New ways of searching for the primordial gravitational wave from Large Scale Structure

Donghui Jeong (Johns Hopkins University)

ACP seminar, Kavli IPMU 29 June 2012

References

Large-Scale clustering of galaxies in general relativity DJ, Schmidt & Hirata [arXiv:1107.5427]

Clustering Fossils from the Early Universe DJ & Kamionkowski [arXiv:1203.0302]

Cosmic Rulers Schmidt & DJ [arXiv:1204.3625]

Large-Scale Structure with Gravitational Waves I: Galaxy Clustering DJ & Schmidt [arXiv:1205.1512]

Large-Scale Structure with Gravitational Waves II: Shear Schmidt & DJ [arXiv:1205.1514]

Introduction

Gravitational Wave 101

Gravitational wave (GW)

• is a traceless transverse (tensor) component of the metric perturbations:

(Einstein convention + Greek=0-4, Latin=1-3)

$$ds^2 = a^2(\eta) \left[-d\eta^2 + \{\delta_{ij}\} \right]$$

- Traceless: $Tr[h_{ij}] =$
- Transverse: $\nabla_i h_{ij} = 0$
- There are = 2 degrees of freedom = h_x , h_+

$$+ h_{ij}(\eta, \boldsymbol{x}) \} dx^i dx^j]$$

$$h_i^i = g^{ij}h_{ij} = 0$$

6 (symmetric 3x3 spatial matrix) - 3 (transverse) - 1 (traceless)

Primordial Gravitational Wave

 de-Sitter space generates stochastic gravitational waves with amplitude of $(m_{pl} = \sqrt{G_N})$

$$\Delta_{h}^{2}(k) = \frac{k^{3}P_{T}(k)}{2\pi^{2}} = \frac{64\pi}{m_{pl}^{2}} \left(\frac{H}{2\pi}\right)^{2}\Big|_{k=aH}$$

+ Friedmann equation: $3H^{2} \sim 8\pi G\rho$
er spectrum is defined as ($P_{T} = 4P_{h}$)

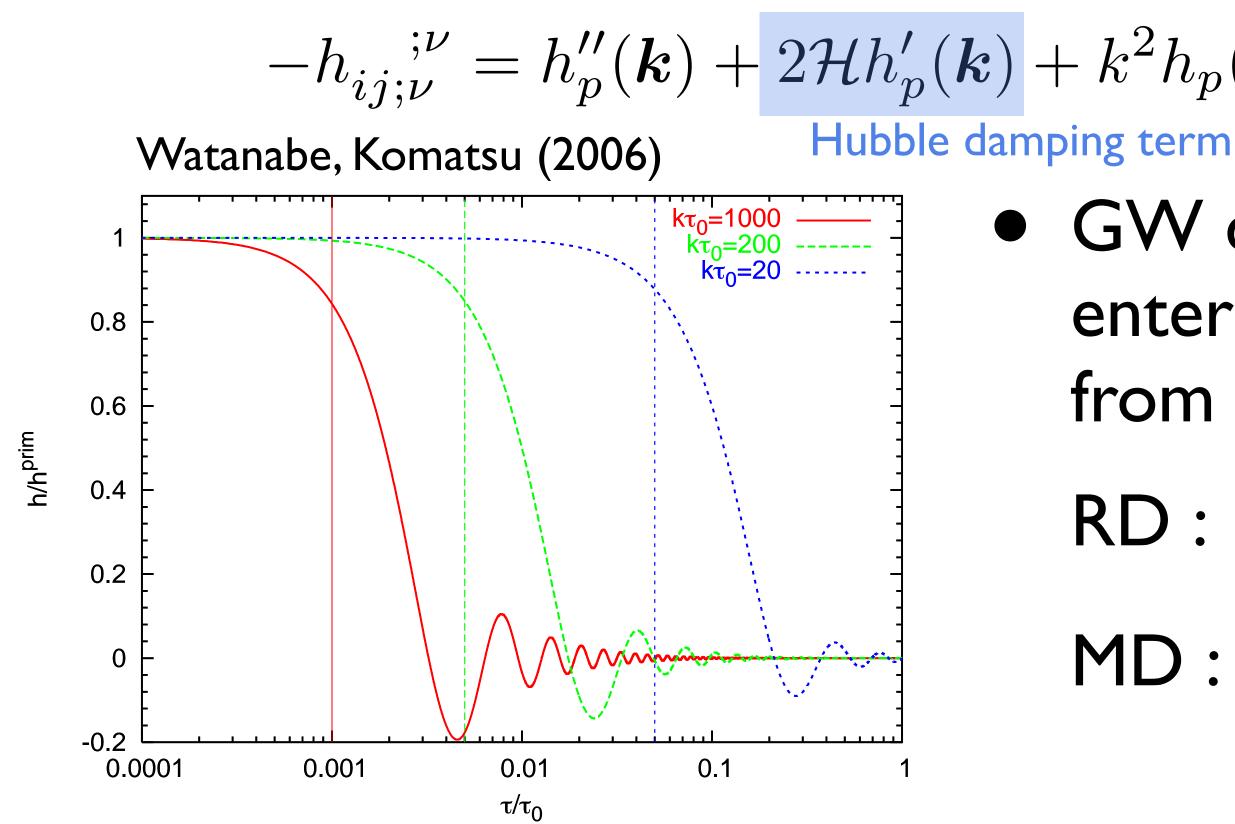
where powe

$$\langle h_{ij}(\boldsymbol{k})h^{ij}(\boldsymbol{k}')\rangle = (2\pi)^3 P_T(k)\delta^D(\boldsymbol{k}-\boldsymbol{k}')$$

Gravitational wave amplitude = energy scale of inflation!

Evolution of GW

• Evolution of GW(p=+,x) are described by K-G equation sourced by anisotropic stress ($\mathcal{H}=a'/a \text{ and }'=d/d\eta$):



$$+k^2h_p(\boldsymbol{k}) = 16\pi Ga^2\Pi_p(\boldsymbol{k})$$

• GW decays once the mode enters the horizon. As effect from Π_{P} is small,

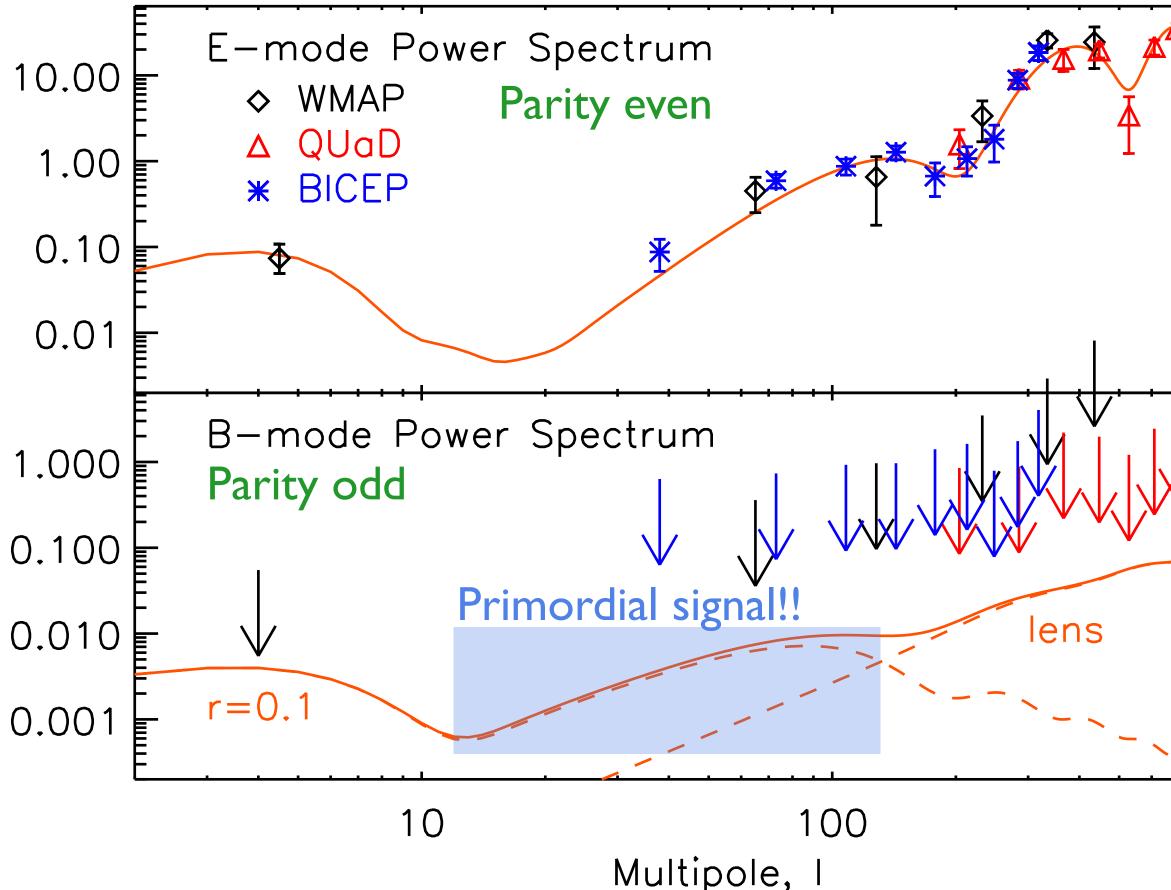
RD:
$$h_p(\boldsymbol{k},\eta) = j_0(k\eta)h_p^{\text{prim}}$$

MD: $h_p(\mathbf{k}, \eta) = \frac{3j_1(k\eta)}{kn} h_p^{\text{prim}}$

r=(tensor amplitude/scalar amplitude)² at k=0.002 [1/Mpc]

GW from CMB polarization

Steal from Eiichiro Komatsu's talk



- 1000
- Parity-odd (B-mode) polarization is a window to the GW (or vector) in the primordial universe!
- No B-mode yet...
- B-mode experiments: Keck array, PIPER, CLASS, LiteBIRD, PIXIE, ... (e.g. 5σ for r<10⁻³)

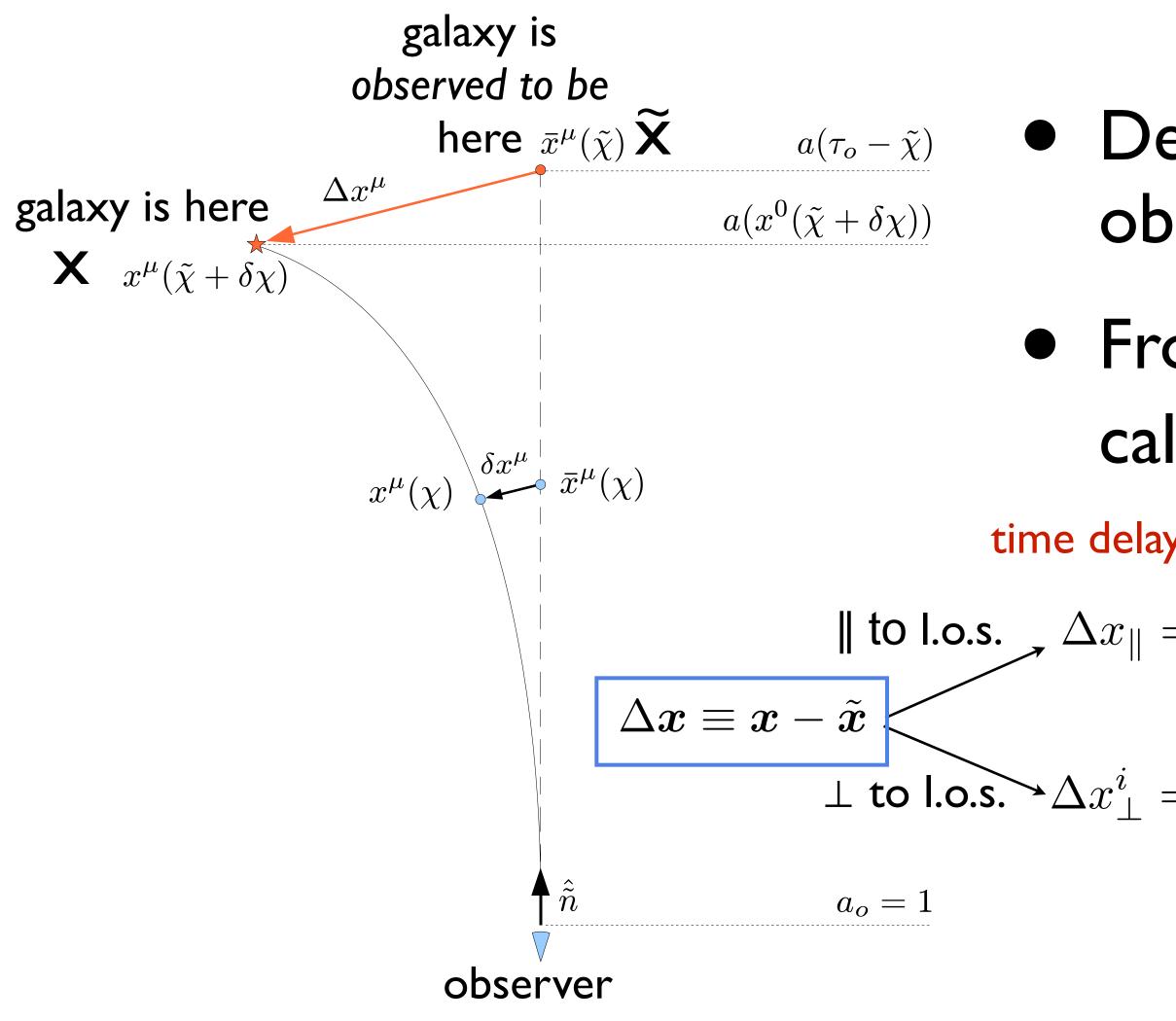
GW from Large Scale Structure

- Two effects:
 - At the location of galaxies (Source)
 - Deflection of light from galaxies (Line of sight)
- Three possible ways of detecting GW from Large Scale Structure :
 - Clustering of galaxies in large scale structure (S,L)
 - Distortion on shape of galaxies, or cosmic shear (S,L)
 - Fossil memory at the off-diagonal correlation (S)

Large-Scale Structure with GW I : Galaxy clustering

Donghui Jeong, Fabian Schmidt & Christopher Hirata [arXiv:1107.5427] Donghui Jeong & Fabian Schmidt [arXiv:1205.1512] $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

Light deflection due to GW



- Deflection of photon changes the observed location of galaxies.
- From the geodesic equation, we calculate Δx : (Here, $h_{\parallel} = h_{ij} \tilde{n}^{i} \tilde{n}^{j}$)

