2 A + A → δϕ, inverse decay

A

A

δϕ

=⇒ Significant contribution to δϕ!

3 δϕ → A + A, perturbative decay

δϕ

A

A

=⇒Important only AFTER inflation
(reheating)
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dispersion relations of ± helicities
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Later: Interested in ξ = O(1)
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tachyonic for a H > k, namely after horizon crossing

Inside the horizon, A % Avac., effect renormalized away

Also other helicity renormalized away
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1

H τ
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Interaction Effects
Interaction b/w ϕ and A± induces 3 effects:

1 ϕ(0) → A + A, non-perturbative depletion ∝ ϕ̇(0)

=⇒ Exponential growth of A
2 A + A → δϕ, inverse decay

A

A

δϕ

=⇒ Significant contribution to δϕ!

3 δϕ → A + A, perturbative decay
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=⇒Important only AFTER inflation
(reheating)
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• A production from φ kinetic energy. Resulting friction can be so

strong as to facilitate φ slow roll. Anber, Sorbo ’09

• We impose negligible backreaction of A on background dynamics

δφ̈ + 3H δφ̇ −
#∇2

a2
δφ + m2δφ =

α

f
Fµν F̃µν

(We verified that disregarding δgµν is legitimate for α
f
# 1

Mp
)

δφ = δφvacuum + δφinv.decay

Standard vacuum solution

Inverse decay

}

δφ = δφvacuum + δφinv.decay

Homogeneous solution, standard cosmological pert.

FT Same scale dependence

Ĵk ⇒ 〈δφvacuum δφinv.decay〉 = 0

δ̂φinv.decay (η) =
∫

dη′ Gk
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η, η′

)
Ĵk
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η′

)

Gk = i θ
(
η − η′

)
δφk (η) δφ∗

k
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η′

)
+ h. c.
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• Operatorial nature of δφinv.decay from A (through Ĵk )
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Non-gaussianity

Bartolo, Komatsu, Matarrese, Riotto ’04

( since R ∼ 10−5,⇒ fNL ∼ 10 means nongaussianity at 0.01% level )

Phenomenological parametrization

R (x) = Rg (x) +
3

5
f local
NL

[
Rg (x)2 − 〈Rg (x)2〉

]

Komatsu, Spergel ’00

Since local in space, called local non-gaussianity

〈Rk1 Rk2 Rk3 〉 = (2π)3 δ(3) (k1 + k2 + k3) BR (k1, k2, k3)

〈
T (x) T (y)T (z)

〉

WMAP7 95% CL bounds

−10 < f local
NL < 74

−214 < fequil
NL < 266

−410 < forth
NL < 6

WMAP7 95% CL bounds

−10 < f local
NL < 74

−214 < fequil
NL < 266

−410 < forth
NL < 6

Non-gaussianity

〈
T (x) T (y) T (z)

〉
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We have ordered the momenta such that x3 ≤ x2 ≤ 1. The triangle inequality implies x2+x3 > 1. In
the following we plot S(1, x2, x3) (see Figs. 29, 31, and 32). We use the normalization, S(1, 1, 1) ≡ 1.
To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular
region 1 − x2 ≤ x3 ≤ x2. We see in Fig. 29 that the signal for the local shape is concentrated at
x3 ≈ 0, x2 ≈ 1, while the equilateral shape peaks at x2 ≈ x3 ≈ 1. Fig. 30 illustrates how the different
triangle shapes are distributed in the x2-x3 plane.
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Figure 29: 3D plots of the local and equilateral bispectra. The coordinates x2 and x3 are the
rescaled momenta k2/k1 and k3/k1, respectively. Momenta are order such that x3 <

x2 < 1 and satsify the triangle inequality x2 + x3 > 1.
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FIG. 3: Shapes of Non-Gaussianity. The shape function F (k1, k2, k3) forms a triangle in Fourier space. The triangles are parametrized by
rescaled Fourier modes, x2 = k2/k1 and x3 = k3/k1. Figure from Ref. [43]

