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Gravitational Wave 101



Gravitational wave (GW)

r

dV2

• is a traceless transverse (tensor) component of the metric 
perturbations: 
(Einstein convention + Greek=0-4, Latin=1-3)

• There are 
6 (symmetric 3x3 spatial matrix) - 3 (transverse) - 1(traceless) 
= 2 degrees of freedom = hx, h+

rihij = 0

Tr[hij ] = hi
i = gijhij = 0

Transverse :

Traceless :

ds

2 = a

2(⌘)
⇥
�d⌘

2 + {�ij + hij(⌘,x)} dxi
dx

j
⇤



Primordial Gravitational Wave

r

dV2

• de-Sitter space generates stochastic gravitational waves with 
amplitude of (mpl = √GN)

where power spectrum is defined as (PT = 4Ph)

• Gravitational wave amplitude = energy scale of inflation!

�2
h(k) =

k3PT (k)

2⇡2
=

64⇡

m2
pl

✓
H

2⇡

◆2
�����
k=aH

⌦
hij(k)h

ij(k0)
↵
= (2⇡)3PT (k)�

D(k � k0)

+ Friedmann equation: 3H2 ~ 8πGρ



Evolution of GW

r

dV2

• Evolution of GW(p=+,x) are described by K-G equation 
sourced by anisotropic stress (𝓗=a’/a and ’ = d/d𝜂):

�h ;⌫
ij;⌫ = h00

p(k) + 2Hh0
p(k) + k2hp(k) = 16⇡Ga2⇧p(k)
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FIG. 6: Numerical solutions of tensor perturbations. The solid, dashed, and short-dashed lines show the high, medium, and
low frequency modes, respectively. The higher k-modes enter the horizon earlier, and are damped more by the cosmological
redshift. Vertical lines define the horizon crossing time for each k-mode.
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FIG. 7: Comparison between numerical solutions and analytical solutions of tensor perturbations. The dashed and short-dashed
lines show numerical solutions of the high and low frequency modes, respectively. The higher k-modes enter the horizon earlier,
and thus the numerical solution is well approximated by the analytical solution during the radiation era, χ(kτ ) = j0(kτ ) (solid
line). On the other hand, the lower k-modes enter the horizon much later, and thus the numerical solution is close to the
analytical solution during the matter era, χ(kτ ) = 3j1(kτ )/kτ (dotted line).

where R(1)
µν ∼ O(h) and R(2)

µν ∼ O(h2).
For the vacuum field equation, Rµν = 0. As the Einstein equation is non-linear, R̄µν is in general not linear in hµν .

The linear term in Eq. (C1) must obey the vacuum equation,

R(1)
µν = 0. (C2)

This is an equation for the propagation of the gravitational waves, which corresponds to Eq. (9) or more generally to
Eq. (D23) in the FRW universe. The remaining part of Rµν may be divided into a smooth part which varies only on
scales larger than some coarse-graining scales,

R̄µν + 〈R(2)
µν 〉 = 0, (C3)

• GW decays once the mode 
enters the horizon. As effect 
from Πp is small,

RD :
 

MD :

Watanabe, Komatsu (2006) Hubble damping term

hp(k, ⌘) = j0(k⌘)h
prim
p

hp(k, ⌘) =
3j1(k⌘)

k⌘
hprim
p



GW from CMB polarization

• Parity-odd (B-mode) 
polarization is a window 
to the GW (or vector) in the 
primordial universe!

• No B-mode yet...

• B-mode experiments:
Keck array, PIPER, CLASS,  
LiteBIRD, PIXIE, ...

• No detection of B-mode polarization yet. 
B-mode is the next holy grail!
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Steal from Eiichiro Komatsu’s talk

Primordial signal!!

Parity even

Parity odd

(e.g. 5σ for r<10-3)

r=(tensor amplitude/scalar amplitude)2 at k=0.002 [1/Mpc] 



GW from Large Scale Structure

r

dV2

• Two effects: 

• At the location of galaxies (Source)

• Deflection of light from galaxies (Line of sight)

• Three possible ways of detecting GW from Large Scale 
Structure :

• Clustering of galaxies in large scale structure (S,L)

• Distortion on shape of galaxies, or cosmic shear (S,L)

• Fossil memory at the off-diagonal correlation (S)



Large-Scale Structure with GW I
: Galaxy clustering

Donghui Jeong, Fabian Schmidt & Christopher Hirata [arXiv:1107.5427]
Donghui Jeong & Fabian Schmidt [arXiv:1205.1512]



Light deflection due to GW

• Deflection of photon changes the 
observed location of galaxies.

• From the geodesic equation, we 
calculate Δx: (Here, h∥=hijñiñj)

galaxy is here

galaxy is 
observed to be 

here

observer

x

x∼

ds
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⇥
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time delay + l.o.s. displacement + redshift pert.



GW effect 1. Volume distortion

• Then, the volume (number 
density) we inferred from the 
observed coordinate is different 
from the true volume (number 
density):

galaxy is here

galaxy is 
observed to be 

here

observer

x

x∼

ds

2 = a
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�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

����
@x

i

@x̃

j

���� = 1 +
@�x

i

@x̃

i
= @k�xk +

2�xk

�̃

+ @?i�x

i
?

N =

Z

Ṽ

p
�g ng(x

↵)
1

a(x0)

����
@x

i

@x̃

j

���� d
3
x̃

�x ⌘ x� x̃



GW effect II. redshift perturbation
ds

2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

• Clustering measure: density contrast 

• But, the measured redshift is different from the true redshift! 

• That is, we under-(over-) estimate the mean number density 
for positive (negative) 𝛿z [when there are more galaxies at lower redshifts].

1 + z̃ = (1 + z̄)(1 + �z)

�obsg (z̃, n̂) =
n(z̃, n̂)� n̄(z̃)

n̄(z̃)

�z =
1

2

Z �̃

0
d�h0

k

be ⌘
d ln(a3n̄g)

d ln a

����
z̃

= �(1 + z̃)
d ln(a3n̄g)

dz

����
z̃

�obsg (z̃, n̂) = �intrinsicg + be�z



GW effect III. Magnification
ds

2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

• If galaxies are selected by apparent magnitude, the 
magnification 

also changes the density contrast (Q= -d ln ñg/d ln Fcut):

M � D�2
L

D̃�2
L (z̃)

=
D�2

A

D̃�2
A (z̃)

˜�g =

˜�g(no mag) +

⇥ ln ñ

⇥ lnM (M� 1) ⇥ ˜�g(no mag) +Q�M

We shall talk more about the magnification later.



Galaxy density contrast with GW
ds

2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

• If gravitational waves are the ONLY source of the distortion, 
the “observed” galaxy density contrast becomes

5

contributions to the observed galaxy density:

�̃
gT

= (b
e

� 2Q)�z � 2(1�Q)̂�

1�Q

2
hk �

1 + z̃

2H(z̃)
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k

�

1�Q
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d�hk +
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k

#

�

H(z̃)

2

@

@z̃


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� Z
�̃

0
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k. (37)

For later convenience, we reorder the terms as follows:

�̃
gT

= f
�̃

hk + f 0
�̃

h0
k + f

Z
d�

�
hk + f̃

Z
d�

�̃
hk (38)
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2
⌦

Z
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�̃� �

� �̃
hk + f

o

hko.

Here, all terms outside integrals (without subscript o)
are evaluated at �̃, and the integrals go from 0 to �̃. The
coe�cients are given by

f
�̃

= �

1

2
(Q� 1) (39)
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2H
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b
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f
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2
(Q� 1).

IV. OBSERVED GALAXY POWER SPECTRUM

A. Angular power spectrum

Consider a galaxy sample with a redshift distribution
dN/dz, normalized to unity in redshift. Then, the pro-
jected galaxy overdensity as a function of position on the
sky is given by

�
g

(n̂) =

Z 1

0
dz̃

dN

dz̃
�̃
g

(�̄(z̃)n̂; z̃), (40)

We will assume that the quantities b
e

, Q describing the
galaxy sample are independent of redshift for simplicity.
We can then write the multipole coe�cients of the galaxy
density as

ag
lm

=

Z
d2n̂ Y ⇤

lm

(n̂)�
g

(n̂). (41)

We can write all individual contributions to Eq. (37) as

A(n̂, �̃) =

Z
�̃

0
d�W

A

(�, �̃)hk(�n̂,�)

=

Z
�̃

0
d�W

A

(�, �̃)

⇥

Z
d3k

(2⇡)3
eik·n̂�n̂in̂jh

ij

(k, ⌘0 � �). (42)

Note that terms involving h0
k can be brought into the

form A(n̂) by including d lnT
T

(k, ⌘)/d⌘ in W
A

(�). The
observer term 5hko/3 contained in ̂ can similarly be
written with W

A

(�) = 5/3 �
D

(�). We will deal with
that term specifically in § IVB. By changing the order
of integration, we can then write the contribution to the
projected galaxy overdensity as

A(n̂) =

Z 1

0
dz̃

dN

dz̃
A(n̂, �̃) =

Z 1

0
d�W

A

(�)hk(�n̂,�)

W

A

(�) ⌘

Z 1

z(�)
dz̃

dN

dz̃
W

A

(�, �̄(z̃)) . (43)

Note that if W
A

= �
D

(�� �̃), W
A

(�) = (HdN/dz)|
z(�).