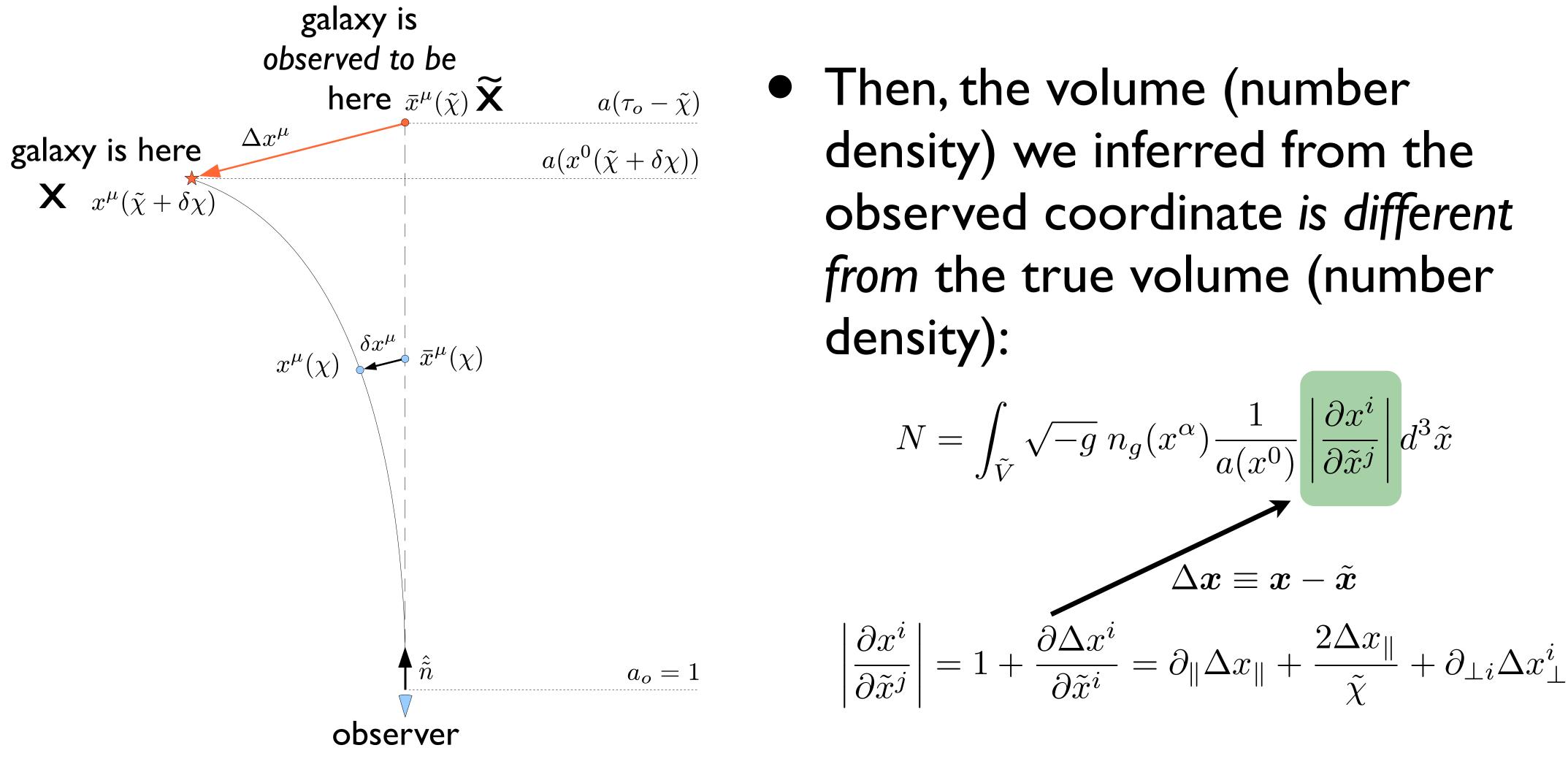
time delay + l.o.s. displacement + redshift pert. $1 \quad \ell^{\tilde{\chi}} \quad 1 \perp \tilde{z} \quad \ell^{\tilde{\chi}}$

$$= -\frac{1}{2} \int_0^{\pi} d\chi h_{\parallel} - \frac{1+z}{2H(\tilde{z})} \int_0^{\pi} d\chi h'_{\parallel}$$

$$= \frac{1}{2} \tilde{\chi} \left[(h_{ij})_{0} \hat{n}^{j} - (h_{\parallel})_{0} \hat{n}^{i} \right] \qquad \begin{array}{l} \text{GW at the} \\ \text{observer's position} \\ + \int_{0}^{\tilde{\chi}} d\chi \left\{ \frac{\tilde{\chi} - \chi}{2} \partial_{\perp}^{i} h_{\parallel} + \frac{c\tilde{h}i}{\chi} \left(h_{\parallel} \hat{n}^{i} - h_{ij} \hat{n}^{j} \right) \right\} \end{array}$$

 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

GW effect I. Volume distortion



GW effect II. redshift perturbation

- Clustering measure: density contrast $\delta_g^{\text{obs}}(\tilde{z}, \hat{n}) = \frac{n(\tilde{z}, \hat{n}) \bar{n}(\tilde{z})}{\bar{n}(\tilde{z})}$
- But, the measured redshift is different from the true redshift!

$$1 + \tilde{z} = (1 + \bar{z})(1 + \delta z) \qquad \delta z = \frac{1}{2} \int_0^{\chi} d\chi h'_{\parallel}$$

• That is, we under-(over-) estimate the mean number density for positive (negative) δz [when there are more galaxies at lower redshifts].

$$\delta_g^{\rm obs}(\tilde{z},\hat{n}) = \delta_g^{\rm intrinsic} + b_e \delta z$$

$$b_e \equiv \left. \frac{d \ln(a^3 \bar{n}_g)}{d \ln a} \right|_{\tilde{z}} = -(1+\tilde{z}) \frac{d \ln(a^3 \bar{n}_g)}{d z} \right|_{\tilde{z}}$$

 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

GW effect III. Magnification

• If galaxies are selected by apparent magnitude, the magnification

$$\mathcal{M} \equiv \frac{D_L^{-2}}{\tilde{D}_L^{-2}(\tilde{z})} =$$

also changes the density contrast (Q = -d ln \tilde{n}_g /d ln F_{cut}):

$$\tilde{\delta}_g = \tilde{\delta}_g(\text{no mag}) + \frac{\partial \ln \tilde{n}}{\partial \ln \mathcal{M}}(\mathcal{M} - \mathcal{M})$$

 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

$$= \frac{D_A^{-2}}{\tilde{D}_A^{-2}(\tilde{z})}$$

 $(-1) \equiv \tilde{\delta}_a(\text{no mag}) + \mathcal{Q}\delta\mathcal{M}$

We shall talk more about the magnification later.

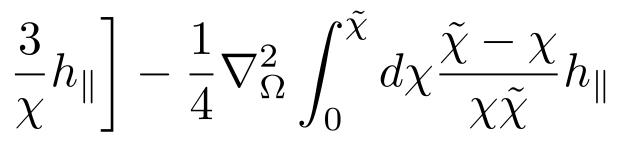
Galaxy density contrast with GW

• If gravitational waves are the ONLY source of the distortion, the "observed" galaxy density contrast becomes

$$\begin{split} \tilde{\delta}_{gT} &= (b_e - 2\mathcal{Q})\delta z - 2(1 - \mathcal{Q})\hat{\kappa} - \frac{1 - \mathcal{Q}}{2}h_{\parallel} - \frac{1 + \tilde{z}}{2H(\tilde{z})}h'_{\parallel} \\ &- \frac{1 - \mathcal{Q}}{\tilde{\chi}} \left[\int_0^{\tilde{\chi}} d\chi h_{\parallel} + \frac{1 + \tilde{z}}{H(\tilde{z})} \int_0^{\tilde{\chi}} d\chi h'_{\parallel} \right] \\ &- \frac{H(\tilde{z})}{2} \frac{\partial}{\partial \tilde{z}} \left[\frac{1 + \tilde{z}}{H(\tilde{z})} \right] \int_0^{\tilde{\chi}} d\chi h'_{\parallel}. \end{split}$$

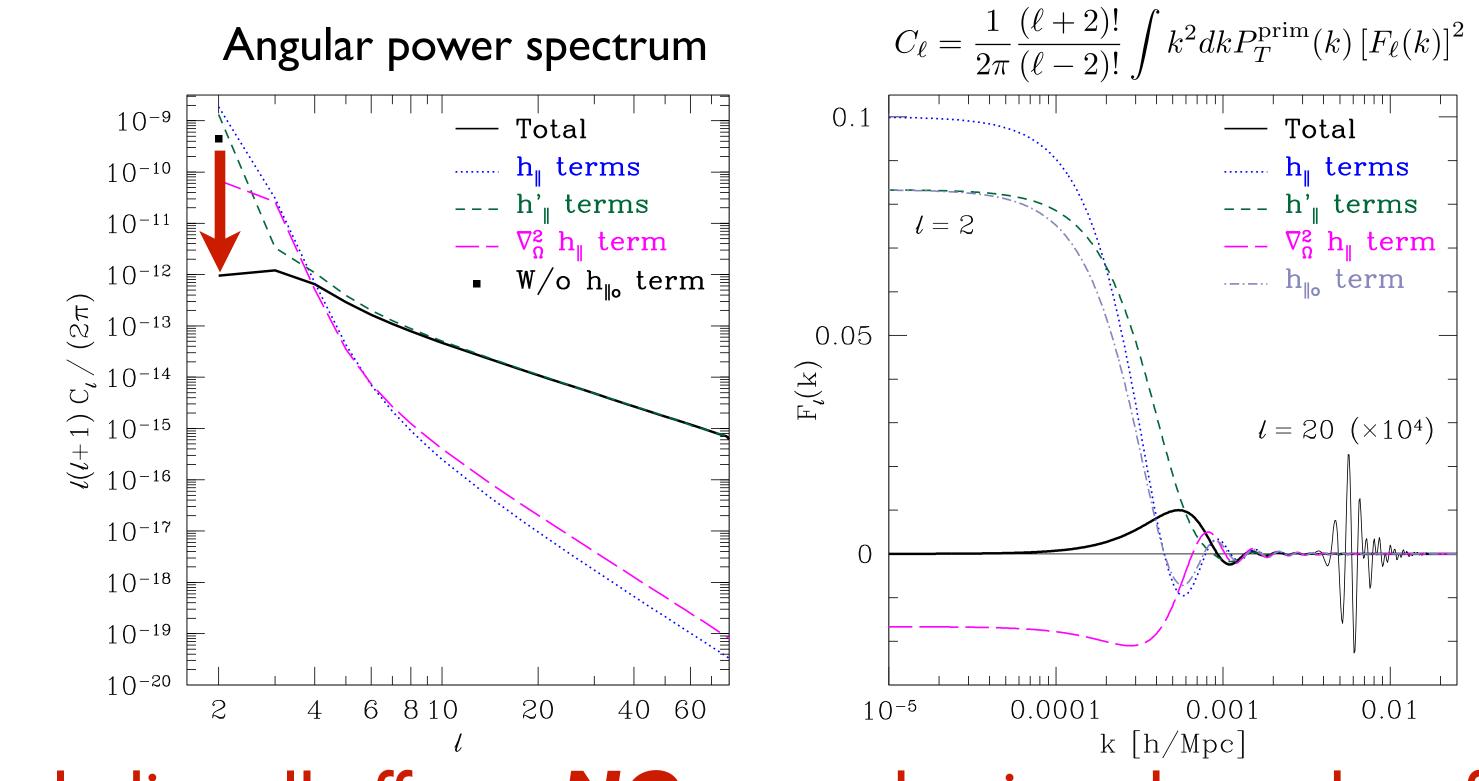
$$\hat{\kappa} = \frac{5}{4}h_{\parallel o} - \frac{1}{2}h_{\parallel} - \frac{1}{2}\int_{0}^{\tilde{\chi}} d\chi \left[h_{\parallel}' + \frac{1}{2}\int_{0}^{\tilde{\chi}} d\chi \left[h_{\parallel}' + \frac{1}{2}h_{\parallel}'\right] \right]$$

 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$



Angular power spectrum with GW

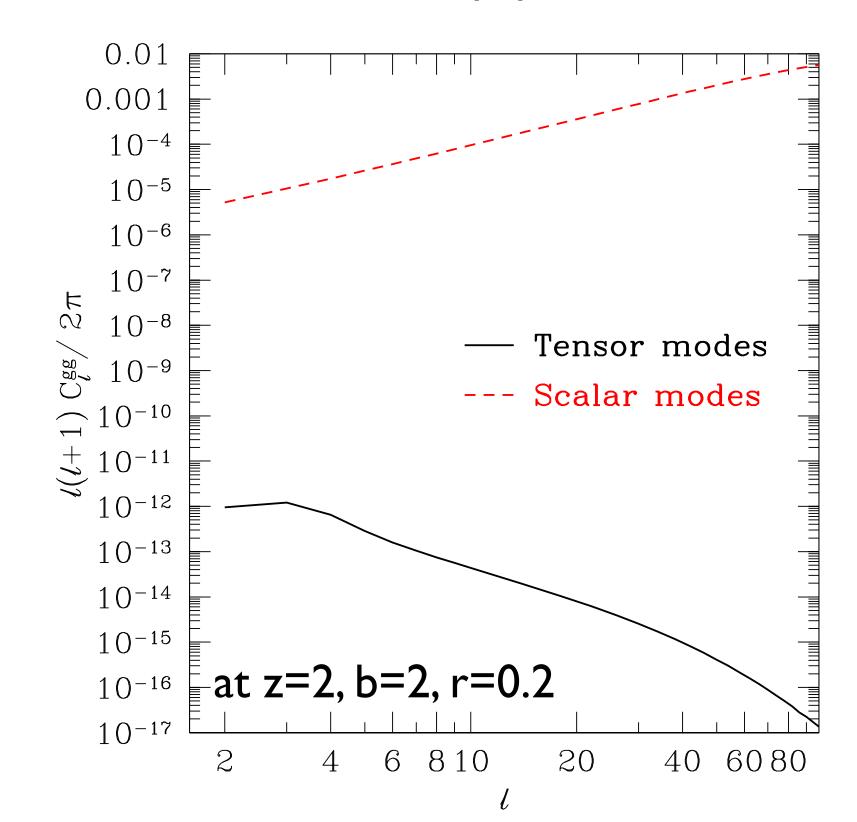
• For the sharp redshift slice at z=2 with $b_e=2.5, Q=1.5$



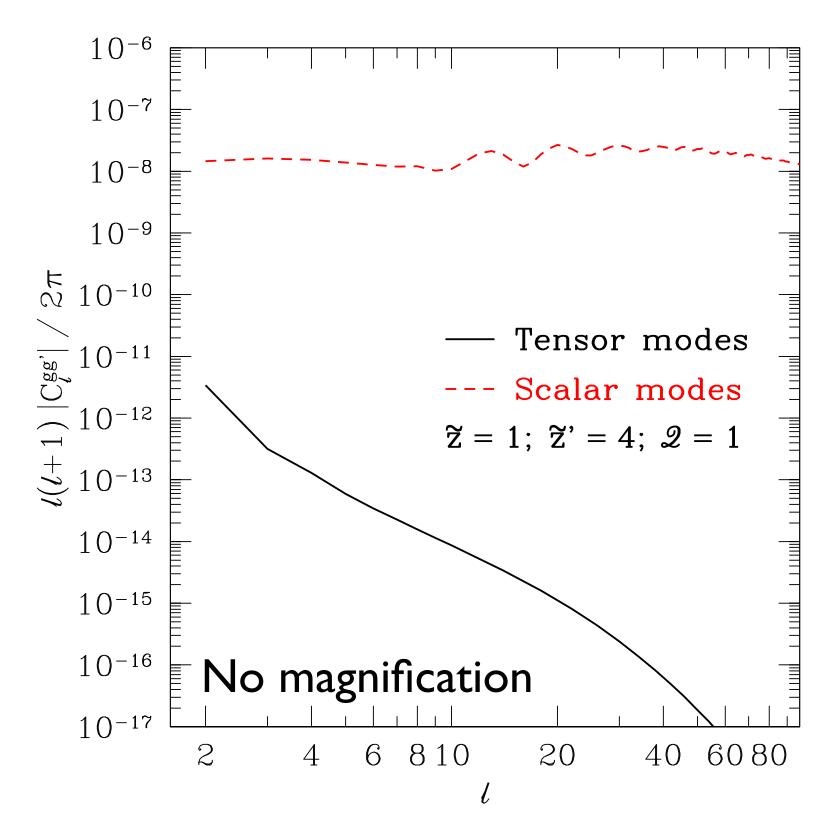
When including all effects, <u>NO</u> super horizon k-modes affect the subhorizon clustering!! cf. Masui & Pen (2010)

We enjoyed physics, but...