varies from fNL ∼ 0.1 where higher order derivatives are suppressed by a low UV cutoff [85] to fNL ∼ 100 based on Dirac-
Born-Infeld effective action. Ghost inflation, where during inflation, the background has a constant rate of change as opposed

to the constant background in conventional inflation, is also capable of giving fNL ∼ 100 [86]. The additional field models
generating inhomogeneities in non-thermal species [87] can generate fNL ∼ 5 [88]; while curvaton models, where isocurvature
perturbations in second field during the inflation generate adiabatic perturbations after the inflation, can have fNL ∼ 10 [89].
In the following we will see that non-Gaussianity, far from being merely a test of standard inflation, may reveal detailed

information about the state and physics of the very early Universe, if it is present at the level suggested by the theoretical

arguments above.

III. PRIMORDIAL NON-GAUSSIANITY

Large primordial non-Gaussianity can be generated if any of the following condition is violated [90]

• Single Field. Only one scalar field is responsible for driving the inflation and the quantum fluctuations in the same field is

responsible for generating the seed classical perturbations.

• Canonical Kinetic Energy. The kinetic energy of the field is such that the perturbations travel at the speed of light.

• Slow Roll. During inflation phase the field evolves much slowly than the Hubble time during inflation.

• Initial Vacuum State. The quantum field was in the Bunch-Davies vacuum state before the quantum fluctuation were

generated.

To characterize the non-Gaussianity one has to consider the higher order moments beyond two-point function, which contains

all the information for Gaussian perturbations. The 3-point function which is zero for Gaussian perturbations contains the infor-

mation about non-Gaussianity. The 3-point correlation function of Bardeen’s curvature perturbations, Φ(k), can be simplified
using the translational symmetry to give

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ3(k1 + k2 + k3)fNL · F (k1, k2, k3). (17)

where F (k1, k2, k3) tells the shape of the bispectrum in momentum space while the amplitude of non-Gaussianity is captured
dimensionless non-linearity parameter fNL. The shape function F (k1, k2, k3) correlates fluctuations with three wave-vectors
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=
k
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=
k
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varies
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L
∼
0.1
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order

derivatives
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suppressed
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a
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U
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cutoff

[85]
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∼
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action.
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the
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the
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scaling in (4.12) and define a “shape function” of the form

S(ki) = N(k1k2k3)
2Bζ(ki) (4.13)

where the constant of proportionality, N , is arbitrary. This shape function coincides with

the quantity that was plotted in many previous works, including [47] for example. For the

case of interest, we have

S (ξ;x2, x3) ≡
1 + x3

2 + x3
3

x2 x3

f3 (ξ; x2, x3)

3 f3 (ξ; 1, 1)
(4.14)

which is normalized so that S(1, 1) = 1. Note that the bispectrum is defined only in the

region x2 + x3 ≥ 1, which follows from the triangle inequality. Moreover, the bispectrum

is symmetric under interchange of any two momenta, and therefore we can restrict to the

region x3 ≤ x2 ≤ 1 to avoid considering the same configuration more than once.

We plot the shape function S(x2, x3) from axion inflation in the left panel of Fig. 6.

The bispectrum in this model depends on the parameter ξ. In practice, however, we find

that only the size of the nongaussianity (quantified by f equil
NL ) depends strongly on ξ. The

shape function S(x2, x3), on the other hand, is very mildly dependent on ξ. In Fig. 6

we work in the ξ → ∞ limit, in which case the shape becomes independent of model

parameters. (This can be seen by using the large argument expansion (3.18) of I in the

expression (3.29) for f3.) For ξ ∼ O(1) this figure would be nearly indistinguishable.
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Figure 6: In the left panel we plot the shape function S (x2, x3) in axion inflation, showing that
this peaks on equilateral triangles. We work in the limit ξ → ∞, however, this Figure would be
nearly indistinguishable had we chosen ξ = O(1). In the right panel, for comparison, we plot the
analogous shape function obtained from the standard equilateral template.