We now consider the contribution of a single plane wave
tensor perturbation with k-vector aligned with the z-
direction. Then,

n̂in̂jh
ij

(k, ⌘) = sin2 ✓
⇥
cos 2� h+(k, ⌘) + sin 2� h⇥(k, ⌘)

⇤

= sin2 ✓
⇥
ei2�h1 + e�i2�h2

⇤
, (44)

where

h1,2 ⌘

1

2
(h+

± ih⇥). (45)

Note that the power spectra of these circular polarization
staters are P

h1h2 = P
h2h2 = P

T

/8, while P
h1h2 = 0. Let

us denote as A(n̂,k) the contribution to A(n̂) from this
plane-wave tensor perturbation. We have

A(n̂,k) =

Z
d�W

A

(�)eik�µ(1� µ2) (46)

⇥

⇥
e2i�h1(k, ⌘0 � �) + e�2i�h2(k, ⌘0 � �)

⇤

where µ = cos ✓ is the cosine of the angle between n̂ and
k̂. Note the e±2i� factors which are the key di↵erence
to the case of scalar perturbations. The multipole coe�-
cients of A are then obtained as follows:

aA
lm

=

Z
d3k

(2⇡)3
aA
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(k), (47)
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��̃
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Angular power spectrum with GW
• For the sharp redshift slice at z=2 with be=2.5,Q=1.5

7

FIG. 1: Contributions to the observed galaxy angular power
spectrum from inflationary gravitational waves, for a sharp
source galaxy redshift of z̃ = 2, and using the tensor mode
power spectrum defined in § II. The black solid line shows the
total contribution, while the colored lines show contributions
proportional to line-of-sight integrals of hk (blue dotted), h0

k
(green short-dashed) andr

2
⌦hk (magenta long-dashed). Here,

we have assumed be = 2.5, Q = 1.5. The black square at l = 2
indicates the result for l = 2 if the observer term is neglected
(see § IVB).

The reason for this significant e↵ect becomes clear when
considering the contributions to F g

l=2 as function of k
(Fig. 2). The individual contributions to F g

l

approach
a constant as k ! 0, while the sum goes to zero for
k/H0 . 1, as demanded by causality. When neglect-
ing the observer term (light blue in Fig. 2) on the other
hand, a residual constant contribution to F g

l=2 remains
for k ! 0, which together with the steeply falling tensor
power spectrum leads to a significant overestimation of
the quadrupole.

C. Limber approximation

In the context of angular galaxy clustering, one often
uses the Limber approximation [23] which significantly
simplifies the calculation of Cg

l

. The underlying assump-
tion is that the dominant contribution to the angular
clustering comes from galaxy pairs that are at similar dis-
tances along the line of sight. It is instructive to consider
this approximation in the context of tensor modes. Since
the Limber approximation works best for a broad redshift
distribution, we will here consider a redshift distribution
roughly as expected for the Large Synoptic Survey Tele-

FIG. 2: Contributions to the kernel Fl(k) for l = 2 (thick) and
l = 20 (thin, only total contribution shown, scaled by 104),
for a sharp source redshift z̃ = 2 and the same parameters
as in Fig. 1. Note that the separate contributions have non-
zero weight for k ! 0, while the total F g

l (black solid) is only
non-zero for k & 10�4 h/Mpc, as required by causality.

scope (LSST [24]),

dN

dz
/ z2 exp

"
�

✓
z

z0

◆
�

#
, (57)

with z0 = 0.15 and � = 0.73, yielding a mean redshift of
1.2.

The Limber approximation can formally be applied by
using

2

⇡

Z
k2dk F (k,�) j

l

(k�)j
l

(k�0) ⇡
F
⇣

l+1/2
�

,�
⌘

�2
�
D

(���0).

(58)
In the usual application to scalars, the functions of k, �
involved (apart from the Bessel functions) are smooth
and positive, whereas for tensor modes, the transfer func-
tion is oscillatory. Performing the k and then one of the
� integrals in Eq. (52) leads to

CAB

l

⇡

(l + 2)!

(l � 2)!

1

(l + 1/2)4
1

4

Z
d�

�2
P
T0

✓
l + 1/2

�

◆
(59)

⇥W

A

(�)W
B

(�)


T
T

✓
(l + 1/2)

⌘0 � �

�

◆�2
.

Here we have used that T
T

is only a function of k⌘. Note
that for l � 1, the prefactor approaches 1/4. Given
that P

T0 / k�3+nT , we immediately see that the Limber

Angular power spectrum

When including all effects, NO super horizon k-modes affect the sub-
horizon clustering!! cf. Masui & Pen (2010)

C` =
1

2⇡

(`+ 2)!

(`� 2)!

Z
k2dkP prim

T (k) [F`(k)]
2



We enjoyed physics, but...

• GW signal is way too small compared to the (1) intrinsic 
correlation and (2) the effect from scalar metric perturbations.10

FIG. 6: Comparison between tensor mode contributions to
the galaxy power spectrum (black solid) for z̃ = 2 (cf. Fig. 4),
and scalar contributions for a linear bias b = 2 (see App. B
for details on the calculation of the scalar contributions).

are not observable directly (as a simple example, consider
the case of a constant deflection �x = const). In order
to determine which quantities are actually observable,
consider contours of constant ⇠̃,

⇠̃(n̂, z̃; n̂, z̃0) = ⇠0. (66)

These contours correpond to a fixed physical scale r0
(on a constant-proper-time hypersurface) at the source
through

⇠(r0) = ⇠0. (67)

In other words, the intrinsic homogeneous and isotropic
correlation function ⇠(r) is supplying us with a “standard
ruler” r0 (or, a set of standard rulers as we are free to
vary ⇠0). In Schmidt and Jeong [1], we carefully define
a general standard ruler and derive the properties of the
deflection field which are observable through it. As we
have seen here, the distortion of correlation functions by
tensor modes is one application of the results of [1].

Finally, we point out that a non-zero three-leg coupling
h�(k1)�(k2)hij

(k3)i present at an early stage of the uni-
verse can also imprint its signature as a local departure
from statistical homogeneity. The optimal estimator for
the amplitude of tensor perturbations given such a cou-
pling has been constructed in [25].

FIG. 7: Comparison between tensor mode and scalar contri-
butions to the angular cross-correlation between two widely
separated redshift bins (z̃ = 1, z̃0 = 4) and for Q = 1 so that
most magnification contributions drop out (linear bias = 2;
other parameters as in Fig. 4).

VI. DISCUSSION

We have derived the complete tensor contributions to
the observed galaxy density at linear order. The re-
sult is summarized in Eq. (37). At this order, gravi-
tational waves do not perturb the intrinsic physical den-
sity of tracers; thus all contributions are projection ef-
fects from the e↵ects of GW on the propagation of light.
We have found that, contrary to gravitational lensing
by scalar perturbations, tensor perturbations contribute
mainly at redshifts close to the source redshift. Together
with the scale-invariant power spectrum of GW, this re-
sults in a steeply falling angular power spectrum of the
tensor contributions, with multipoles l ⇠ 10 already be-
ing suppressed by an order of magnitude with respect to
l = 2� 4.

Fig. 6 shows a comparison of the tensor contributions
with the scalar contributions to the galaxy density. Here,
we have assumed a linear bias of b = 2, and all relativis-
tic corrections are included following [19] (see App. B
for details). Clearly, the tensor contributions are sup-
pressed by ⇠7 orders of magnitude with respect to the
scalar contributions at the largest scales, for the max-
imum currently allowed value of r = 0.2. One might
wonder whether galaxy cross-correlations, i.e. between
di↵erent redshift bins, could be more promising. Af-
ter all, when cross-correlating widely separated redshift
slices, there is little intrinsic correlation of galaxies, and

at z=2, b=2, r=0.2 No magnification



Cosmic Rulers
or, covariant formalism for the shape distortions

Fabian Schmidt & Donghui Jeong [arXiv:1204.3625]



Cosmology with a high-z yardstick

• Consider a shining yardstick at 
high redshift, whose proper 
length is somehow known : 

• We observe (RA,DEC,z) for 
both ends of the stick, infer the 
length of the stick from them : 

• Due to perturbations, 
such a distortion to the size is an 
important tool to study 
perturbations!

r0

r̃

we are here

r̃ 6= r0

ds

2 = a

2(⌘)
⇥
�(1 + 2A)d⌘2 � 2Bid⌘dx

i + (�ij + hij) dx
i
dx

j
⇤



Who measures r0?