• GW signal is way too small compared to the (1) intrinsic



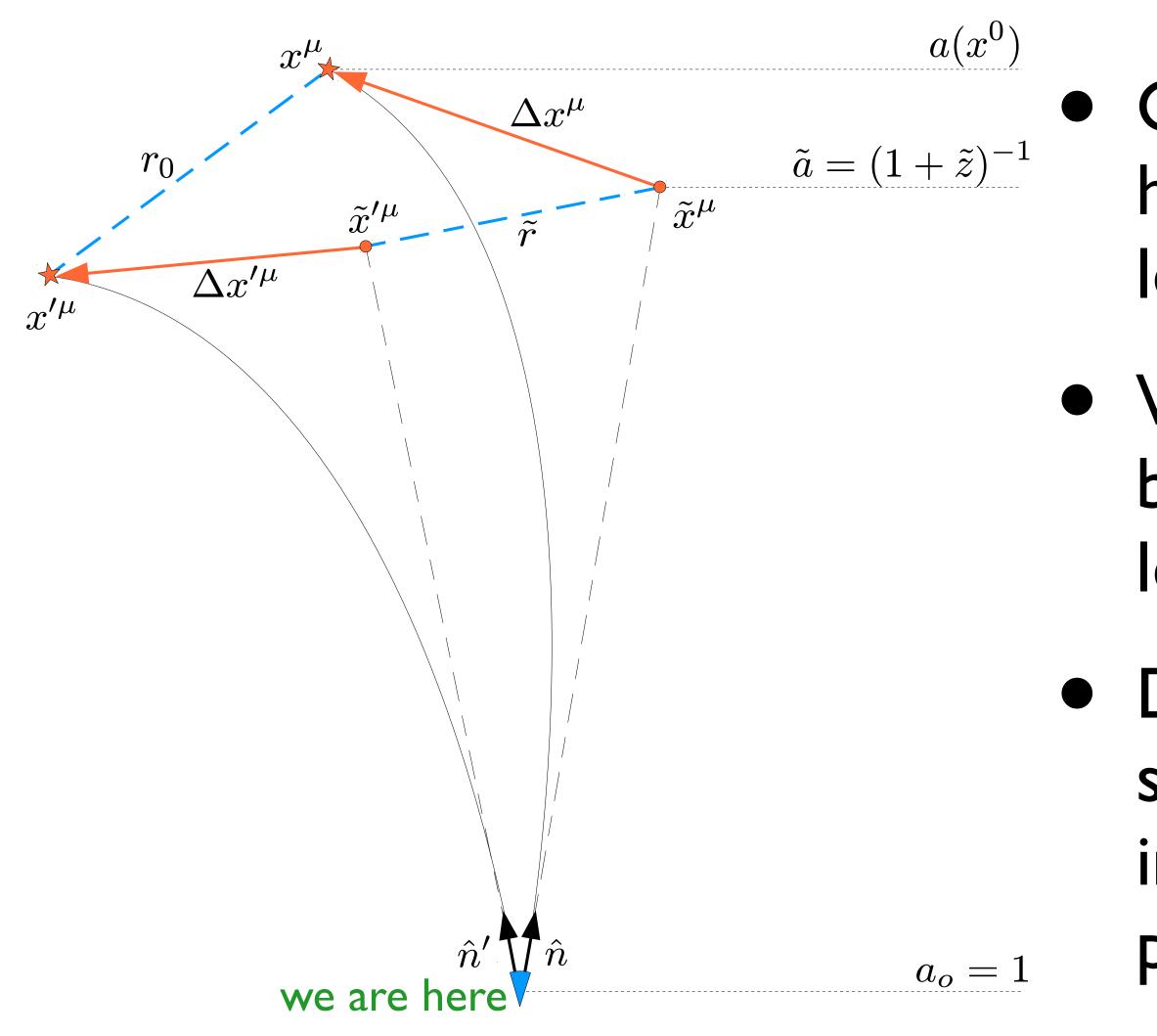
correlation and (2) the effect from scalar metric perturbations.



Cosmic Rulers or, covariant formalism for the shape distortions

Fabian Schmidt & Donghui Jeong [arXiv:1204.3625]

Cosmology with a high-z yardstick



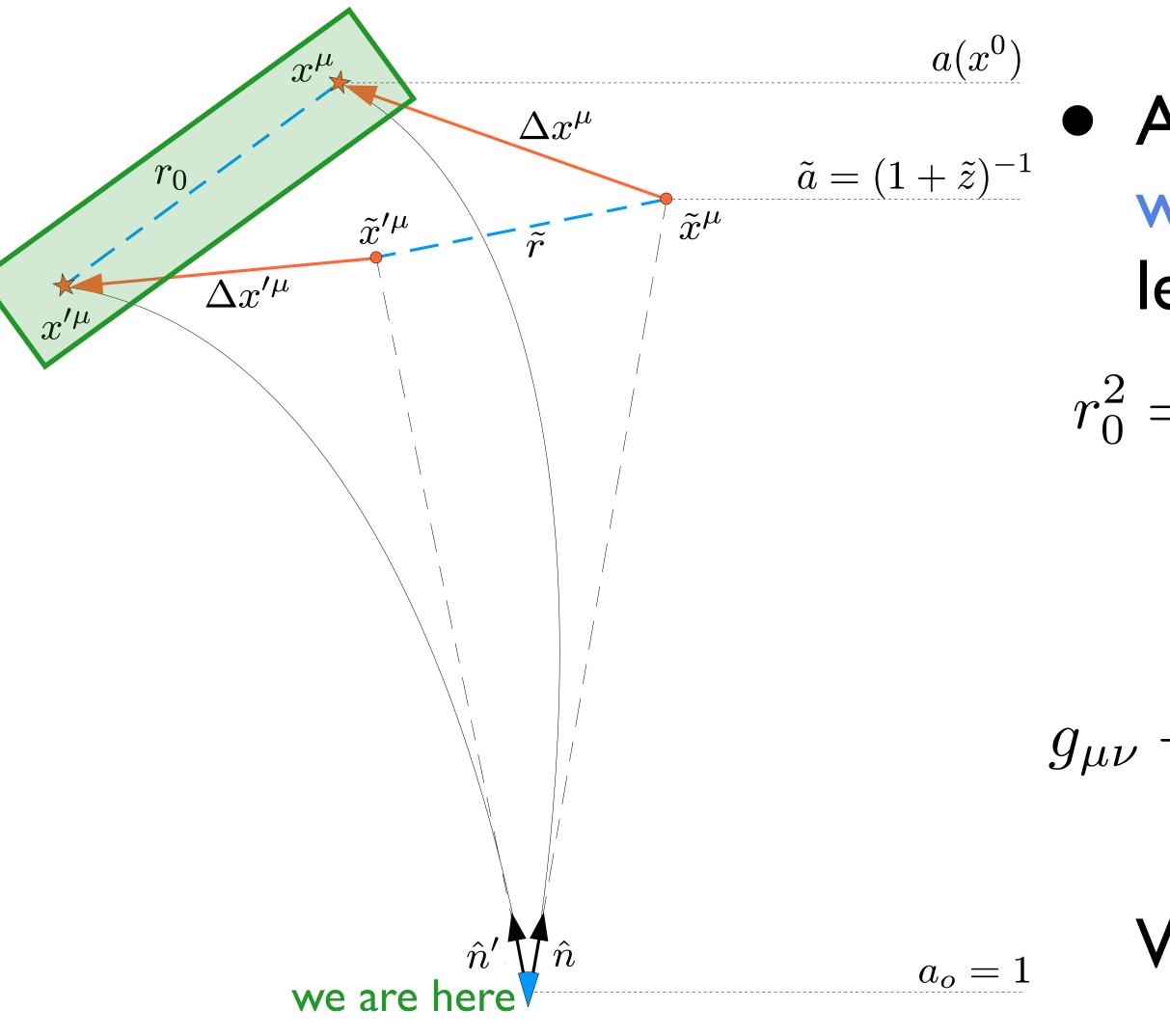
 $ds^{2} = a^{2}(\eta) \left[-(1+2A)d\eta^{2} - 2B_{i}d\eta dx^{i} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

• Consider a shining yardstick at high redshift, whose proper length is somehow known : r_0

• We observe (RA,DEC,z) for both ends of the stick, infer the length of the stick from them : \tilde{r}

• Due to perturbations, $\tilde{r} \neq r_0$ such a distortion to the size is an important tool to study perturbations!

Who measures ro?



 $ds^{2} = a^{2}(\eta) \left[-(1+2A)d\eta^{2} - 2B_{i}d\eta dx^{i} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

An (imaginary) observer moving with the stick measures the length of the ruler:

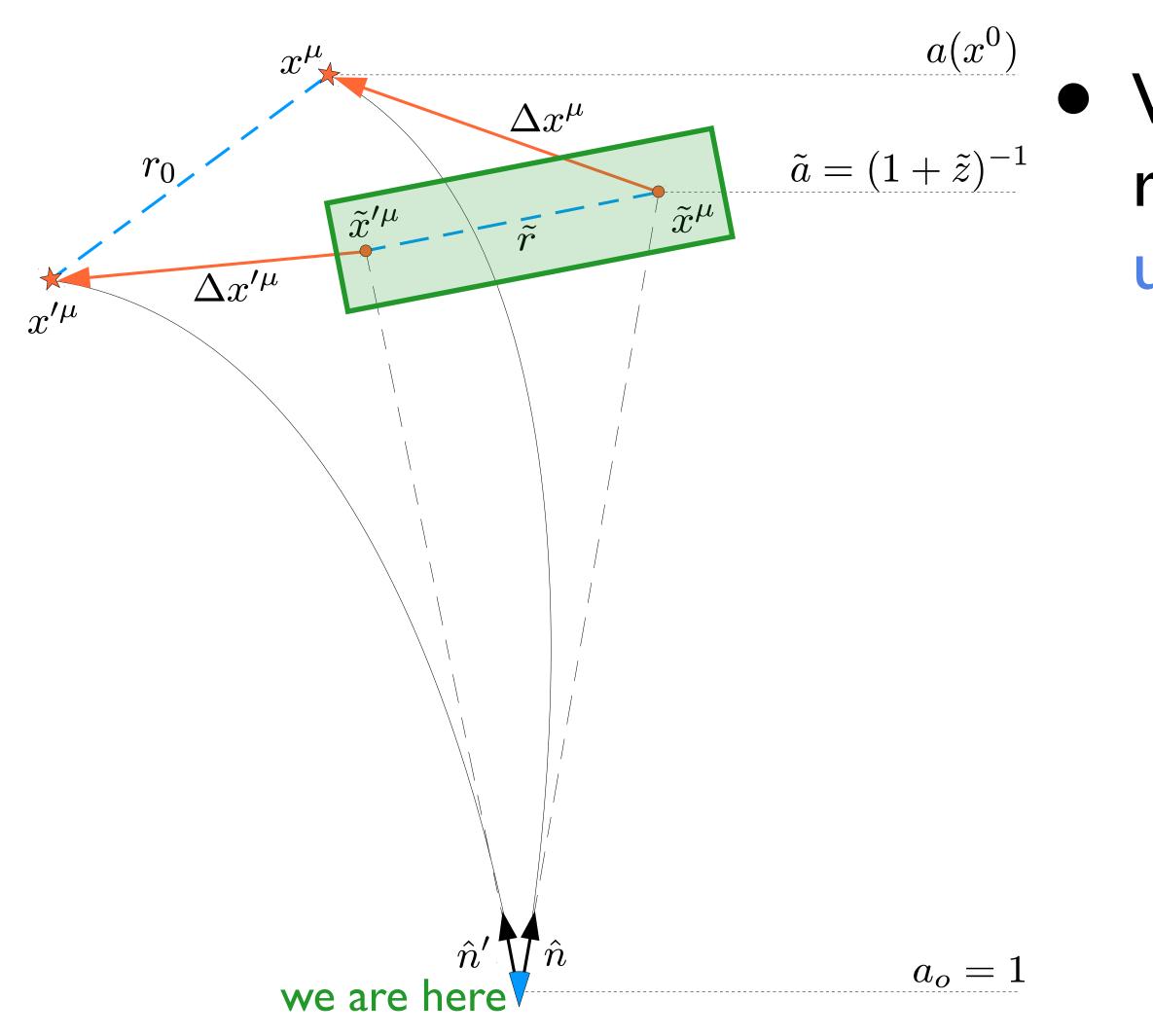
$$= [g_{\mu\nu} + u_{\mu}u_{\nu}] (x^{\mu} - x'^{\mu})(x^{\nu} - x'^{\nu})$$

metric projected onto the constant-proper time hyper-surface of the comoving observer

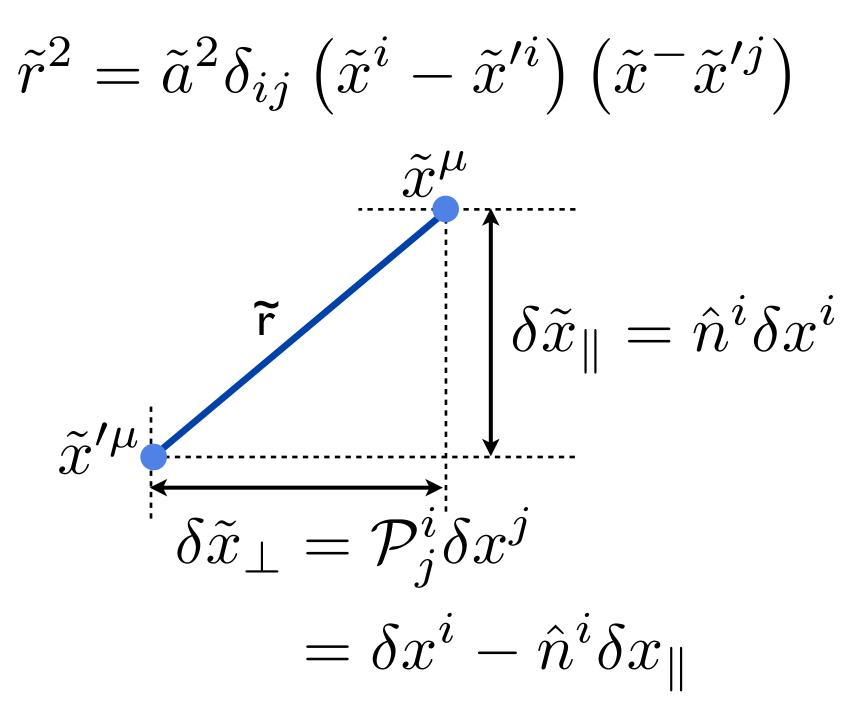
$$+ u_{\mu}u_{\nu} = a^2 \begin{pmatrix} 0 & -v_i \\ -v_i & \delta_{ij} + h_{ij} \end{pmatrix}$$

We assume a small ruler.