From Fig. 6 we see that the bispectrum from axion inflation peaks on equilateral

triangles (corresponding to x2 = x3 = 1) and is thus qualitatively similar to the so-called

equilateral template which is often employed to analyze CMB data [48, 39]
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• Hierarchical with parametric coefficient (resonance self-interactions):

Mn ∝ An C
(

I22π2Pζ
)n−2

2

• Feeder scaling (inverse decay):

Mn ∝ An I n

• Feeder with parametric coefficient (massive particle production):

Mn ∝ An C I n

We illustrate the first three scalings in Figure 1, where for visualization purposes param-

eters have been chosen so that the numerical value of M3 is equal for all scenarios (but

unrealistically large) and all the An = 1 for simplicity.
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Figure 1: A comparison of the scaling behaviors. All cases have been normalized to give the same
value of M3. The purple diamonds show the standard hierarchical scaling, generated by derivative
self-interactions and the local ansatz, for example. For a fixed amplitude of the bispectrum, scenarios
of this type are the least non-Gaussian of the scalings discussed here. The brown circles show a
hierarchical scaling with an extra parametric dependence in the individual moments, as occurs
in resonant non-Gaussianity or the mixed inflaton/curvaton scenario. This last case should also
mimic some of the difference that might come from having very different An factors. The blue
stars show the feeder field scaling given for example from the inverse decay, particle production and
“un-Gaussiton” scenarios.
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Putting these expressions into Eq.(5.17) gives the Edgeworth prediction for the non-

Gaussian correction factor to the mass function. Figure 2 shows the ratio of the non-

Gaussian mass functions to the Gaussian for the two scenarios with the approximation

where the terms proportional to derivatives of the Mn,R are dropped.
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Figure 2: The ratio of the non-Gaussian to Gaussian mass function for redshifts z = 0 and z = 0.5.
Each panel shows a set of lower curves that assume equilateral non-Gaussianity corresponding to
fNL = 100 and upper curves corresponding to fNL = 250. In each set of curves, the black solid lines
shows the result for the pdf truncated at M3,R while the blue dashed and purple dotted lines show
the second order result for the hierarchical and feeder field scalings respectively. Notice that the
range of masses where the fourth moment is a significant correction is model dependent. Finally,
the red dot-dashed lines shows the next order (M5,R) correction for the feeder field scenario.

From Fig. 2, there are two relevant differences between the scenarios. First, in the

feeder field case the correction from moments above the third one is relevant at significantly

lower mass. Second, the hierarchical scaling predicts fewer high mass/high redshift objects

than the non-hierarchical scaling, although at a level that might require futuristic data sets

to distinguish.

A template for an equilateral type trispectrum has been constrained from the CMB

by Fergusson et al [92]. The template, chosen to match (up to a numerical factor) one of

several explicit single-field shapes calculated by Chen et al [103], is

〈ζ("k1)ζ("k2)ζ("k3)ζ("k4)〉 = (2π)3δ3D("k1 + "k2 + "k3 + "k4) P4,ζ(k1, k2, k3, k4) (5.24)

〈ζ("k1)ζ("k2)ζ("k3)ζ("k4)〉 = (2π)3δ3D("k1 + "k2 + "k3 + "k4) 8tNL(2π
2Pζ)

3 1

K5

4∏

i=1

1

ki

K = (k1 + k2 + k3 + k4)/4

Ref. [92] quotes the constraint:

tNL = (−3.11 ± 7.5)× 106 . (5.25)

From this constraint one can work outs how a particular small sound speed model like DBI

is constrained compared to the inverse decay scenario.
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TABLE 1
Estimated power spectrum bands in units of 10−9

Wavenumber k (Mpc−1) Power spectrum band ab WMAP only binned P(k) ACT+WMAP binned P (k)