• An (imaginary) observer moving 
with the stick measures the 
length of the ruler:

We assume a small ruler.
we are here

r

2
0 = [gµ⌫ + uµu⌫ ] (x

µ � x

0µ)(x⌫ � x

0⌫)
metric projected onto the constant-proper time 
hyper-surface of the comoving observer

4

where ã = 1/(1 + z̃) is the observationally inferred scale
factor at emission (Fig. 1).

We now have to carefully consider what the condition
of a standard ruler in cosmology means. A useful, physi-
cally motivated definition is that it corresponds to a fixed
spatial scale as measured by local observers which are co-
moving with the cosmic fluid; precisely, the spatial part
of the four-velocity uµ of these observers is given by

vi =
T i

0

⇢+ p
. (17)

We are mostly interested in applications to the large-scale
structure during matter domination; in this case, the cos-
mic fluid is simply matter (dark matter + baryons), and
there is no ambiguity in this definition. In synchronous-
comoving gauge, Eq. (17) yields vi = 0. Further, for now
we assume the ruler is fixed. We consider an evolving
ruler in § IIIA.

This definition can also be phrased as that the length
of the ruler is defined on a surface of constant proper time
of comoving observers. This proper time corresponds to
the “local age” of the Universe. The separation of the
two endpoints of the ruler, xµ, x0µ, projected onto this
hypersurface should thus be equal to the fixed scale r

0

:

[g
µ⌫

(x↵) + u
µ

(x↵)u
⌫

(x↵)] (xµ � x0µ)(x⌫ � x0⌫) = r2
0

,
(18)

where g
µ⌫

+ u
µ

u
⌫

is the metric projected perpendicular
to u

µ

, the four-velocity of the comoving observers (note
that u

µ

uµ = �1). Here and throughout, we will assume
for simplicity that the ruler is “small”, i.e. it subtends
a small angle, and redshift interval (|z̃ � z̃0| ⌧ z̃). This
entails r̃ ⌧ �̃.

The four-velocity of comoving observers, whose spatial
components are fixed by Eq. (17), is given by

uµ = a�1

�
1�A, vi

�

u
µ

= a (�1�A, v
i

�B
i

) , (19)

where we consider vi to be first order (as the metric per-
turbations). In the following, we will assume sources to
be comoving as well, i.e. to follow Eq. (19). It is straight-
forward to generalize the treatment to di↵erent source
velocities. Using Eq. (2) and Eq. (19), we have

g
µ⌫

+ u
µ

u
⌫

= a2

0

B@

0 �v
i

�v
i

�
ij

+ h
ij

1

CA . (20)

With this, Eq. (18) yields

� 2ã2v
i

�
�x̃0�x̃i + �x̃0[�xi ��x0i] + �x̃i[�x0 ��x00]

 

+ g
ij

(x↵)

⇢
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where �xµ = �xµ(n̂, z̃), �x0µ = �xµ(n̂0, z̃0), and the
components of the apparent separation vector are

�x̃µ = x̃µ � x̃0µ. (22)

In order to evaluate the spatial metric g
ij

(x↵) at the
location of the ruler, we use Eq. (15) to obtain at first
order

g
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] . (23)

We now again make use of the “small ruler” approxima-
tion, so that
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Like any vector, we can decompose the spatial part of the
apparent separation �x̃i into parts parallel and transverse
to the line of sight:
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In the correlation function literature, �x̃k, |�x̃?| are
sometimes referred to as ⇡ and �, respectively. Then,
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where we have similarly defined @k = n̂i@
i

, @? i

= P j

i

@
j

.
Since the observed coordinates x̃µ by definition satisfy
the light cone condition with respect to the unperturbed
FRW metric, we have �x̃0 = ��x̃k in the small-angle
approximation. Thus,
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where @/@�̃ is the derivative with respect to the a�ne
parameter at emission. We thus have
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Working to first order in perturbations, we then obtain
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All terms are straightforward to interpret: there are the
perturbations to the metric (both from the metric per-
turbation itself and the perturbation to the scale factor
at emission); the contribution / v from the projection
from fixed-⌘ to fixed-proper-time hypersurfaces; and the
di↵erence in the spatial displacements of the endpoints
of the ruler.
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the Universe. If there is a primary spin-1 or higher spin
field, such as the polarization in case of the CMB, then a
rotation can be measured as it mixes the spin±2 compo-
nents (see, e.g. [23]). In the next sections we study these
three terms in turn.
For reference, we now give the explicit expressions for

the displacements �xi and � ln a. They are defined such
that �xi = 0 = � ln a for a local source, i.e. for z̃ ⇡ 0.
The details of the derivation are presented in App. B.
Separating into line-of-sight and transverse parts, we
have

�xk =

Z
�̃
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The perturbation to the scale factor at emission is given
by

� ln a =A
o

�A+ vk � vko �
Z

�̃

0

d�


A�Bk � 1

2
hk

�0
.

(37)

Here, a subscript o indicates quantities evaluated at the
observer, while primes denote derivatives with respect to
⌘. Note the appearance of the scalar quantity A�Bk �
1

2

hk in Eqs. (34)–(37). This is the “lensing potential” ��
 in conformal-Newtonian gauge, written in the general
gauge Eq. (2).
In particular, in the two popular gauges introduced in

§ III, Eq. (37) becomes

(� ln a)
sc

=
1

2

Z
�̃

0

d� h0
k (38)

(� ln a)
cN

= 
o

� + vk � vko +

Z
�̃

0

d� [�0 � 0] .

(39)

The latter result clearly shows the “Sachs-Wolfe”,
“Doppler”, and “integrated Sachs-Wolfe” contributions.

V. LONGITUDINAL SCALAR

The longitudinal component can be simplified to be-
come

C = �� ln a


1�H(z̃)

@

@z̃

✓
1 + z̃

H(z̃)
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� @ ln r

0

@ ln a
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+
1 + z̃

H(z̃)

✓
�@kA+ @kvk +B0

k � v0k +
1

2
h0
k

◆
. (40)

The first line contains the contributions due to the
fact that the scale factor at emission is perturbed from
1/(1 + z̃): first, the evolution of the physical standard
ruler r

0

with scale factor, 1 � @ ln r
0

/@ ln a, and second,
the evolution of the distance-redshift relation. The sec-
ond line contains the perturbations from the metric at the
source location (�A) and the projection from coordinate-
time to proper-time hypersurfaces (Bk�vk). Finally, the
contributions from the line-of-sight derivative of the line-
of-sight displacements (/ (1 + z̃)/H(z̃)) are given in the
third line. Note the term @kvk, which is the dominant
term on small scales in the conformal-Newtonian gauge.
This term is also responsible for the leading-order red-
shift distortions [24]. Apart from the pertubation to the
scale factor at emission, C does not involve any integral
terms; this is expected since C is the only term remaining
if the two lines of sight coincide (n̂ = n̂

0). In this case,
the two rays share the same path from the closer of the
two emission points, and no quantities integrated along
the line of sight can contribute to the perturbation of the
ruler.

Restricting to the synchronous-comoving and
conformal-Newtonian gauges, respectively, we obtain

(C)
sc

= � (� ln a)
sc


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(C)
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= � (� ln a)
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(42)

Note that in case of the sc-gauge expression, the redshift-
space distortion term is included in the last term, through
h0
k/2 = D0 + @2

kE
0. Fig. 3 shows the angular power spec-

trum of C due to standard adiabatic scalar perturbations
in a ⇤CDM cosmology (the details of the calculation are
given in App. E). Clearly, C is of the same order as the
matter density contrast in synchronous-comoving gauge
on all scales. On small scales, the velocity gradient term
dominates over all other contributions.

Also, see Yoo et al. (2010)
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the Universe. If there is a primary spin-1 or higher spin
field, such as the polarization in case of the CMB, then a
rotation can be measured as it mixes the spin±2 compo-
nents (see, e.g. [23]). In the next sections we study these
three terms in turn.
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The perturbation to the scale factor at emission is given
by

� ln a =A
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Here, a subscript o indicates quantities evaluated at the
observer, while primes denote derivatives with respect to
⌘. Note the appearance of the scalar quantity A�Bk �
1

2

hk in Eqs. (34)–(37). This is the “lensing potential” ��
 in conformal-Newtonian gauge, written in the general
gauge Eq. (2).