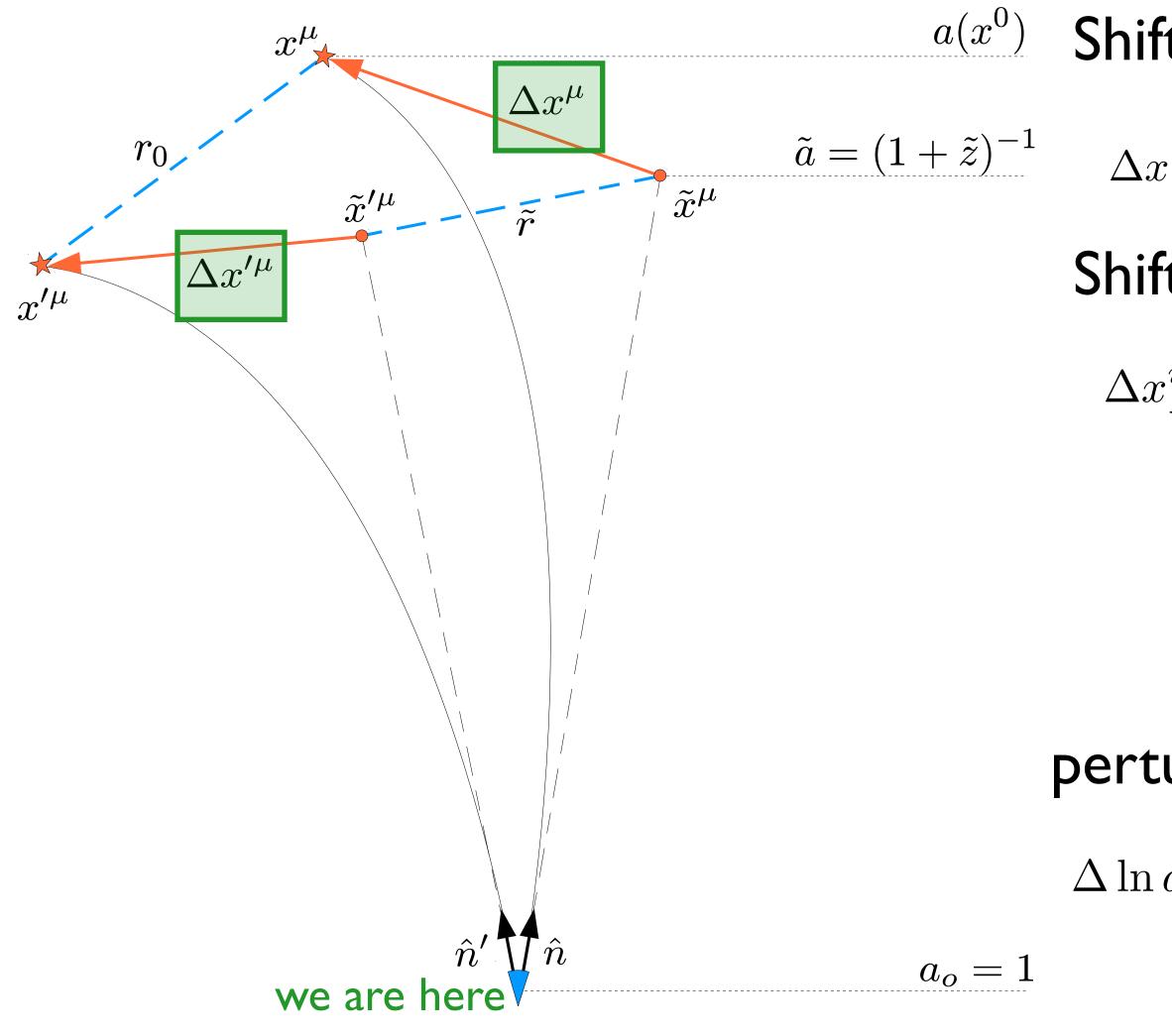
We measure r !



• We measure the angular and radial separations by using the unperturbed metric:



Δx is from geodesic equations



 $ds^{2} = a^{2}(\eta) \left[-(1+2A)d\eta^{2} - 2B_{i}d\eta dx^{i} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

Shift along the line of sight direction

$$\| = \int_0^{\tilde{\chi}} d\chi \left[A - B_{\|} - \frac{1}{2} h_{\|} \right] - \frac{1 + \tilde{z}}{H(\tilde{z})} \Delta \ln a$$

Shift along the perpendicular direction

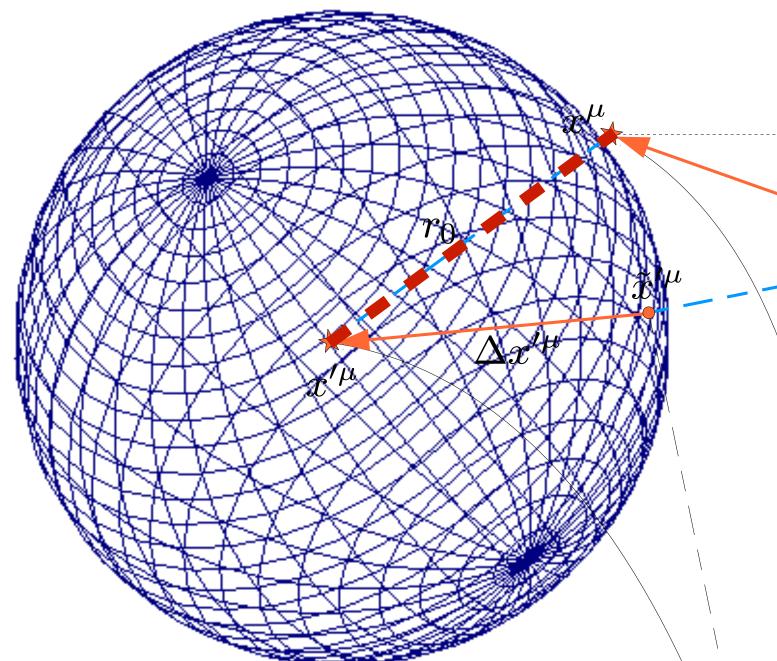
$$\begin{split} {}^{i}_{\perp} &= \left[\frac{1}{2} \mathcal{P}^{ij}(h_{jk})_{o} \, \hat{n}^{k} + B^{i}_{\perp o} - v^{i}_{\perp o} \right] \tilde{\chi} \\ &- \int_{0}^{\tilde{\chi}} d\chi \left[\frac{\tilde{\chi}}{\chi} \left(B^{i}_{\perp} + \mathcal{P}^{ij} h_{jk} \hat{n}^{k} \right) \right. \\ &+ (\tilde{\chi} - \chi) \partial^{i}_{\perp} \left(A - B_{\parallel} - \frac{1}{2} h_{\parallel} \right) \right] \end{split}$$

perturbation to the scale factor at emission

$$a = A_o - A + v_{\parallel} - v_{\parallel o} - \int_0^{\tilde{\chi}} d\chi \left[A - B_{\parallel} - \frac{1}{2} h_{\parallel} \right]'$$

Also, see Yoo et al. (2010)

Now, consider a spherical ruler $a(x^0)$ Δx^{μ} $\tilde{a} = (1 + \tilde{z})^{-1}$ $ilde{x}^{\mu}$ \tilde{r} \hat{n}' \hat{n} $a_{o} = 1$

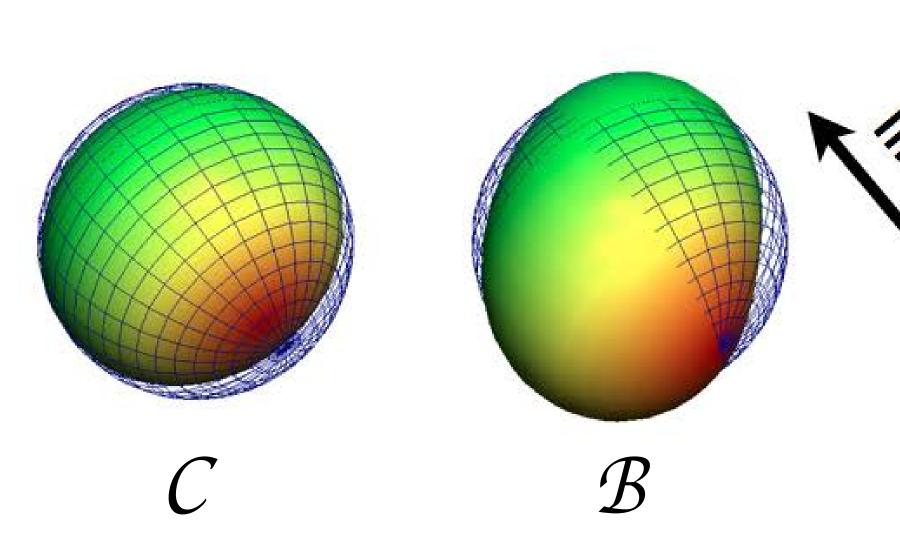


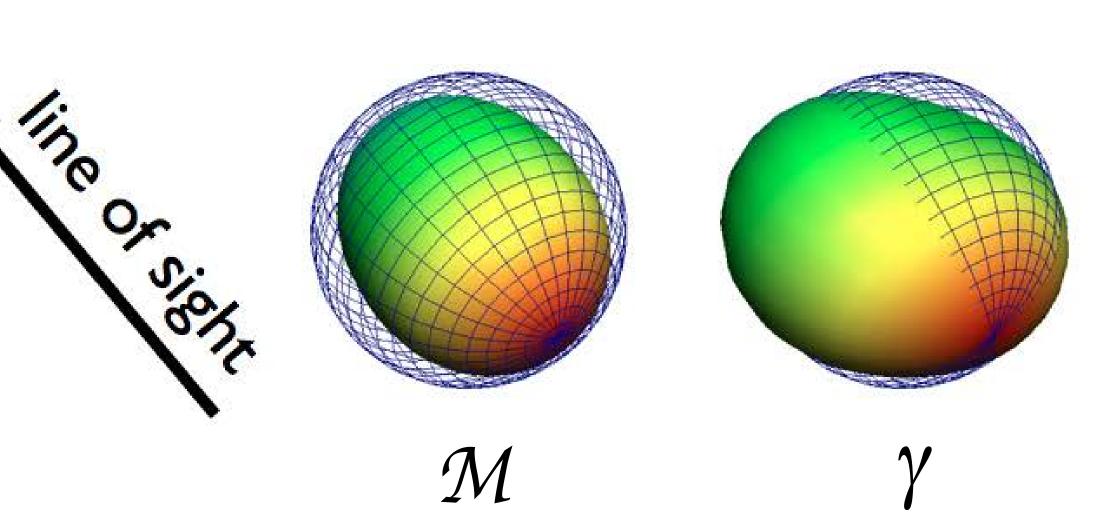
Classification of distortion

• We decompose the distortion as Scalar, Vector and Tensor according to their rotational property on sphere:

 $\frac{\tilde{r} - r_0}{\tilde{r}} = \mathcal{C} \frac{(\delta \tilde{x}_{\parallel})^2}{\tilde{r}_c^2} + \mathcal{B}_i \frac{\delta \tilde{x}_{\parallel} \delta \tilde{x}_{\perp}^i}{\tilde{r}_c^2} + \mathcal{A}_{ij} \frac{\delta \tilde{x}_{\perp}^i \delta \tilde{x}_{\perp}^j}{\tilde{r}_c^2}$

longitudinal scalar Vector Magnification (trace) + shear (spin-2)





 $ds^2 = a^2(\eta) \left[-(1+2A) \right]$ Covariant formu

$$\mathcal{C} = -\Delta \ln a \left[1 - H(\tilde{z}) \frac{\partial}{\partial \tilde{z}} \left(\frac{1 + \tilde{z}}{H(\tilde{z})} \right) - \frac{\partial \ln r_0}{\partial \ln a} \right]$$

$$- A - v_{\parallel} + B_{\parallel}$$

$$+ \frac{1 + \tilde{z}}{H(\tilde{z})} \left(-\partial_{\parallel}A + \partial_{\parallel}v_{\parallel} + B'_{\parallel} - v'_{\parallel} + \frac{1}{2}h'_{\parallel} \right)$$

$$\mathcal{B}_i = -\mathcal{P}_i{}^j h_{jk} \hat{n}^k - v_{\perp i} - \partial_{\perp i} \Delta x_{\parallel} - \partial_{\tilde{\chi}} \Delta x_{\perp i} + \frac{\Delta x_{\perp i}}{\tilde{\chi}}$$

$$= -\mathcal{V}_{\perp i} + B_{\perp i} + \frac{1 + \tilde{z}}{H(\tilde{z})} \partial_{\perp i} \Delta \ln a,$$

Magnification (e.g. Yoo et al. 2009, Challinor&Lewis2011,Bonvin& Durrer2011,Jeong et al. 2011)

$$\mathcal{M} \equiv \mathcal{P}^{ij} \mathcal{A}_{ij} = -2\Delta \ln a \left[1 - \frac{\partial \ln r_0}{\partial \ln a} \right] - \frac{1}{2} \left(h^i{}_i - h_{\parallel} \right) + 2\hat{\kappa} -$$

convergence

$$\begin{split} \hat{\kappa} &= -\frac{1}{2} \left[\frac{1}{2} \left((h^{i}{}_{i})_{o} - 3(h_{\parallel})_{o} \right) - 2(B_{\parallel} - v_{\parallel})_{o} \right] \\ &+ \frac{1}{2} \int_{0}^{\tilde{\chi}} d\chi \left[\partial_{\perp}^{k} B_{k} - \frac{2}{\chi} B_{\parallel} + (\partial_{\perp}^{l} h_{lk}) \hat{n}^{k} + \frac{1}{\chi} \left(h^{i}{}_{i} - 3h_{\parallel} \right) + (\tilde{\chi} - \chi) \frac{\chi}{\tilde{\chi}} \nabla_{\perp}^{2} \left\{ A - B_{\parallel} - \frac{1}{2} h_{\parallel} \right\} \right] \end{split}$$

$$)d\eta^2 - 2B_i d\eta dx^i + (\delta_{ij} + h_{ij}) dx^i dx^j]$$

Ila for C, B, M

$$\frac{2}{\tilde{\chi}}\Delta x_{\parallel}$$

... and Y!!