0.0010 P1 4.99+1.79
−1.77 5.07± 1.82

0.0014 P2 < 3.22 < 3.49
0.0019 P3 < 3.04 < 3.03
0.0025 P4 < 4.34 < 4.15
0.0034 P5 3.32± 0.99 3.52± 1.05
0.0047 P6 2.31+0.60

−0.58 2.29± 0.64
0.0064 P7 2.21± 0.33 2.27± 0.31
0.0087 P8 2.43± 0.19 2.48± 0.20
0.0118 P9 2.29± 0.15 2.35± 0.15
0.0160 P10 2.31± 0.13 2.37± 0.12
0.0218 P11 2.20± 0.11 2.28± 0.11
0.0297 P12 2.38± 0.14 2.40± 0.13
0.0404 P13 2.28± 0.23 2.39± 0.23
0.0550 P14 1.98± 0.20 2.14± 0.14
0.0749 P15 2.37± 0.53 2.41+0.20

−0.28

0.1020 P16 < 4.01 2.20+0.71
−0.80

0.1388 P17 − 2.19+0.79
−0.87

0.1889 P18 − < 2.37
0.2571 P19 − < 2.40
0.3500 P20 − −

a For one-tailed distributions, the upper 95% confidence limit is given, whereas the 68% limits are shown for
two-tailed distributions.
b The primordial power spectrum is normalized by a fixed overall amplitude ∆2

R,0 = 2.36 × 10−9 (Larson et al.

2010).
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Fig. 2.— Primordial power constraints: the constraints on the primordial power spectrum from the ACT data in addition to WMAP
data compared to the WMAP constraints alone. In both cases, a prior on the Hubble parameter from Riess et al. (2009) was included.
Where the marginalised distributions are one-tailed, the upper errorbars show the 95% confidence upper limits. On large scales the power
spectrum is constrained by the WMAP data, while at smaller scales the ACT data yield tight constraints up to k = 0.19 Mpc−1. The
horizontal solid line shows a scale-invariant spectrum, while the dashed black line shows the best-fit ΛCDM power-law with ns = 0.963
from Dunkley et al. (2010), with the spectra corresponding to the 2σ variation in spectral index indicated by solid band. The constraints
are summarized in Table 1.
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in the CMB [72, 73]. This was first explored by [46] in the case in which the inflaton is the pseudo-scalar sourcing
the vector modes; in this case, the direct inflaton-gauge field coupling is so strong that, typically, the main bound
on the gauge field production is given by the sourced scalar perturbations (non-gaussianity [44, 45] and, depending
on the inflaton potential, increased power at small scales [23, 50]). To overcome this, [46] assumed the presence
of ∼ 1000 sourcing gauge fields (this decreases the amount of non-gaussianity), or the curvaton mechanism for the
generation of the scalar perturbations. For some values of parameters, the signal can be above the 1σ detection line
for a cosmic-variance limited experiment [46]. As we shall now discuss, a more optimistic conclusion is reached if one
assumes that the gauge field production occurs in a sector only gravitationally coupled to the inflaton, as we have
studied here.

A measure of the net handedness of the tensor modes is the following quantity:

|∆χ| ≡
∣∣∣∣
P+ − P−
P+ + P−

∣∣∣∣ =
3.4 · 10−5εP e4πξ

ξ6
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$ 1− 16 ε
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which interpolates between zero (at small ξ, when the vacuum fluctuations dominate the tensor mode spectrum) and
unity (at large ξ when the sourced GW dominate the tensor mode spectrum). In the final approximation we have
used the fact that, for r < 0.1, the scalar power spectrum in this model is dominated by the vacuum modes.
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FIG. 4: Red/solid lines: Predictions for r vs ∆χ in the model (87); each line is obtained for a fixed value of ε, and for varying ξ,
with greater ξ corresponding to greater particle production, and therefore larger signal. Black/dotted lines: 1σ detection lines
for the Planck (P), SPIDER (S), CMB-Pol (C), and a cosmic-variance limited (CV) experiment. The signal needs to be above
a line to be detectable at 1σ by that experiment. These experimental forecasts are an approximate copy of the lines shown in
Figure 2 of [73].