In particular, in the two popular gauges introduced in
§ III, Eq. (37) becomes
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The latter result clearly shows the “Sachs-Wolfe”,
“Doppler”, and “integrated Sachs-Wolfe” contributions.

V. LONGITUDINAL SCALAR

The longitudinal component can be simplified to be-
come

C = �� ln a


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The first line contains the contributions due to the
fact that the scale factor at emission is perturbed from
1/(1 + z̃): first, the evolution of the physical standard
ruler r

0

with scale factor, 1 � @ ln r
0

/@ ln a, and second,
the evolution of the distance-redshift relation. The sec-
ond line contains the perturbations from the metric at the
source location (�A) and the projection from coordinate-
time to proper-time hypersurfaces (Bk�vk). Finally, the
contributions from the line-of-sight derivative of the line-
of-sight displacements (/ (1 + z̃)/H(z̃)) are given in the
third line. Note the term @kvk, which is the dominant
term on small scales in the conformal-Newtonian gauge.
This term is also responsible for the leading-order red-
shift distortions [24]. Apart from the pertubation to the
scale factor at emission, C does not involve any integral
terms; this is expected since C is the only term remaining
if the two lines of sight coincide (n̂ = n̂

0). In this case,
the two rays share the same path from the closer of the
two emission points, and no quantities integrated along
the line of sight can contribute to the perturbation of the
ruler.

Restricting to the synchronous-comoving and
conformal-Newtonian gauges, respectively, we obtain
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Note that in case of the sc-gauge expression, the redshift-
space distortion term is included in the last term, through
h0
k/2 = D0 + @2

kE
0. Fig. 3 shows the angular power spec-

trum of C due to standard adiabatic scalar perturbations
in a ⇤CDM cosmology (the details of the calculation are
given in App. E). Clearly, C is of the same order as the
matter density contrast in synchronous-comoving gauge
on all scales. On small scales, the velocity gradient term
dominates over all other contributions.
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the Universe. If there is a primary spin-1 or higher spin
field, such as the polarization in case of the CMB, then a
rotation can be measured as it mixes the spin±2 compo-
nents (see, e.g. [23]). In the next sections we study these
three terms in turn.
For reference, we now give the explicit expressions for

the displacements �xi and � ln a. They are defined such
that �xi = 0 = � ln a for a local source, i.e. for z̃ ⇡ 0.
The details of the derivation are presented in App. B.
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The perturbation to the scale factor at emission is given
by

� ln a =A
o

�A+ vk � vko �
Z

�̃

0

d�


A�Bk � 1

2
hk

�0
.

(37)

Here, a subscript o indicates quantities evaluated at the
observer, while primes denote derivatives with respect to
⌘. Note the appearance of the scalar quantity A�Bk �
1

2

hk in Eqs. (34)–(37). This is the “lensing potential” ��
 in conformal-Newtonian gauge, written in the general
gauge Eq. (2).
In particular, in the two popular gauges introduced in

§ III, Eq. (37) becomes
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The latter result clearly shows the “Sachs-Wolfe”,
“Doppler”, and “integrated Sachs-Wolfe” contributions.

V. LONGITUDINAL SCALAR

The longitudinal component can be simplified to be-
come

C = �� ln a
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The first line contains the contributions due to the
fact that the scale factor at emission is perturbed from
1/(1 + z̃): first, the evolution of the physical standard
ruler r

0

with scale factor, 1 � @ ln r
0

/@ ln a, and second,
the evolution of the distance-redshift relation. The sec-
ond line contains the perturbations from the metric at the
source location (�A) and the projection from coordinate-
time to proper-time hypersurfaces (Bk�vk). Finally, the
contributions from the line-of-sight derivative of the line-
of-sight displacements (/ (1 + z̃)/H(z̃)) are given in the
third line. Note the term @kvk, which is the dominant
term on small scales in the conformal-Newtonian gauge.
This term is also responsible for the leading-order red-
shift distortions [24]. Apart from the pertubation to the
scale factor at emission, C does not involve any integral
terms; this is expected since C is the only term remaining
if the two lines of sight coincide (n̂ = n̂

0). In this case,
the two rays share the same path from the closer of the
two emission points, and no quantities integrated along
the line of sight can contribute to the perturbation of the
ruler.

Restricting to the synchronous-comoving and
conformal-Newtonian gauges, respectively, we obtain
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Note that in case of the sc-gauge expression, the redshift-
space distortion term is included in the last term, through
h0
k/2 = D0 + @2

kE
0. Fig. 3 shows the angular power spec-

trum of C due to standard adiabatic scalar perturbations
in a ⇤CDM cosmology (the details of the calculation are
given in App. E). Clearly, C is of the same order as the
matter density contrast in synchronous-comoving gauge
on all scales. On small scales, the velocity gradient term
dominates over all other contributions.
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Here, a subscript o indicates quantities evaluated at the
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1
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 in conformal-Newtonian gauge, written in the general
gauge Eq. (2).
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The latter result clearly shows the “Sachs-Wolfe”,
“Doppler”, and “integrated Sachs-Wolfe” contributions.
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The first line contains the contributions due to the
fact that the scale factor at emission is perturbed from
1/(1 + z̃): first, the evolution of the physical standard
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with scale factor, 1 � @ ln r
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/@ ln a, and second,
the evolution of the distance-redshift relation. The sec-
ond line contains the perturbations from the metric at the
source location (�A) and the projection from coordinate-
time to proper-time hypersurfaces (Bk�vk). Finally, the
contributions from the line-of-sight derivative of the line-
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third line. Note the term @kvk, which is the dominant
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�

+
1 + z̃

2H(z̃)
h0
k. (41)

(C)
cN

= � (� ln a)
cN


1�H(z̃)

@

@z̃

✓
1 + z̃

H(z̃)

◆
� @ ln r

0

@ ln a

�

� � vk +
1 + z̃

H(z̃)

⇣
�@k + @kvk � v0k + �

0
⌘
.

(42)

Note that in case of the sc-gauge expression, the redshift-
space distortion term is included in the last term, through
h0
k/2 = D0 + @2

kE
0. Fig. 3 shows the angular power spec-

trum of C due to standard adiabatic scalar perturbations
in a ⇤CDM cosmology (the details of the calculation are
given in App. E). Clearly, C is of the same order as the
matter density contrast in synchronous-comoving gauge
on all scales. On small scales, the velocity gradient term
dominates over all other contributions.

Shift along the line of sight direction

Shift along the perpendicular direction

perturbation to the scale factor at emission



Now, consider a spherical ruler



Classification of distortion

5

A. Evolving ruler

So far, we have assumed that the physical scale of the
ruler is fixed. This does not have to hold in general; for
example, the BAO scale is fixed in terms of comoving
coordinates. We now consider the case where the (mean)
physical scale r

0

evolves over cosmic time. It is simplest
to consider r

0

as a function of scale factor; one can easily
convert to other variables such as conformal time using
the relation with the scale factor in the background Uni-
verse.
Then, r2

0

on the left-hand side of Eq. (29) is to be
evaluated for the scale factor at emission:

r2
0

[a(x0)] = r2
0

(ã)


1 + 2

@ ln r
0

@ ln a
� ln a

�
. (30)

Thus, if we compare the apparent size of the standard
ruler to the true size at the apparent time of emission
(of course assuming that we are able to predict r

0

(a)),
Eq. (29) becomes

r2
0

� r̃2 = 2� ln a


1� @ ln r

0

@ ln a

�
r̃2 + ã2h

ij

�x̃i�x̃j

+ 2ã2(vk�x̃
2

k + v? i

�x̃i

?�x̃k)

+ 2ã2�
ij

�x̃i

�
�x̃k@�̃ + �x̃k

?@? k

�
�xj . (31)

Note that if r
0

/ a, i.e. if the ruler corresponds to a fixed
comoving scale, the terms multiplying� ln a cancel. This
is as expected, since a perturbation to the scale factor at
emission does not a↵ect a fixed comoving scale.