• First fully relativistic, covariant expression for the cosmic shear!!

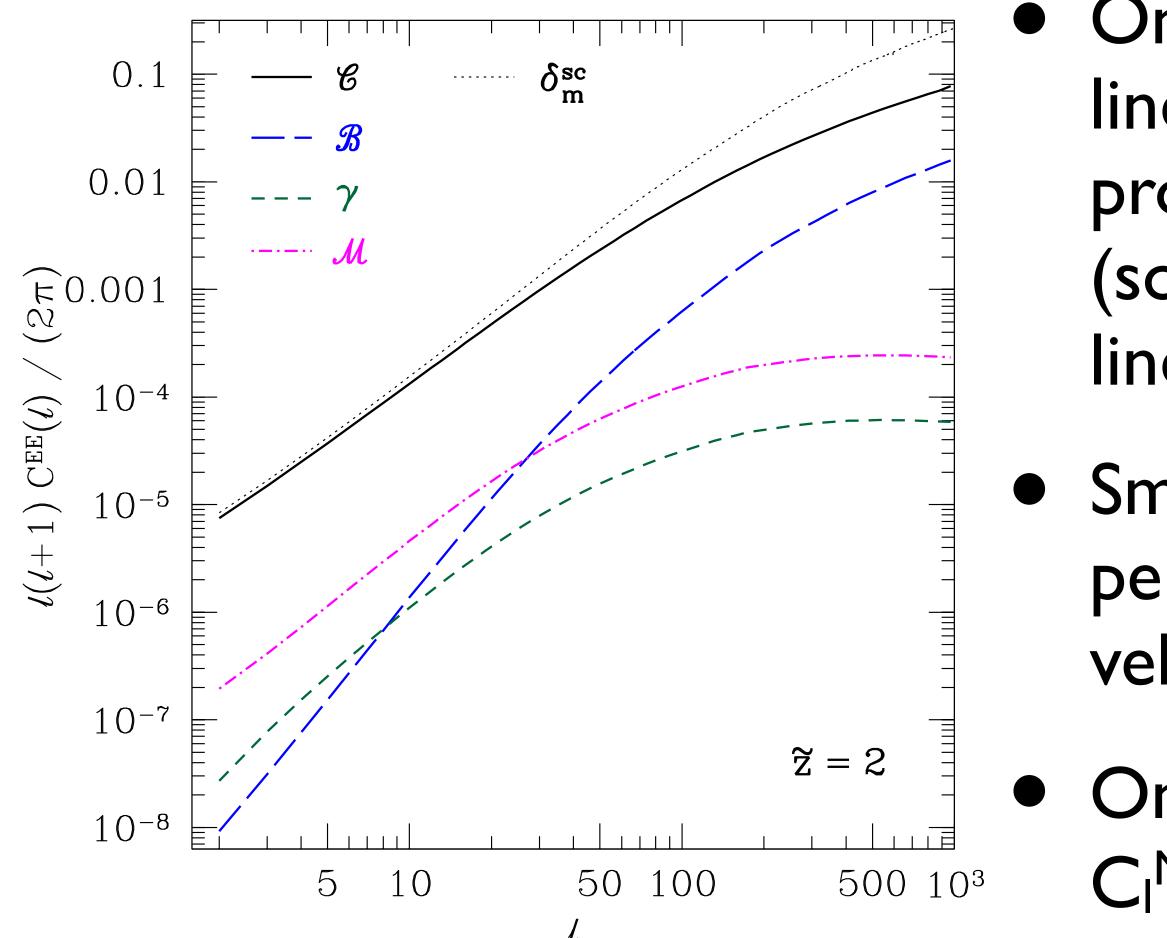
$$\pm 2\gamma = -\frac{1}{2}h_{\pm} - \frac{1}{2}(h_{\pm})_o - \int_0^{\tilde{\chi}} d\chi \left[\left(1 - 2\frac{\chi}{\tilde{\chi}} \right) \left[m_{\mp}^k \partial_{\pm} B_k + (\partial_{\pm} h_{lk}) m_{\mp}^l \hat{n}^k \right] - \frac{1}{\tilde{\chi}} h_{\pm} \right. \\ \left. + (\tilde{\chi} - \chi) \frac{\chi}{\tilde{\chi}} \left\{ - m_{\mp}^i m_{\mp}^j \partial_i \partial_j A + \hat{n}^k m_{\mp}^i m_{\mp}^j \partial_i \partial_j B_k + \frac{1}{2} m_{\mp}^i m_{\mp}^j (\partial_i \partial_j h_{kl}) \hat{n}^k \hat{n}^l \right\} \right]$$

- Here, $\pm 2\gamma(\hat{n}) \equiv m_{\mp}^{i}m_{\mp}^{j}A_{ij}$ is a spin ± 2 component of the shear, where
- $m_{\pm} = \frac{1}{\sqrt{2}} (e_1 \mp i e_2)$ are spin ± 1 vector field on sphere in the sense that it transforms $m_\pm o m'_\pm = e^{\pm i \psi} m_\pm$ under the rotation $e_i o e'_i$ with angle ψ .
 - Conformal Newtonian gauge: ±

 $ds^{2} = a^{2}(\eta) \left[-(1+2A)d\eta^{2} - 2B_{i}d\eta dx^{i} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

$$_{2}\gamma(\hat{\boldsymbol{n}}) = \int_{0}^{\tilde{\chi}} d\chi(\tilde{\chi}-\chi)\frac{\chi}{\tilde{\chi}}m_{\mp}^{i}m_{\mp}^{j}\partial_{i}\partial_{j}(\Psi-\Phi)$$

C, B, M, Y from scalar perturbations



- On small scales, C is dominated by line-of-sight velocity. When projecting onto sphere, velocity (solid line) and density (dotted line) have different slope
- Small scale B is dominated by perpendicular derivative of I.o.s. velocity.
- On small scales, $|M| = 2|\kappa| = 2|\gamma|$: $C_1^M = 4 C_1^{\gamma}$

Large-Scale Structure with GW II : Shear

Donghui Jeong & Fabian Schmidt [arXiv:1205.1512]

Cosmic shear with GW

• With only tensor perturbation, shear expression becomes

$${}_{\pm 2}\gamma(\hat{\boldsymbol{n}}) = -\frac{1}{2}h_{\pm o} - \frac{1}{2}h_{\pm} - \int_0^{\tilde{\chi}} d\chi \left\{ \frac{\tilde{\chi} - \chi}{2} \frac{\chi}{\tilde{\chi}} (m^i_{\mp} m^j_{\mp} \partial_i \partial_j h_{kl}) \hat{n}^k \hat{n}^l + \left(1 - 2\frac{\chi}{\tilde{\chi}}\right) \hat{n}^l m^k_{\mp} m^i_{\mp} \partial_i h_{kl} - \frac{1}{\tilde{\chi}} h_{\pm} \right\}$$

- Dodelson, Rozo & Stebbins (2003) "Assuming physical isotropy, we must add a 'metric shear' caused by the shearing of the coordinates with respect to physical space, i.e. $\Delta \gamma_{ij}$, which is just the traceless transverse projection of -h_{ii}/2"

 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

What "metric shear" really is

- The cosmic shear measurement are referenced to the frame within which galaxies are statistically round.
- The most natural choice of such coordinate is the local inertial frame defined along the time-like geodesic of the galactic center, or so called Fermi Normal Coordinate (FNC)!
- Coordinate transformation from FRW to FNC coordinate:

$$x_F^{i} = x^{i} - \frac{1}{2}h_{ij}x^{j} - \frac{1}{2}\Gamma_{jk}^{i}x^{j}x^{k} + \mathcal{O}(x^3)$$

leads to an additional shear of

t_{F :} time-like geodesic

XF

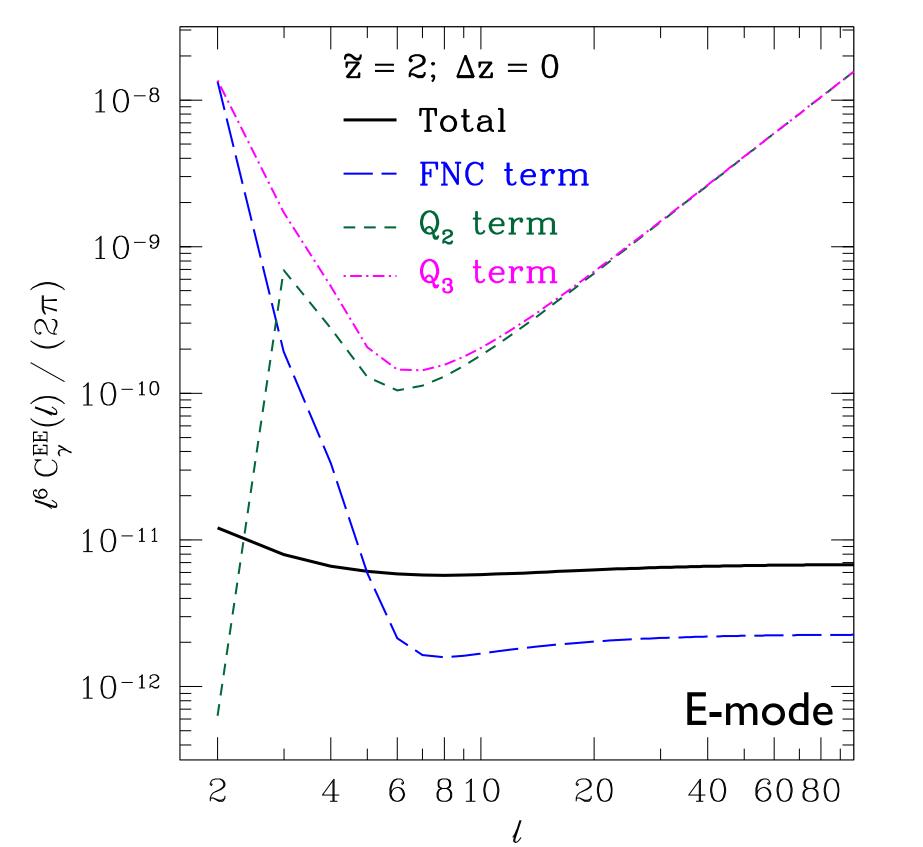
 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

of $\partial_{\perp(i}\Delta x_{\perp j)} \rightarrow \partial_{\perp(i}\Delta x_{\perp j)} + \frac{1}{2} \mathcal{P}_{i}^{k} \mathcal{P}_{j}^{l} h_{kl} + \cdots$ Yij Yij

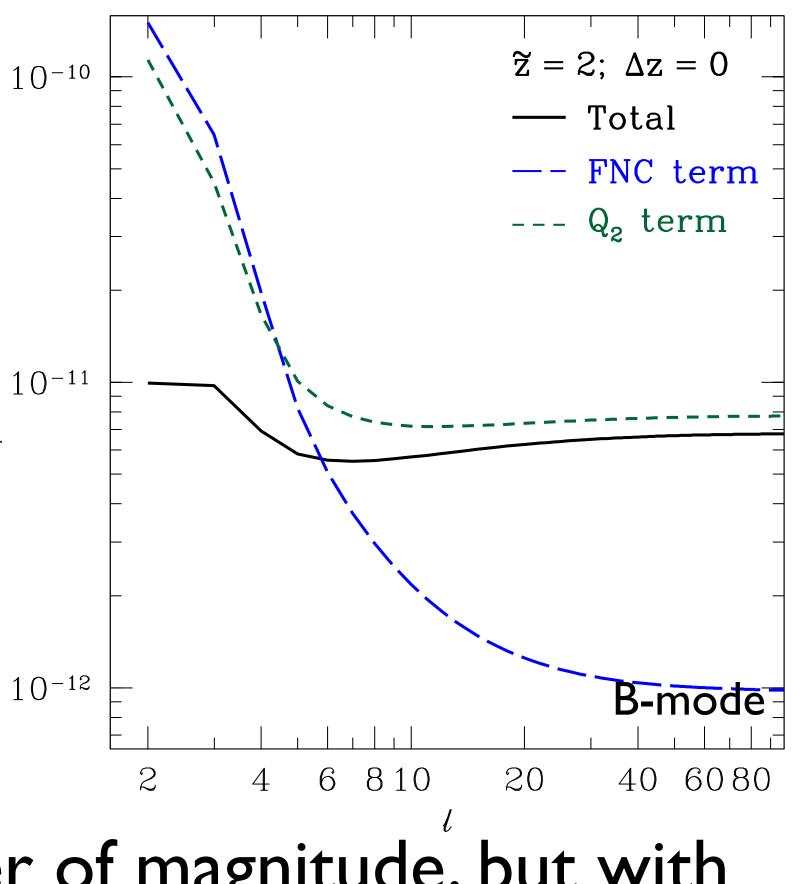
FNC term

Metric shear vs. l.o.s. integral

 $_{\prime 6}^{\prime 6}$ C^{BB}_{γ} (ℓ) / (2π)



• They are about the same order of magnitude, but with opposite sign...