In Figure 4 we plot the relation (114) in the r vs ∆χ plane, for a few representative values of ε; each of the red/solid
lines is characterized by a given ε, and by varying ξ (growing ξ leads to more gravity wave production, and therefore
greater values of r and ξ). We stress that arbitrary large values of r in the range shown in the figure can be reached
for any value of ε. As ε decreases, this requires a greater and greater amount of sourced modes, which in turn leads
to a greater and greater ∆χ. This explain why, for any given obtained r, greater ∆χ correspond to smaller ε. These
predictions are superimposed in the figure to 1σ detection lines from various experiments; from top to bottom, the
lines shown are for the ongoing and forthcoming Planck (P) [71] and SPIDER (S) [74] experiments, for the suggested
CMB-Pol experiment (C) [1], and for a hypothetical cosmic-variance limited experiment (CV). The signal needs to
be above a line to be detectable at 1σ by that experiment. These lines are taken by Figure 2 of [73]. We observe
that, for some values of parameters, the parity-violation could be detected (at least at 1σ) already by the ongoing /
forthcoming Planck and SPIDER experiments.

Before concluding this section, we comment on the constraints (91) and (92) which are necessary for the consistency
of our calculation. We find:
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FIG. 5: ΩGW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and ξCMB = 0, 2.33, 2.66 (the value of ξ when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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FIG. 6: Region in the {NCMB , ξCMB} plane (values assumed by these quantities when the large scale CMB modes left the
horizon) for which the gravity wave signal is detectable at Advanced LIGO/VIRGO and Einstein Telescope. The left and right
panel refer to a linear and quadratic inflaton potential, respectively.

IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction effects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction effects start to play an important role in determining the evolution
of the homogeneous background, φ(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ξCMB as small
as 2.33 (equivalent to f/(Mpα) ≤ 0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mpα) ≤ 0.031) in the case of a quadratic potential.
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Conclusions

scaling in (4.12) and define a “shape function” of the form

S(ki) = N(k1k2k3)
2Bζ(ki) (4.13)

where the constant of proportionality, N , is arbitrary. This shape function coincides with

the quantity that was plotted in many previous works, including [47] for example. For the

case of interest, we have

S (ξ;x2, x3) ≡
1 + x3

2 + x3
3

x2 x3

f3 (ξ; x2, x3)

3 f3 (ξ; 1, 1)
(4.14)

which is normalized so that S(1, 1) = 1. Note that the bispectrum is defined only in the

region x2 + x3 ≥ 1, which follows from the triangle inequality. Moreover, the bispectrum

is symmetric under interchange of any two momenta, and therefore we can restrict to the

region x3 ≤ x2 ≤ 1 to avoid considering the same configuration more than once.

We plot the shape function S(x2, x3) from axion inflation in the left panel of Fig. 6.

The bispectrum in this model depends on the parameter ξ. In practice, however, we find

that only the size of the nongaussianity (quantified by f equil
NL ) depends strongly on ξ. The

shape function S(x2, x3), on the other hand, is very mildly dependent on ξ. In Fig. 6

we work in the ξ → ∞ limit, in which case the shape becomes independent of model

parameters. (This can be seen by using the large argument expansion (3.18) of I in the

expression (3.29) for f3.) For ξ ∼ O(1) this figure would be nearly indistinguishable.
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Figure 6: In the left panel we plot the shape function S (x2, x3) in axion inflation, showing that
this peaks on equilateral triangles. We work in the limit ξ → ∞, however, this Figure would be
nearly indistinguishable had we chosen ξ = O(1). In the right panel, for comparison, we plot the
analogous shape function obtained from the standard equilateral template.

From Fig. 6 we see that the bispectrum from axion inflation peaks on equilateral

triangles (corresponding to x2 = x3 = 1) and is thus qualitatively similar to the so-called

equilateral template which is often employed to analyze CMB data [48, 39]
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expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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