IV. SCALAR-VECTOR-TENSOR
DECOMPOSITION

It is useful to separate the contributions to Eq. (29)
in terms of the observed longitudinal and transverse dis-
placements. For some applications, only the transverse
displacements are relevant. This is the case for dif-
fuse backgrounds without redshift resolution, such as the
CMB or the cosmic infrared background, and largely the
case for photometric galaxy surveys. On the other hand,
spectroscopic surveys and redshift-resolved backgrounds
such as the 21cm emission from high-redshifts are able to
measure the longitudinal displacements as well.
Noting that r̃2 = ã2[�x̃2

k + (�x̃?)2], and taking the

square root of Eq. (31), we obtain the relative perturba-
tion to the physical scale of the ruler as

r̃ � r
0

r̃
= C (�x̃k)

2

r̃2
c

+ B
i

�x̃k�x̃
i

?
r̃2
c

+A
ij

�x̃i

?�x̃
j

?
r̃2
c

, (32)

where we have defined r̃
c

⌘ r̃/ã as the apparent comoving
size of the ruler. The quantities multiplying C, B

i

, A
ij

are thus simply geometric factors. The coe�cients are

FIG. 2: Illustration of the distortion of standard rulers due
to the longitudinal scalar C, vector B, and transverse compo-
nents, magnification M and shear �. The first row shows the
projection onto the sky plane, while the second (third) row
show the projection onto the line-of-sight and x

1
? (x2

?) axes,
respectively. In case of B and �, we only show one of the two
components.

given by

C = �� ln a


1� @ ln r

0

@ ln a

�
� 1

2
hk � vk � @

�̃

�xk

B
i

= � P j

i

h
jk

n̂k � v?i

� n̂k@? i

�x
k

� @
�̃

�x?i

A
ij

= �� ln a


1� @ ln r

0

@ ln a

�
P
ij

� 1

2
P k

i

P l

j

h
kl

� 1

2
(P

jk

@? i

+ P
ik

@? j

)�xk, (33)

where �xk, �xi

? are the parallel and perpendicular com-
ponents of the displacements �xi. Note that while we
have assumed that the ruler is small (i.e. �x̃i ⌧ �̃), the
expressions for C, B

i

, A
ij

are valid on the full sky. Fig. 2
illustrates the distortions induced by these components.
Observationally, we have 6 free parameters (assuming ac-
curate redshifts are available): the location of one point
n̂, z̃, and the separation vector described by �x̃i (with
�x̃0 being fixed by the light cone condition). Using these,
we can measure a scalar on the sphere, C, a 2⇥2 symmet-
ric matrix, A

ij

, and a 2-component vector on the sphere,
B
i

. These quantities are observable and gauge-invariant,
while any of the individual contributions in Eq. (33) are
not in general. In the absence of su�ciently accurate
redshifts, only the transverse component A

ij

is measur-
able. This is the most well-known component and can
by decomposed into the magnification and shear. Note
that we cannot measure any of the anti-symmetric com-
ponents, such as the rotation. This is because we have
not assumed the existence of any preferred directions in

• We decompose the distortion as Scalar, Vector and Tensor 
according to their rotational property on sphere: 

longitudinal scalar Vector Magnification (trace) + shear (spin-2)



Covariant formula for C, B, M

longitudinal scalar

ds

2 = a

2(⌘)
⇥
�(1 + 2A)d⌘2 � 2Bid⌘dx

i + (�ij + hij) dx
i
dx

j
⇤
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the Universe. If there is a primary spin-1 or higher spin
field, such as the polarization in case of the CMB, then a
rotation can be measured as it mixes the spin±2 compo-
nents (see, e.g. [23]). In the next sections we study these
three terms in turn.
For reference, we now give the explicit expressions for

the displacements �xi and � ln a. They are defined such
that �xi = 0 = � ln a for a local source, i.e. for z̃ ⇡ 0.
The details of the derivation are presented in App. B.
Separating into line-of-sight and transverse parts, we
have

�xk =

Z
�̃

0

d�


A�Bk � 1

2
hk

�
� 1 + z̃

H(z̃)
� ln a (34)

�xi

? =


1

2
Pij(h

jk

)
o

n̂k +Bi

?o

� vi?o

�
�̃ (35)

+

Z
�̃

0

d�


�Bi

? � Pijh
jk

n̂k

+ (�̃� �)

⇢
� @i

?A+ n̂k@i

?Bk

+
1

2
(@i

?hjk

)n̂j n̂k

��

=


1

2
Pij(h

jk

)
o

n̂k +Bi

?o

� vi?o

�
�̃ (36)

�
Z

�̃

0

d�


�̃

�

�
Bi

? + Pijh
jk

n̂k

�

+ (�̃� �)@i

?

✓
A�Bk � 1

2
hk

◆�
.

The perturbation to the scale factor at emission is given
by

� ln a =A
o

�A+ vk � vko �
Z

�̃

0

d�


A�Bk � 1

2
hk

�0
.

(37)

Here, a subscript o indicates quantities evaluated at the
observer, while primes denote derivatives with respect to
⌘. Note the appearance of the scalar quantity A�Bk �
1

2

hk in Eqs. (34)–(37). This is the “lensing potential” ��
 in conformal-Newtonian gauge, written in the general
gauge Eq. (2).
In particular, in the two popular gauges introduced in

§ III, Eq. (37) becomes

(� ln a)
sc

=
1

2

Z
�̃

0

d� h0
k (38)

(� ln a)
cN

= 
o

� + vk � vko +

Z
�̃

0

d� [�0 � 0] .

(39)

The latter result clearly shows the “Sachs-Wolfe”,
“Doppler”, and “integrated Sachs-Wolfe” contributions.

V. LONGITUDINAL SCALAR

The longitudinal component can be simplified to be-
come

C = �� ln a


1�H(z̃)

@

@z̃

✓
1 + z̃

H(z̃)

◆
� @ ln r

0

@ ln a

�

�A� vk +Bk

+
1 + z̃

H(z̃)

✓
�@kA+ @kvk +B0

k � v0k +
1

2
h0
k

◆
. (40)

The first line contains the contributions due to the
fact that the scale factor at emission is perturbed from
1/(1 + z̃): first, the evolution of the physical standard
ruler r

0

with scale factor, 1 � @ ln r
0

/@ ln a, and second,
the evolution of the distance-redshift relation. The sec-
ond line contains the perturbations from the metric at the
source location (�A) and the projection from coordinate-
time to proper-time hypersurfaces (Bk�vk). Finally, the
contributions from the line-of-sight derivative of the line-
of-sight displacements (/ (1 + z̃)/H(z̃)) are given in the
third line. Note the term @kvk, which is the dominant
term on small scales in the conformal-Newtonian gauge.
This term is also responsible for the leading-order red-
shift distortions [24]. Apart from the pertubation to the
scale factor at emission, C does not involve any integral
terms; this is expected since C is the only term remaining
if the two lines of sight coincide (n̂ = n̂

0). In this case,
the two rays share the same path from the closer of the
two emission points, and no quantities integrated along
the line of sight can contribute to the perturbation of the
ruler.

Restricting to the synchronous-comoving and
conformal-Newtonian gauges, respectively, we obtain

(C)
sc

= � (� ln a)
sc


1�H(z̃)

@

@z̃

✓
1 + z̃

H(z̃)

◆
� @ ln r

0

@ ln a

�

+
1 + z̃

2H(z̃)
h0
k. (41)

(C)
cN

= � (� ln a)
cN


1�H(z̃)

@

@z̃

✓
1 + z̃

H(z̃)

◆
� @ ln r

0

@ ln a

�

� � vk +
1 + z̃

H(z̃)

⇣
�@k + @kvk � v0k + �

0
⌘
.

(42)

Note that in case of the sc-gauge expression, the redshift-
space distortion term is included in the last term, through
h0
k/2 = D0 + @2

kE
0. Fig. 3 shows the angular power spec-

trum of C due to standard adiabatic scalar perturbations
in a ⇤CDM cosmology (the details of the calculation are
given in App. E). Clearly, C is of the same order as the
matter density contrast in synchronous-comoving gauge
on all scales. On small scales, the velocity gradient term
dominates over all other contributions.

7

FIG. 3: Angular power spectra of the di↵erent standard ruler
perturbations produced by a standard scale-invariant power
spectrum of curvature perturbations: C, E-mode of Bi, E-
mode of the shear, and magnification M. All quantities are
calculated for a non-evolving ruler and a sharp source redshift
of z̃ = 2. For comparison, the thin dotted line shows the
angular power spectrum at z = 2 of the matter density field in
synchronous-comoving gauge. Note that all quantities shown
here, except for �

sc
m, are gauge-invariant and (in principle)

observable.

VI. VECTOR

Next, we have the two-component vector

B
i

= � P j

i

h
jk

n̂k � v?i

� @? i

�xk � @
�̃

�x? i

+
�x? i

�̃

= � v?i

+B?i

+
1 + z̃

H(z̃)
@?i

� ln a, (43)

where we have inserted projection operators for clarity
(these are trivial since B

i

is contracted with �x̃i

?). As
expected, this vector involves the transverse derivative of
the line-of-sight displacement and the line-of-sight deriva-
tive of the transverse displacement. Note that these two
quantities are not observable individually.
Using the spin±1 unit vectors m±, Bi

can be decom-
posed into spin±1 components:

B
i

=
+1

Bmi

+

+ �1

Bmi

�

±1

B ⌘mi

⌥Bi

= �v± +B± +
1 + z̃

H(z̃)
@±� ln a, (44)

where we have used the notation of Eq. (11). Similar
to before, we can specialize this general result to the

synchronous-comoving and conformal-Newtonian gauges:

(±1

B)
sc

=
1 + z̃

2H(z̃)

Z
�̃

0

d�
�

�̃
@±h

0
k (45)

(±1

B)
cN

= � v± +
1 + z̃

H(z̃)
@±� ln a

= � v± +
1 + z̃

H(z̃)

 
� @± + @±[vk � vko]

+

Z
�̃

0

d�
�

�̃
@±(�

0 � 0)

!
.