FNC metric and tide

• The metric in the Fermi Normal Coordinate is given by

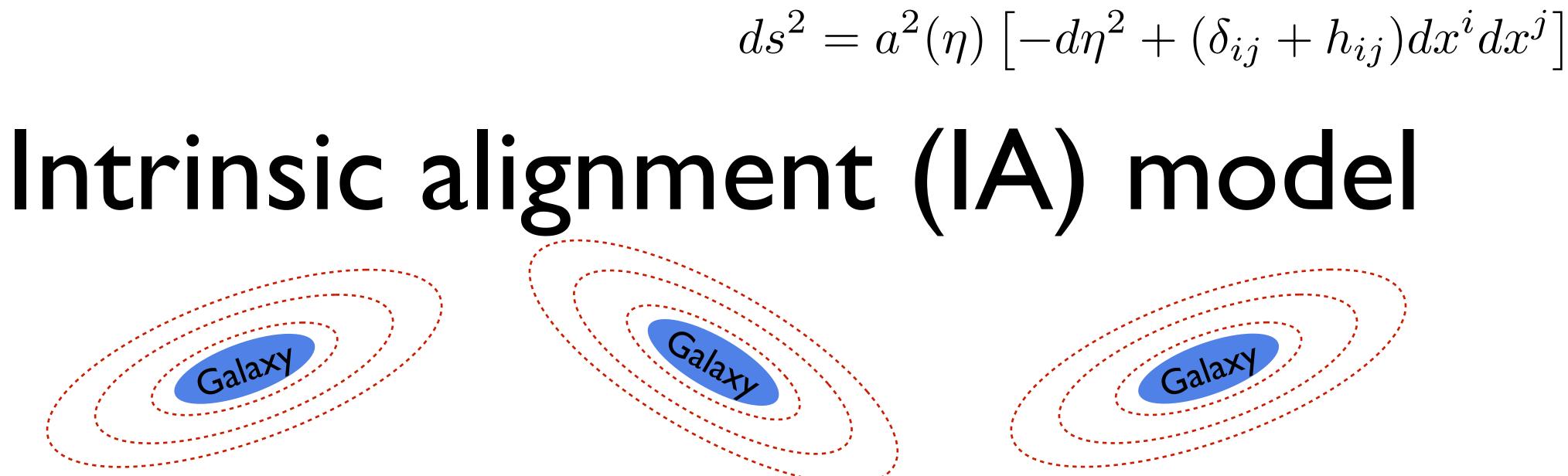
$$\begin{split} g_{00}^{F} &= -1 + \left(\dot{H} + H^{2}\right) r_{F}^{2} + \left[\frac{1}{2}\ddot{h}_{lm} + H\dot{h}_{lm}\right] x_{F}^{l} x_{F}^{m} \\ g_{0i}^{F} &= \frac{1}{3} \left(\nabla_{i}\dot{h}_{lm} - \nabla_{m}\dot{h}_{li}\right) x_{F}^{l} x_{F}^{m} \\ g_{ij}^{F} &= \delta_{ij} + \frac{H^{2}}{3} \left[x_{F}^{i} x_{F}^{j} - r_{F}^{2} \delta_{ij}\right] + \frac{1}{6} \left(\nabla_{i} \nabla_{j} h_{ml} + \nabla_{l} \nabla_{m} h_{ij} - \nabla_{l} \nabla_{j} h_{im} - \nabla_{i} \nabla_{m} h_{jl}\right) x_{F}^{l} x_{F}^{m} \\ &+ \frac{H}{6} \left(\dot{h}_{lj} x_{F}^{l} x_{F}^{i} + \dot{h}_{im} x_{F}^{m} x_{F}^{j} - \dot{h}_{ij} r_{F}^{2} - \dot{h}_{lm} x_{F}^{l} x_{F}^{m} \delta_{ij}\right). \end{split}$$

- Equation of motion for non-relativistic body in FNC is
- Ψ generates tidal force: $t_{ij} = \left(\partial_{ij}\right)$

 $ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$

determined by the effective gravitational potential $\Psi_{eff} = -\delta g_{00}/2$.

$$\partial_i \partial_j - \frac{1}{3} \delta_{ij} \nabla^2 \bigg) \Psi^F = -\left(\frac{1}{2}\ddot{h}_{lm} + H\dot{h}_{lm}\right)$$

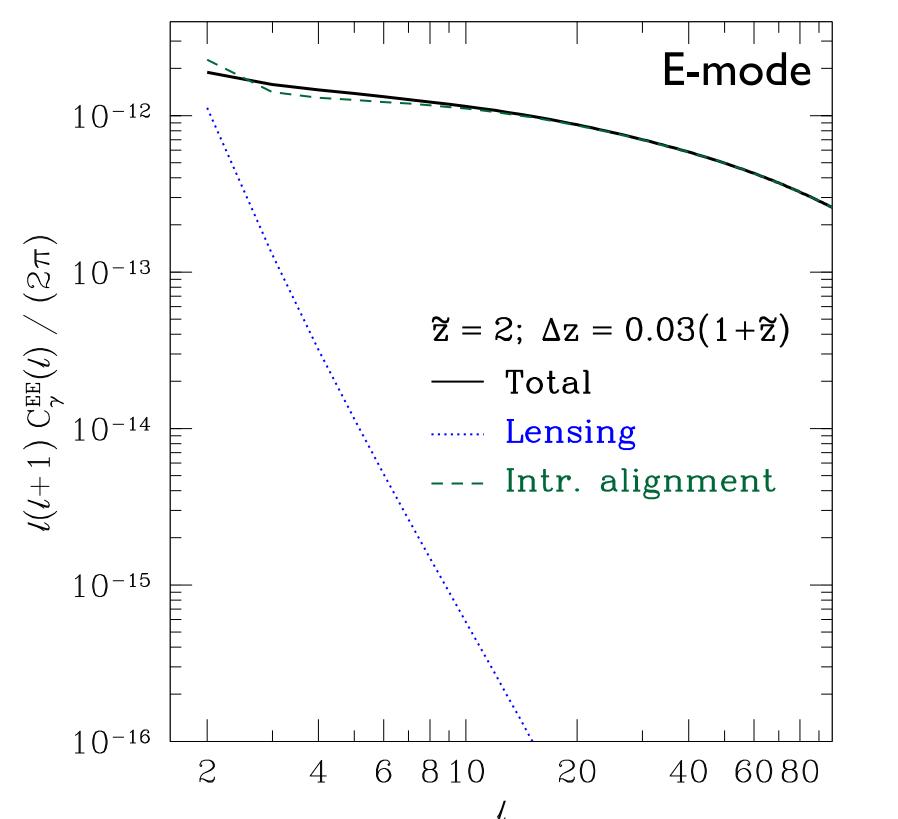


- Intrinsic alignment: tidal fields (anisotropic gravitational) potential) tends to align galaxies
- Linear alignment model $\gamma_{ij}^{IA}(n) =$
 - consistent with observations on large (>10 [Mpc/h]) scales Blazek+(2011), Joachimi+(2011)

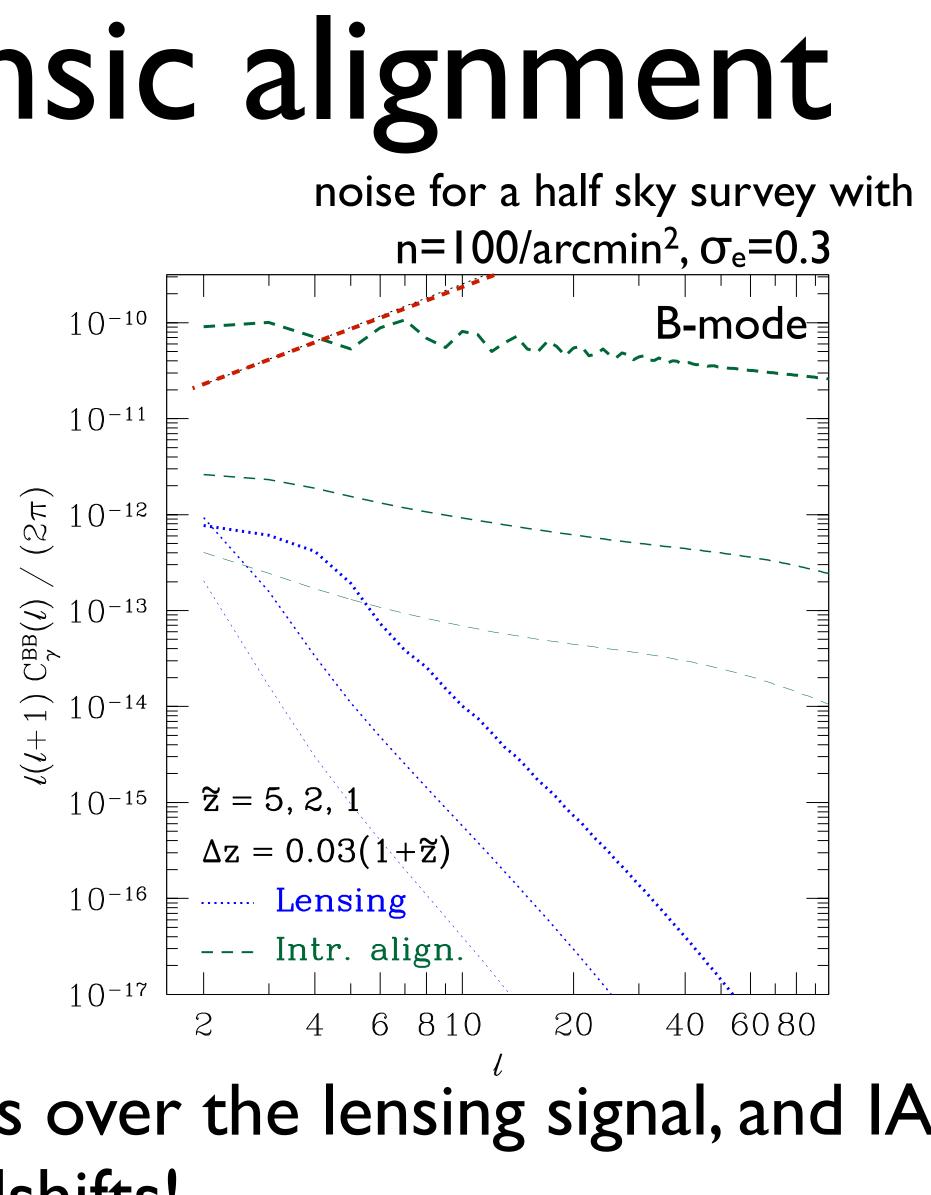
$${}_{\pm 2}\gamma^{\rm IA}(\hat{\boldsymbol{n}}) = \frac{1}{3} \frac{C_1 \rho_{\rm cr0}}{a^2 H_0^2} \left(h_{\pm}'' + aHh_{\pm}' \right)$$

$$= -\frac{C_1}{4\pi G} \mathcal{P}_{ik} \mathcal{P}_{jl} t^{kl} = -\frac{2}{3} \frac{C_1 \rho_{\rm cr0}}{H_0^2} \mathcal{P}_{ik} \mathcal{P}_{jl} t^{kl}$$

Shear vs. intrinsic alignment

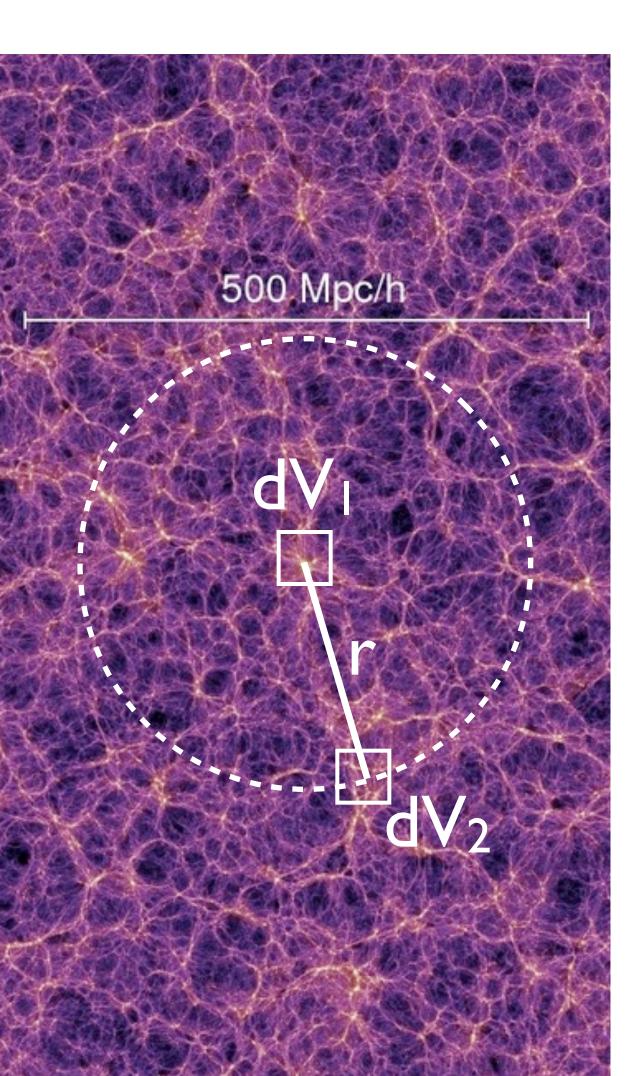


• Intrinsic alignment dominates over the lensing signal, and IA signal increases at higher redshifts!