(46)

On small scales, the dominant contribution to B
i

comes
from the transverse derivative of the line-of-sight compo-
nent of the velocity @±vk, which is of the same order as
the tidal field.
Applying the spin-lowering operator ḡ to

1

B (see
App. A) yields a spin-zero quantity, which can be ex-
panded in terms of the usual spherical harmonics1. We
then obtain the multipole coe�cients of B as

aB
lm

(z̃) = �
s

(l � 1)!

(l + 1)!

Z
d⌦

⇥
ḡ

1

B(n̂, z̃)⇤Y ⇤
lm

(n̂). (47)

An equivalent result is obtained for g�1

B. In general,
the multipole coe�cients aB

lm

are complex, so that we
can decompose them into real and imaginary parts,

aB
lm

= aBE

lm

+ i aBB

lm

. (48)

One can easily show (App. A) that under a change of
parity aBE

lm

transform as the spherical harmonic coe�-
cients of a vector (parity-odd), whereas aBB

lm

, picking up
an additional minus sign, transforms as those of a pseudo-
vector (parity-even). These thus correspond to the polar
(“E”) and axial (“B”) parts of the vector B

i

.
As required by parity, scalar perturbations do not con-

tribute to the axial part aBB

lm

(this is shown explicitly in
App. D). Thus, a measurement of the vector component
B
i

of standard ruler distortions o↵ers an additional pos-
sibility to probe tensor modes with large-scale structure,
as tensor modes do contribute to aBB

lm

(App. D). Thus, in
principle the axial component of B

i

could be of similar
interest for constraining tensor modes as weak lensing B-
modes [20], though one likely requires accurate redshifts
to measure B

i

to su�cient accuracy. We leave a detailed
investigation of this for future work.
The power spectrum of the E-mode of B due to stan-

dard scalar perturbations is shown in Fig. 3 (see App. E).
While the dominant contribution to C is / k2k/k

2 �sc
m

(k, z̃)
for a given Fourier mode of the matter density con-
trast in synchronous-comoving gauge (§ V), the cor-
responding contribution to B is / k?kk/k

2 �sc
m

(k, z̃).

1
This is of course equivalent to expanding 1B in terms of spin-1

spherical harmonics.

Vector
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Even though approximate scaling arguments suggest that
CC(l), CEE

B (l) should scale roughly equally with l, we see
that CB(l) scales faster with l for l . 500. The rea-
son is that the projection kernel for the E-mode of B
(/ (@

x

j
l

)/x) is relatively suppressed with respect to that
of C (/ @2

x

j
l

) at large x/l. Since l . 500 corresponds
to a typical k . 10�2 h/Mpc at the source redshift,
where P

m

(k) / k, larger x/l are favored for progressively
smaller l, leading to a more rapid decrease of CB(l) to-
wards smaller l. This suppression is thus fundamentally a
consequence of the shape of the matter power spectrum.

VII. TRANSVERSE TENSOR: SHEAR AND
MAGNIFICATION

Finally, we have the purely transverse component,

A
ij

= �� ln a


1� @ ln r

0

@ ln a

�
P
ij

� 1

2
P k

i

P l

j

h
kl

� @? (i

�x? j)

� 1

�̃
�xkPij

, (49)

where we have again inserted projection operators for
clarity (note that P

ij

serves as the identity matrix on the
sphere). As a symmetric matrix on the sphere, A

ij

has
a scalar component, given by the trace A, and two com-
ponents of the traceless part which transform as spin-2
fields on the sphere. The trace corresponds to the change
in area on the sky subtended by two perpendicular stan-
dard rulers. Thus, it is equal to the magnificationM (see
also Fig. 2). The two components of the traceless part
correspond to the shear �. If we choose a fixed coordinate
system (e

✓

, e
�

, n̂), we can thus write

A
ij

=

✓ M/2 + �
1

�
2

�
2

M/2� �
1

◆
. (50)

Below, we will derive magnification and shear without
reference to a fixed coordinate system.

A. Magnification

Taking the trace of Eq. (49) yields

M ⌘ PijA
ij

= � 2� ln a


1� @ ln r

0

@ ln a

�
� 1

2

�
hi

i

� hk
�
+ 2̂� 2

�̃
�xk.

(51)

The contributions to the magnification are straightfor-
wardly interpreted as coming from the conversion of co-
ordinate distance to physical scale at the source (from
the perturbation to the scale factor � ln a and the met-
ric at the source projected perpendicular to the line of
sight, hi

i

� hk); from the fact that the entire ruler is

moved closer or further away by �xk; and finally from
the coordinate convergence ̂ defined through

̂ = �1

2
@? i

�xi

?. (52)

This term dominates the other contributions to M on
small scales. However, the coordinate convergence is a
gauge-dependent quantity; see for example App. B2 in
[11]. For the general metric Eq. (2) it is given by

̂ = � 1

2


1

2

�
(hi

i

)
o

� 3(hk)o
�� 2(Bk � vk)o

�
(53)

+
1

2

Z
�̃

0

d�

"
@k

?Bk

� 2

�
Bk + (@l

?hlk

)n̂k

+
1

�

�
hi

i

� 3hk
�

+ (�̃� �)
�

�̃
r2

?

⇢
A�Bk � 1

2
hk

�#
.

In conformal-Newtonian gauge, it assumes its familiar
form,

(̂)
cN

= � vko +
1

2

Z
�̃

0

d�
�

�̃
(�̃� �)r2

? ( � �) , (54)

with an additional term �vko contributing to the dipole
of ̂ only, which corresponds to the relativistic beam-
ing e↵ect at linear order. Explicit expressions for the
magnification in di↵erent gauges are straightforward to
obtain, however they become lengthy. Here we just show
that we recover the result obtained in a di↵erent way in
Jeong et al. [11] in synchronous-comoving gauge. Using
Eq. (3), (hi

i

� hk)/2 = 2D � Ek. This, and defining
�z ⌘ (� ln a)

sc

[Eq. (38)] yields

(M)
sc

= �2

✓
1� @ ln r

0

@ ln a

◆
�z � 2D + Ek + 2̂� 2

�̃
�xk.

(55)
For a non-evolving standard ruler (@ ln r

0

/@ ln a = 0), we
thus recover the covariant magnification, M = �M, as
derived in [11]. In general, the observable magnification
M depends on the redshift evolution of the standard ruler
considered; for example, galaxy sizes which can be used
as standard ruler to measure magnification [25] in general
show a non-trivial redshift evolution.

B. Shear

We now consider the traceless part of A
ij

, given by

�
ij

(n̂) ⌘A
ij

� 1

2
P
ij

M

= � 1

2

✓
P k

i

P l

j

� 1

2
P
ij

Pkl

◆
h
kl

� @?(i

�x? j)

� P
ij

̂. (56)

8

Even though approximate scaling arguments suggest that
CC(l), CEE

B (l) should scale roughly equally with l, we see
that CB(l) scales faster with l for l . 500. The rea-
son is that the projection kernel for the E-mode of B
(/ (@

x

j
l

)/x) is relatively suppressed with respect to that
of C (/ @2

x

j
l

) at large x/l. Since l . 500 corresponds
to a typical k . 10�2 h/Mpc at the source redshift,
where P

m

(k) / k, larger x/l are favored for progressively
smaller l, leading to a more rapid decrease of CB(l) to-
wards smaller l. This suppression is thus fundamentally a
consequence of the shape of the matter power spectrum.

VII. TRANSVERSE TENSOR: SHEAR AND
MAGNIFICATION

Finally, we have the purely transverse component,

A
ij

= �� ln a


1� @ ln r

0

@ ln a

�
P
ij

� 1

2
P k

i

P l

j

h
kl

� @? (i

�x? j)

� 1

�̃
�xkPij

, (49)

where we have again inserted projection operators for
clarity (note that P

ij

serves as the identity matrix on the
sphere). As a symmetric matrix on the sphere, A

ij

has
a scalar component, given by the trace A, and two com-
ponents of the traceless part which transform as spin-2
fields on the sphere. The trace corresponds to the change
in area on the sky subtended by two perpendicular stan-
dard rulers. Thus, it is equal to the magnificationM (see
also Fig. 2). The two components of the traceless part
correspond to the shear �. If we choose a fixed coordinate
system (e

✓

, e
�

, n̂), we can thus write

A
ij

=

✓ M/2 + �
1

�
2

�
2

M/2� �
1

◆
. (50)

Below, we will derive magnification and shear without
reference to a fixed coordinate system.