Clustering Fossils from the Early Universe Donghui Jeong & Marc Kamionkowski [arXiv:1203.0302]

Two-point correlation functions



 Probability of finding two galaxies at separation r is given by the two-point correlation function:

 $P(\mathbf{k})$

or in terms of density contrast,

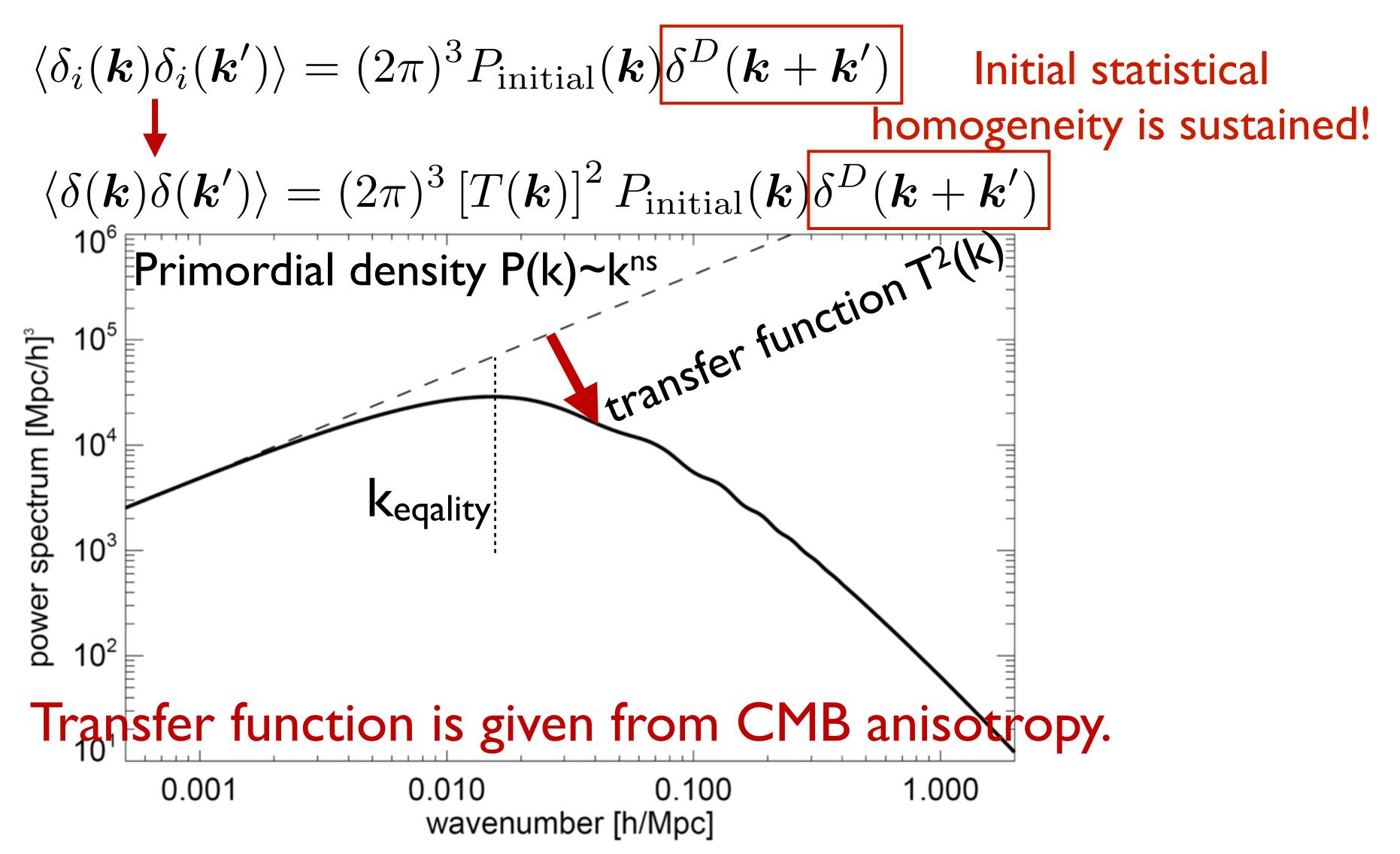
 $\langle \delta(m{k}) \delta(m{k}')$

- $P_2(\mathbf{r}) = \bar{n}^2 [1 + \xi(\mathbf{r})] dV_1 dV_2$
 - $\xi(\boldsymbol{r}) \equiv \langle \delta(\boldsymbol{x}) \delta(\boldsymbol{x}+\boldsymbol{r}) \rangle$
- statistical homogeneity (translational invariance) • Power spectrum is the Fourier transform of it:

$$\mathbf{r}) = \int d^3r \xi(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}$$

$$\langle \rangle = (2\pi)^3 P(\mathbf{k}) \delta^D(\mathbf{k} + \mathbf{k}')$$

Linear evolution of power spectrum



(local) Non-Gaussianity and homogeneity

• We have a following non-linear coupling between primordial density fluctuations and new field h_p (JK coupling): power spectrum of new field $\langle \delta_i(\boldsymbol{k}_1) \delta_i(\boldsymbol{k}_2) h_p(\boldsymbol{K}) \rangle = (2\pi)^3 \dot{P}_p(K) f_i$

coupling amplit

• THEN, density power spectrum we observe now has **non**zero off-diagonal components: Fossil equation

 $\langle \delta_i(\mathbf{k}_1) \delta_i(\mathbf{k}_2) \rangle |_{h_p(\mathbf{K})} = h_p(\mathbf{k}_1 + \mathbf{k}_2) f_p(\mathbf{k}_1, \mathbf{k}_2) \epsilon_{ij}^p k_1^i k_2^j \delta_{\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{K}_1}^D$

Jeong & Kamionkowski (2012)

$$p_p(m{k}_1,m{k}_2)\epsilon^p_{ij}k^i_1k^j_2\delta^D(m{k}_1+m{k}_2+m{K})$$

/
polarization basis (scalar, vector, tensor)

Why worrying about new fields?

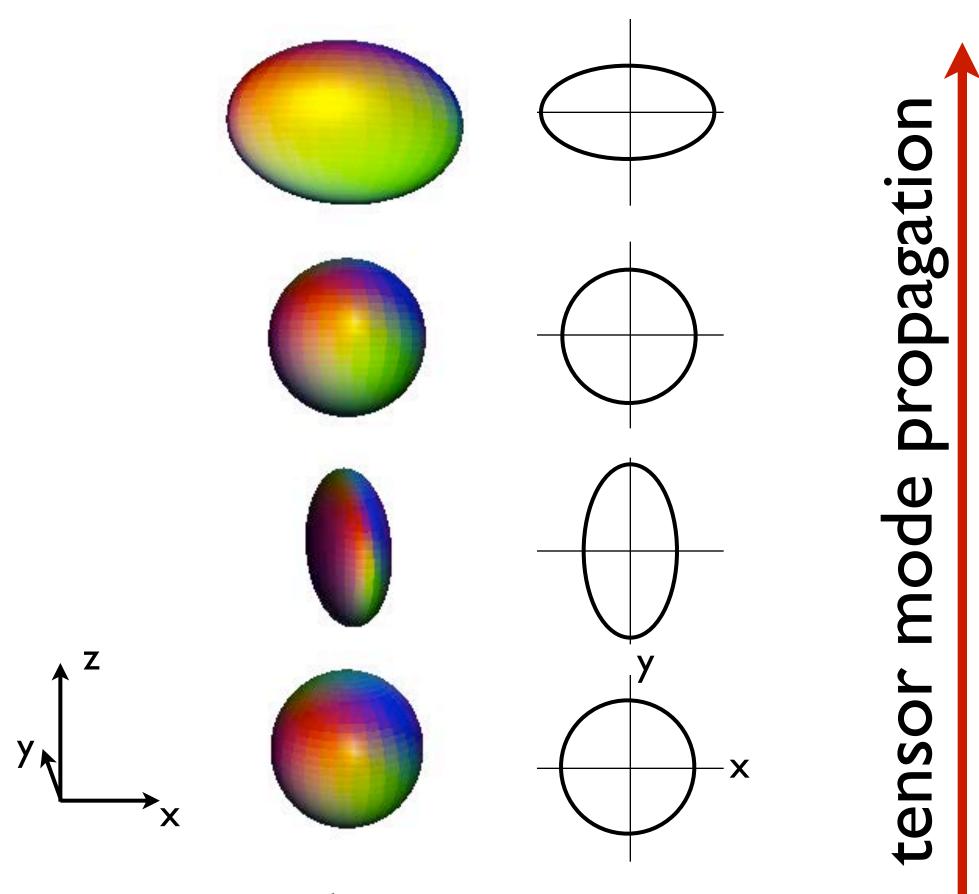
- Inflaton(s) : a scalar field(s) responsible for inflation
- But, inflaton might not be alone. Many inflationary models need/ introduce additional fields. But, <u>direct detection</u> of such fields turns out to be very hard:
 - Additional Scalar: not contributing to seed fluctuations
 - Vector: decays as I/[scale factor]
 - Tensor: decays after coming inside of comoving horizon
- Off-diagonal correlation (Fossil equation) opens new way of detecting them!

ε^P_{ij}: six independent modes

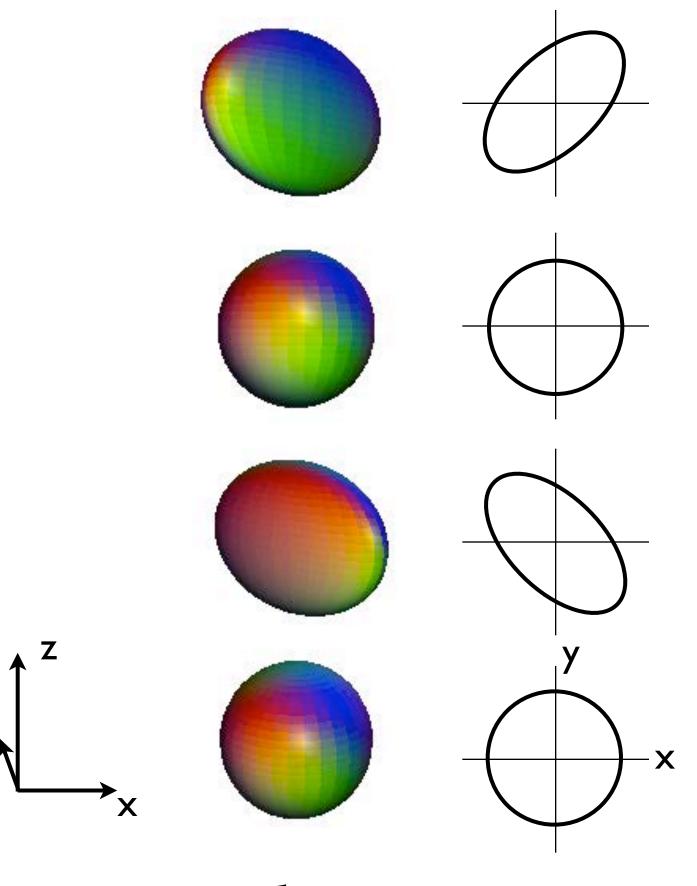
- In a symmetric 3x3 tensor, we have 6 degrees of freedom, which are further decomposed by Scalar, Vector and Tensor polarization modes.
- They are orthogonal: $\epsilon_{ij}^p \epsilon^{p',ij} =$
 - Scalar (p=0,z): $\epsilon_{ij}^0 \propto \delta_{ij}$ $\epsilon_{ij}^z(K) \propto K_i K_j K^2/3$
 - Vector (p=x,y): $\epsilon_{ij}^{x,y}(\mathbf{K}) \propto \frac{1}{2} (K_i e_j + K_j e_i)$ where $K_i e_i = 0$
 - Tensor (p=x,+): transverse and traceless $K_i \epsilon_{ij}^{+,\times} (\boldsymbol{K}) = 0 \qquad \delta_{ij} \epsilon_{ij}^{+,\times} (\boldsymbol{K}) = 0$

$$2\delta_{pp'}$$

$\xi(\mathbf{r})$ with single tensor mode (P=+,x)

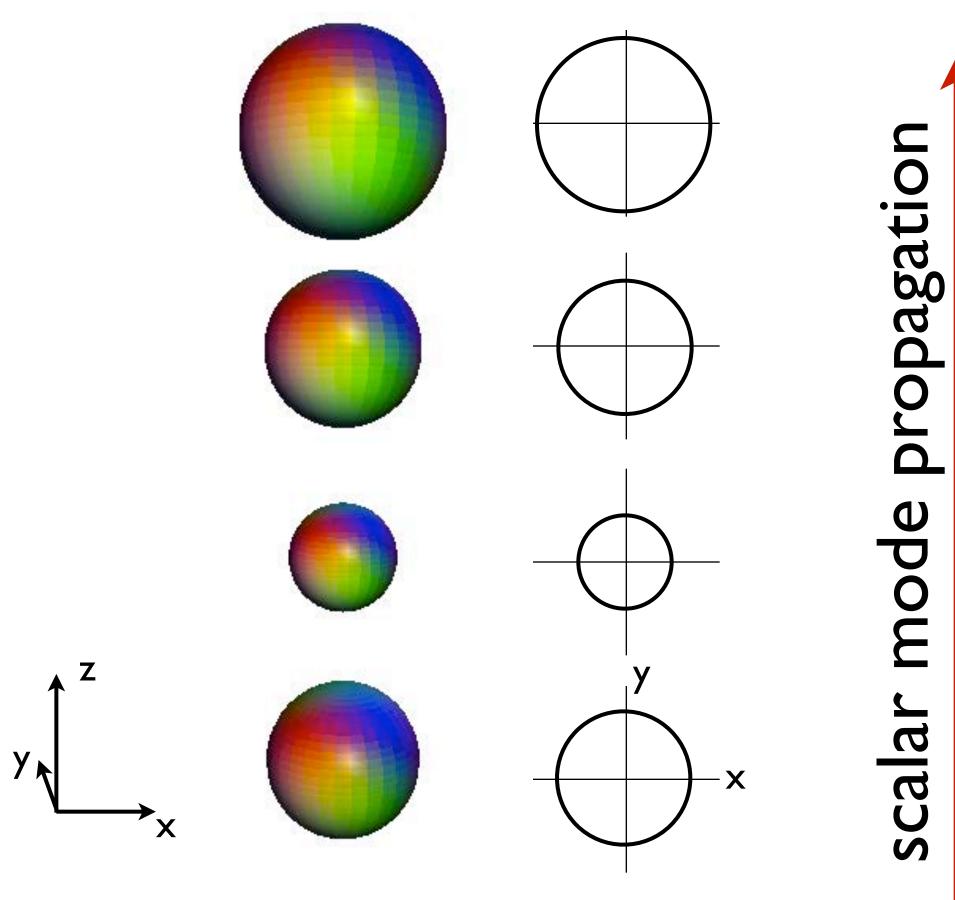


 h_{\pm}

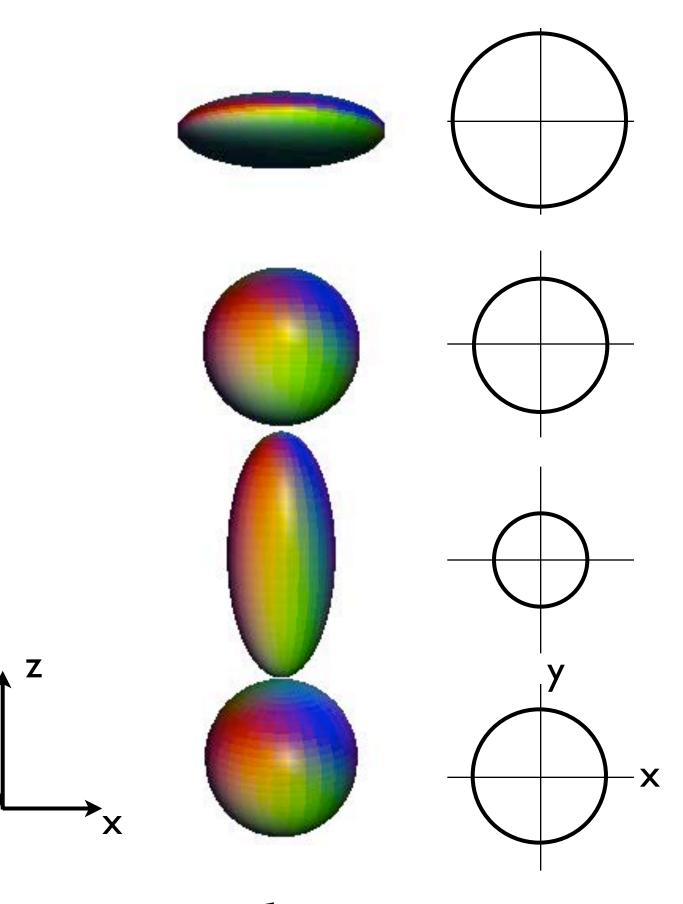


 h_{X}

$\xi(\mathbf{r})$ with single scalar mode (P=0,Z)