A. Magnification

Taking the trace of Eq. (49) yields

M ⌘ PijA
ij

= � 2� ln a


1� @ ln r

0

@ ln a

�
� 1

2

�
hi

i

� hk
�
+ 2̂� 2

�̃
�xk.

(51)

The contributions to the magnification are straightfor-
wardly interpreted as coming from the conversion of co-
ordinate distance to physical scale at the source (from
the perturbation to the scale factor � ln a and the met-
ric at the source projected perpendicular to the line of
sight, hi

i

� hk); from the fact that the entire ruler is

moved closer or further away by �xk; and finally from
the coordinate convergence ̂ defined through

̂ = �1

2
@? i

�xi

?. (52)

This term dominates the other contributions to M on
small scales. However, the coordinate convergence is a
gauge-dependent quantity; see for example App. B2 in
[11]. For the general metric Eq. (2) it is given by
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� 3(hk)o
�� 2(Bk � vk)o
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(53)
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.

In conformal-Newtonian gauge, it assumes its familiar
form,

(̂)
cN

= � vko +
1

2

Z
�̃

0

d�
�

�̃
(�̃� �)r2

? ( � �) , (54)

with an additional term �vko contributing to the dipole
of ̂ only, which corresponds to the relativistic beam-
ing e↵ect at linear order. Explicit expressions for the
magnification in di↵erent gauges are straightforward to
obtain, however they become lengthy. Here we just show
that we recover the result obtained in a di↵erent way in
Jeong et al. [11] in synchronous-comoving gauge. Using
Eq. (3), (hi

i

� hk)/2 = 2D � Ek. This, and defining
�z ⌘ (� ln a)

sc

[Eq. (38)] yields
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(55)
For a non-evolving standard ruler (@ ln r

0

/@ ln a = 0), we
thus recover the covariant magnification, M = �M, as
derived in [11]. In general, the observable magnification
M depends on the redshift evolution of the standard ruler
considered; for example, galaxy sizes which can be used
as standard ruler to measure magnification [25] in general
show a non-trivial redshift evolution.

B. Shear

We now consider the traceless part of A
ij

, given by
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Even though approximate scaling arguments suggest that
CC(l), CEE

B (l) should scale roughly equally with l, we see
that CB(l) scales faster with l for l . 500. The rea-
son is that the projection kernel for the E-mode of B
(/ (@

x

j
l

)/x) is relatively suppressed with respect to that
of C (/ @2

x

j
l

) at large x/l. Since l . 500 corresponds
to a typical k . 10�2 h/Mpc at the source redshift,
where P

m

(k) / k, larger x/l are favored for progressively
smaller l, leading to a more rapid decrease of CB(l) to-
wards smaller l. This suppression is thus fundamentally a
consequence of the shape of the matter power spectrum.

VII. TRANSVERSE TENSOR: SHEAR AND
MAGNIFICATION

Finally, we have the purely transverse component,
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where we have again inserted projection operators for
clarity (note that P

ij

serves as the identity matrix on the
sphere). As a symmetric matrix on the sphere, A

ij

has
a scalar component, given by the trace A, and two com-
ponents of the traceless part which transform as spin-2
fields on the sphere. The trace corresponds to the change
in area on the sky subtended by two perpendicular stan-
dard rulers. Thus, it is equal to the magnificationM (see
also Fig. 2). The two components of the traceless part
correspond to the shear �. If we choose a fixed coordinate
system (e

✓

, e
�

, n̂), we can thus write

A
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=
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2
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2
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◆
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Below, we will derive magnification and shear without
reference to a fixed coordinate system.

A. Magnification

Taking the trace of Eq. (49) yields
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ij

= � 2� ln a


1� @ ln r

0

@ ln a

�
� 1

2

�
hi

i

� hk
�
+ 2̂� 2

�̃
�xk.

(51)

The contributions to the magnification are straightfor-
wardly interpreted as coming from the conversion of co-
ordinate distance to physical scale at the source (from
the perturbation to the scale factor � ln a and the met-
ric at the source projected perpendicular to the line of
sight, hi

i

� hk); from the fact that the entire ruler is

moved closer or further away by �xk; and finally from
the coordinate convergence ̂ defined through

̂ = �1

2
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?. (52)

This term dominates the other contributions to M on
small scales. However, the coordinate convergence is a
gauge-dependent quantity; see for example App. B2 in
[11]. For the general metric Eq. (2) it is given by
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In conformal-Newtonian gauge, it assumes its familiar
form,
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with an additional term �vko contributing to the dipole
of ̂ only, which corresponds to the relativistic beam-
ing e↵ect at linear order. Explicit expressions for the
magnification in di↵erent gauges are straightforward to
obtain, however they become lengthy. Here we just show
that we recover the result obtained in a di↵erent way in
Jeong et al. [11] in synchronous-comoving gauge. Using
Eq. (3), (hi

i

� hk)/2 = 2D � Ek. This, and defining
�z ⌘ (� ln a)

sc

[Eq. (38)] yields
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(55)
For a non-evolving standard ruler (@ ln r

0

/@ ln a = 0), we
thus recover the covariant magnification, M = �M, as
derived in [11]. In general, the observable magnification
M depends on the redshift evolution of the standard ruler
considered; for example, galaxy sizes which can be used
as standard ruler to measure magnification [25] in general
show a non-trivial redshift evolution.

B. Shear

We now consider the traceless part of A
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, given by

�
ij

(n̂) ⌘A
ij

� 1

2
P
ij

M

= � 1

2

✓
P k

i

P l

j

� 1

2
P
ij

Pkl

◆
h
kl

� @?(i

�x? j)

� P
ij

̂. (56)

8

Even though approximate scaling arguments suggest that
CC(l), CEE

B (l) should scale roughly equally with l, we see
that CB(l) scales faster with l for l . 500. The rea-
son is that the projection kernel for the E-mode of B
(/ (@

x

j
l

)/x) is relatively suppressed with respect to that
of C (/ @2

x

j
l

) at large x/l. Since l . 500 corresponds
to a typical k . 10�2 h/Mpc at the source redshift,
where P

m

(k) / k, larger x/l are favored for progressively
smaller l, leading to a more rapid decrease of CB(l) to-
wards smaller l. This suppression is thus fundamentally a
consequence of the shape of the matter power spectrum.

VII. TRANSVERSE TENSOR: SHEAR AND
MAGNIFICATION

Finally, we have the purely transverse component,

A
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= �� ln a
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where we have again inserted projection operators for
clarity (note that P

ij

serves as the identity matrix on the
sphere). As a symmetric matrix on the sphere, A

ij

has
a scalar component, given by the trace A, and two com-
ponents of the traceless part which transform as spin-2
fields on the sphere. The trace corresponds to the change
in area on the sky subtended by two perpendicular stan-
dard rulers. Thus, it is equal to the magnificationM (see
also Fig. 2). The two components of the traceless part
correspond to the shear �. If we choose a fixed coordinate
system (e

✓

, e
�

, n̂), we can thus write
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=
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Below, we will derive magnification and shear without
reference to a fixed coordinate system.

A. Magnification

Taking the trace of Eq. (49) yields
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The contributions to the magnification are straightfor-
wardly interpreted as coming from the conversion of co-
ordinate distance to physical scale at the source (from
the perturbation to the scale factor � ln a and the met-
ric at the source projected perpendicular to the line of
sight, hi

i

� hk); from the fact that the entire ruler is

moved closer or further away by �xk; and finally from
the coordinate convergence ̂ defined through

̂ = �1

2
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?. (52)

This term dominates the other contributions to M on
small scales. However, the coordinate convergence is a
gauge-dependent quantity; see for example App. B2 in
[11]. For the general metric Eq. (2) it is given by
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In conformal-Newtonian gauge, it assumes its familiar
form,
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with an additional term �vko contributing to the dipole
of ̂ only, which corresponds to the relativistic beam-
ing e↵ect at linear order. Explicit expressions for the
magnification in di↵erent gauges are straightforward to
obtain, however they become lengthy. Here we just show
that we recover the result obtained in a di↵erent way in
Jeong et al. [11] in synchronous-comoving gauge. Using
Eq. (3), (hi

i

� hk)/2 = 2D � Ek. This, and defining
�z ⌘ (� ln a)

sc

[Eq. (38)] yields
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(55)
For a non-evolving standard ruler (@ ln r

0

/@ ln a = 0), we
thus recover the covariant magnification, M = �M, as
derived in [11]. In general, the observable magnification
M depends on the redshift evolution of the standard ruler
considered; for example, galaxy sizes which can be used
as standard ruler to measure magnification [25] in general
show a non-trivial redshift evolution.