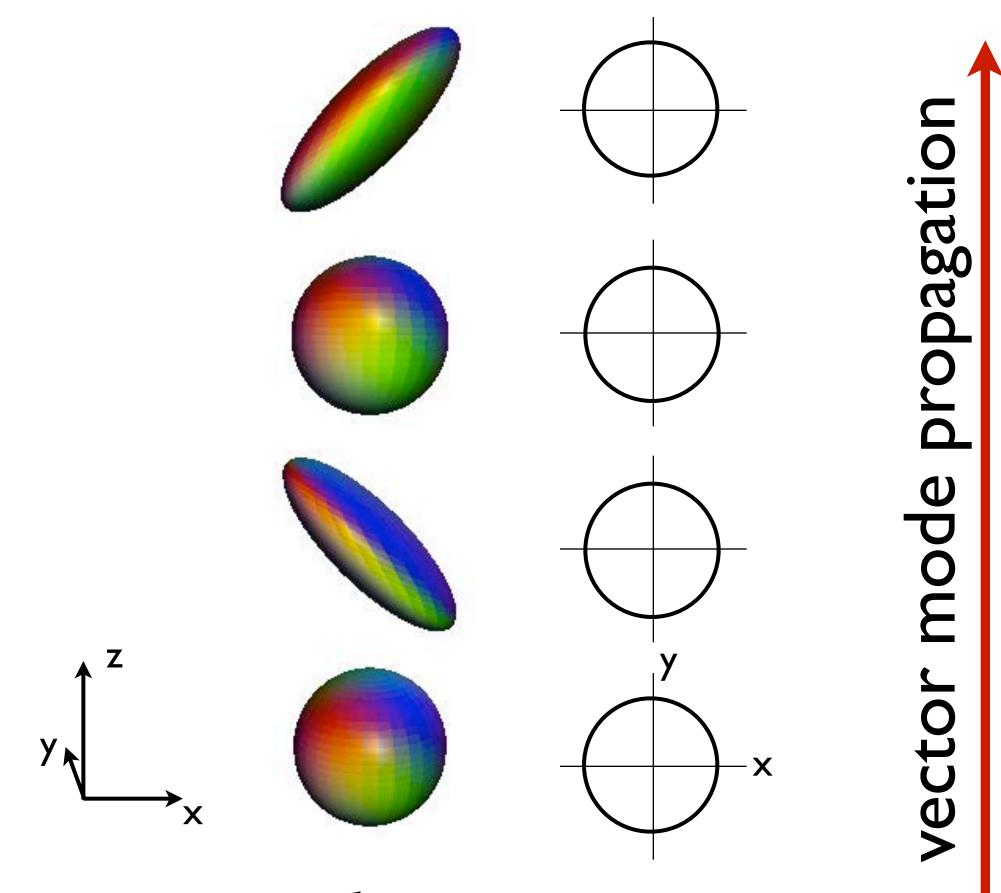


 h_0

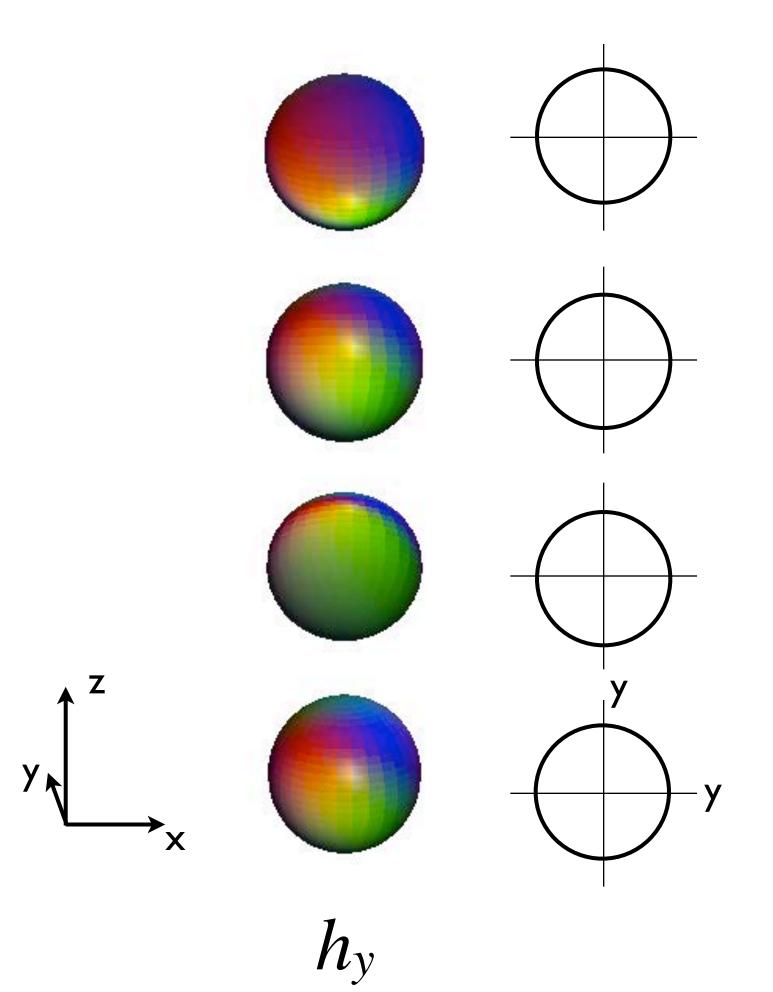


 h_z

$\xi(\mathbf{r})$ with single vector mode (p=x,y)

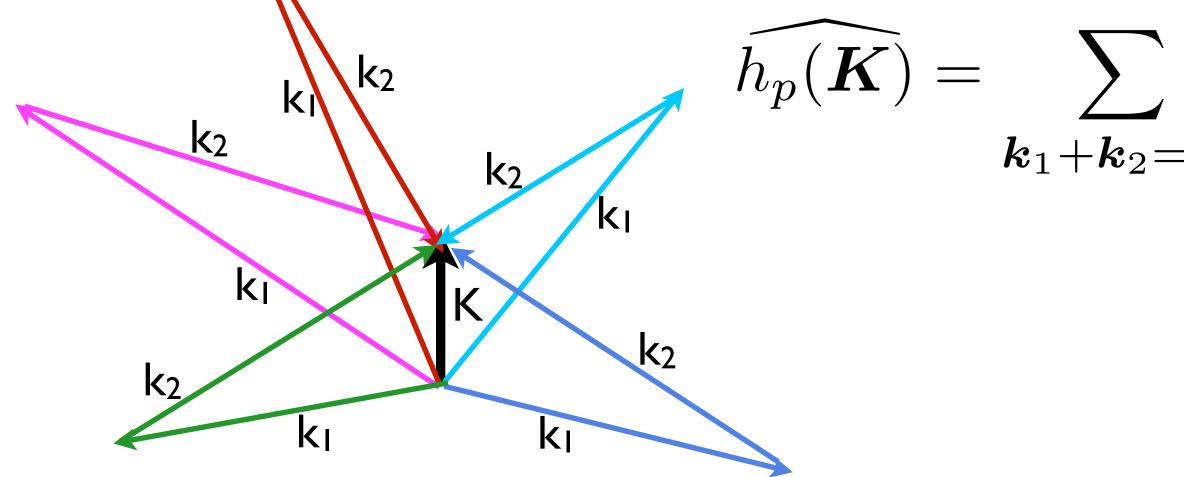


 h_x



Naive estimator

- Let's start from Fossil equation $\langle \delta(\mathbf{k}_1) \delta(\mathbf{k}_2) \rangle |_{h_p(\mathbf{K})} = h_p(\mathbf{k}_1 + \mathbf{k}_2) f_p(\mathbf{k}_1, \mathbf{k}_2) \epsilon_{ij}^p k_1^i k_2^j \delta_{\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{K}}^D$
- Rearranging it a bit, we get a naive estimator for the new field, which is far from optimal:



$$= \frac{\delta(\boldsymbol{k}_1)\delta(\boldsymbol{k}_2)}{f_p(\boldsymbol{k}_1, \boldsymbol{k}_2)\epsilon_{ij}^p k_1^i k_2^j}$$

Optimal estimator for a single mode

 Inverse-variance weighting gives an optimal estimator for a single mode

$$\widehat{h_p(\mathbf{K})} = P_p^n(\mathbf{K}) \sum_{\mathbf{k}} \frac{f_p^*(\mathbf{k}, \mathbf{K} - \mathbf{k}) \epsilon_{ij}^p k^i (K - k)^j}{2VP^{\text{tot}}(k)P^{\text{tot}}(|\mathbf{K} - \mathbf{k}|)} \,\delta(\mathbf{k})\delta(\mathbf{K} - \mathbf{k})$$

With a no

pise power spectrum (
$$P_{tot} = P_{galaxy} + P_{noise}$$
)

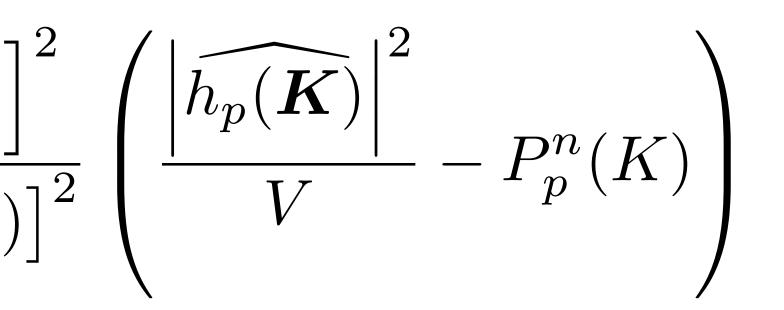
$$P_p^n(K) = \left[\sum_{\mathbf{k}} \frac{\left|f_p(\mathbf{k}, \mathbf{K} - \mathbf{k})\epsilon_{ij}^p k^i (K - k)^j\right|^2}{2VP^{tot}(k)P^{tot}(|\mathbf{K} - \mathbf{k}|)}\right]^{-1}$$

• For a stochastic background of new fields with power spectrum $P_P(K)=A_hP_h^f(K)$, we optimally summed over different K-modes to estimate the amplitude by (w/ NULL hypothesis):

$$\widehat{A}_{h} = \sigma_{h}^{2} \sum_{\mathbf{K}, p} \frac{\left[P_{h}^{f}(K)\right]^{2}}{2\left[P_{p}^{n}(K)\right]^{2}}$$

• Here, the minimum uncertainty of measuring amplitude is

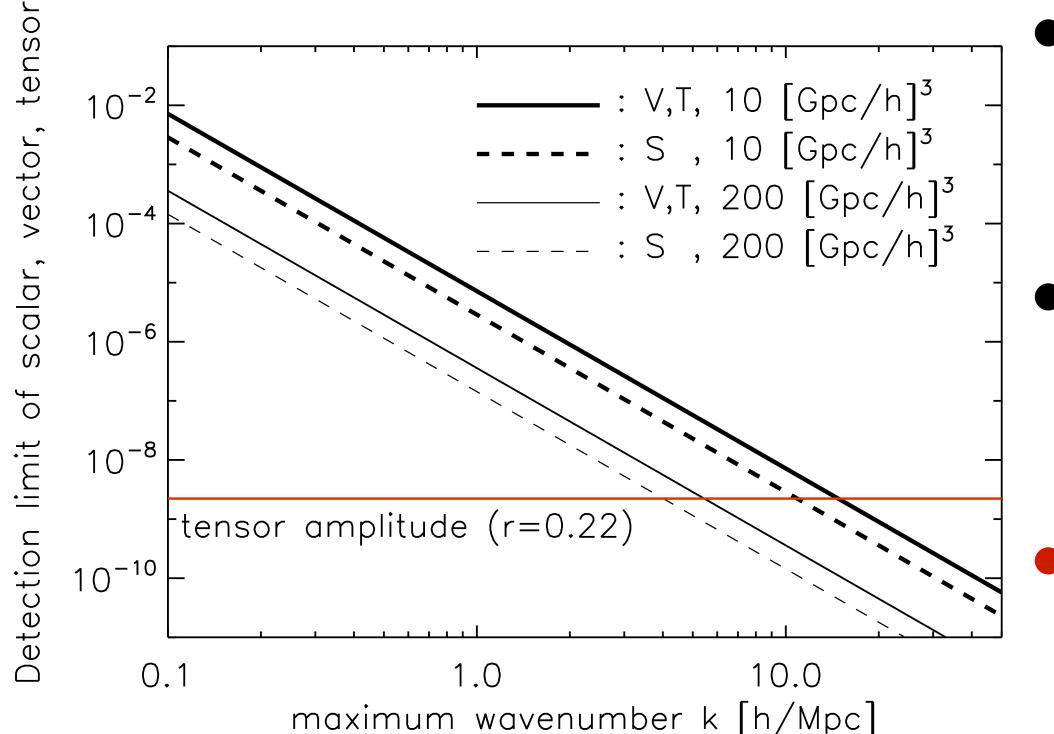
$$\sigma_h^{-2} = \sum_{\mathbf{K},p} \left[P_h^f(K) \right]$$



 $\Big|^2 / 2 \left[P_p^n(K) \right]^2$

When new "fields" are usual metric fluctuations

• Then, new field only rescales the wave-vector $k^2 \rightarrow k^2 - h_{ii}k_ik_i$, which reads $f_p = -3/2P(k)/k^2$ (Maldacena, 2003)



- projected 3-sigma (99%) C.L.) detection limit with galaxy survey parameters
- To detect the gravitational wave, we need a large dynamical range
- Current survey (e.g. SDSS) should set a limit on primordial V and T!

Conclusion

- We present three different ways of detecting primordial GW. For all three methods, effect at the source location is important as GW itself decays in time.
 - Galaxy clustering: impossible to probe as the signal is too weak compared to that of scalar perturbations
 - Cosmic shear: a bit challenge, but possible to detect GW on large scales thanks to the intrinsic alignment effect!
 - Fossil equation: requires large dynamical range to beat the small signal (21cm map?). Interesting potential to detect primordial vector fields as well.