B. Shear

We now consider the traceless part of A
ij

, given by
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Even though approximate scaling arguments suggest that
CC(l), CEE

B (l) should scale roughly equally with l, we see
that CB(l) scales faster with l for l . 500. The rea-
son is that the projection kernel for the E-mode of B
(/ (@

x

j
l

)/x) is relatively suppressed with respect to that
of C (/ @2

x

j
l

) at large x/l. Since l . 500 corresponds
to a typical k . 10�2 h/Mpc at the source redshift,
where P

m

(k) / k, larger x/l are favored for progressively
smaller l, leading to a more rapid decrease of CB(l) to-
wards smaller l. This suppression is thus fundamentally a
consequence of the shape of the matter power spectrum.

VII. TRANSVERSE TENSOR: SHEAR AND
MAGNIFICATION

Finally, we have the purely transverse component,
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= �� ln a
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where we have again inserted projection operators for
clarity (note that P

ij

serves as the identity matrix on the
sphere). As a symmetric matrix on the sphere, A

ij

has
a scalar component, given by the trace A, and two com-
ponents of the traceless part which transform as spin-2
fields on the sphere. The trace corresponds to the change
in area on the sky subtended by two perpendicular stan-
dard rulers. Thus, it is equal to the magnificationM (see
also Fig. 2). The two components of the traceless part
correspond to the shear �. If we choose a fixed coordinate
system (e

✓

, e
�

, n̂), we can thus write
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Below, we will derive magnification and shear without
reference to a fixed coordinate system.

A. Magnification

Taking the trace of Eq. (49) yields
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The contributions to the magnification are straightfor-
wardly interpreted as coming from the conversion of co-
ordinate distance to physical scale at the source (from
the perturbation to the scale factor � ln a and the met-
ric at the source projected perpendicular to the line of
sight, hi

i

� hk); from the fact that the entire ruler is

moved closer or further away by �xk; and finally from
the coordinate convergence ̂ defined through
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2
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?. (52)

This term dominates the other contributions to M on
small scales. However, the coordinate convergence is a
gauge-dependent quantity; see for example App. B2 in
[11]. For the general metric Eq. (2) it is given by
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In conformal-Newtonian gauge, it assumes its familiar
form,
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with an additional term �vko contributing to the dipole
of ̂ only, which corresponds to the relativistic beam-
ing e↵ect at linear order. Explicit expressions for the
magnification in di↵erent gauges are straightforward to
obtain, however they become lengthy. Here we just show
that we recover the result obtained in a di↵erent way in
Jeong et al. [11] in synchronous-comoving gauge. Using
Eq. (3), (hi

i

� hk)/2 = 2D � Ek. This, and defining
�z ⌘ (� ln a)

sc

[Eq. (38)] yields
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For a non-evolving standard ruler (@ ln r

0

/@ ln a = 0), we
thus recover the covariant magnification, M = �M, as
derived in [11]. In general, the observable magnification
M depends on the redshift evolution of the standard ruler
considered; for example, galaxy sizes which can be used
as standard ruler to measure magnification [25] in general
show a non-trivial redshift evolution.

B. Shear

We now consider the traceless part of A
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, given by

�
ij

(n̂) ⌘A
ij

� 1

2
P
ij

M

= � 1

2

✓
P k

i

P l

j

� 1

2
P
ij

Pkl

◆
h
kl

� @?(i

�x? j)

� P
ij

̂. (56)

8

Even though approximate scaling arguments suggest that
CC(l), CEE

B (l) should scale roughly equally with l, we see
that CB(l) scales faster with l for l . 500. The rea-
son is that the projection kernel for the E-mode of B
(/ (@

x
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)/x) is relatively suppressed with respect to that
of C (/ @2

x

j
l

) at large x/l. Since l . 500 corresponds
to a typical k . 10�2 h/Mpc at the source redshift,
where P

m

(k) / k, larger x/l are favored for progressively
smaller l, leading to a more rapid decrease of CB(l) to-
wards smaller l. This suppression is thus fundamentally a
consequence of the shape of the matter power spectrum.

VII. TRANSVERSE TENSOR: SHEAR AND
MAGNIFICATION

Finally, we have the purely transverse component,
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where we have again inserted projection operators for
clarity (note that P

ij

serves as the identity matrix on the
sphere). As a symmetric matrix on the sphere, A

ij

has
a scalar component, given by the trace A, and two com-
ponents of the traceless part which transform as spin-2
fields on the sphere. The trace corresponds to the change
in area on the sky subtended by two perpendicular stan-
dard rulers. Thus, it is equal to the magnificationM (see
also Fig. 2). The two components of the traceless part
correspond to the shear �. If we choose a fixed coordinate
system (e
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, e
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, n̂), we can thus write
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Below, we will derive magnification and shear without
reference to a fixed coordinate system.

A. Magnification

Taking the trace of Eq. (49) yields
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The contributions to the magnification are straightfor-
wardly interpreted as coming from the conversion of co-
ordinate distance to physical scale at the source (from
the perturbation to the scale factor � ln a and the met-
ric at the source projected perpendicular to the line of
sight, hi

i

� hk); from the fact that the entire ruler is

moved closer or further away by �xk; and finally from
the coordinate convergence ̂ defined through
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This term dominates the other contributions to M on
small scales. However, the coordinate convergence is a
gauge-dependent quantity; see for example App. B2 in
[11]. For the general metric Eq. (2) it is given by
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In conformal-Newtonian gauge, it assumes its familiar
form,
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with an additional term �vko contributing to the dipole
of ̂ only, which corresponds to the relativistic beam-
ing e↵ect at linear order. Explicit expressions for the
magnification in di↵erent gauges are straightforward to
obtain, however they become lengthy. Here we just show
that we recover the result obtained in a di↵erent way in
Jeong et al. [11] in synchronous-comoving gauge. Using
Eq. (3), (hi

i

� hk)/2 = 2D � Ek. This, and defining
�z ⌘ (� ln a)

sc

[Eq. (38)] yields
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For a non-evolving standard ruler (@ ln r

0

/@ ln a = 0), we
thus recover the covariant magnification, M = �M, as
derived in [11]. In general, the observable magnification
M depends on the redshift evolution of the standard ruler
considered; for example, galaxy sizes which can be used
as standard ruler to measure magnification [25] in general
show a non-trivial redshift evolution.

B. Shear

We now consider the traceless part of A
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, given by
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Here, the terms / P
ij

in Eq. (49) drop out. The terms in
the second line here is what commonly is regarded as the
shear, i.e. the trace-free part of the transverse derivatives
of the transverse displacements. The first term on the
other hand is important to ensure a gauge-invariant re-
sult. This is the term referred to as “metric shear” in [15].
Its physical significance becomes clear when constructing
the Fermi normal coordinates for the region containing
the standard ruler.

Consider a region of spatial extent R, say centered on
a given galaxy, with R assumed to be much larger than
the scale of individual galaxies. We can construct or-
thornomal Fermi normal coordinates [26, 27] around the
center of this region, which follows a timelike geodesic, by
choosing the origin to be located at the center of the re-
gion at all times, and the time coordinate to be the proper
time of this geodesic. The spacetime in these Fermi co-
ordinates (t

F

, xi

F

) then becomes Minkowski, with correc-
tions going as x2

F

/R2

c

where R
c

is the curvature scale of
the spacetime. Thus, as long as these corrections to the
metric are negligible, there is no preferred direction in
this frame, and the size of the standard ruler has to be
(statistically) independent of the orientation. The most
obvious example is galaxy shapes, which are used for cos-
mic shear measurements. In the Fermi frame, galaxy ori-
entations are random. Note that the Fermi coordinates
are uniquely determined up to three Euler angles. The
statement that galaxy orientations are random in this
frame is thus coordinate-invariant.

As an example, consider the case where we have a
purely spatial metric perturbation (cf. Eq. (2)) at a fixed
time. We can then expand around the origin,

h
ij

(x) = h
ij

(0) + h
ij,k

(0)xk. (57)

Higher order terms are suppressed by (x/R
c

)2. Now,
consider coordinates given by
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2
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4
[2h
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(0)� h
jk,i

(0)]xjxk.

(58)
In these coordinates, the metric becomes

gF
µ⌫

= ⌘
µ⌫

+O(x2

F

). (59)

Thus, it is in terms of the coordinates xi

F

that galaxies
should be isotropically oriented on average, not in terms
of the cosmological coordinates xi. Correspondingly, in
order to obtain the shear relative to the Fermi frame, we
need to add the transformation Eq. (58) to the displace-
ments �xi:
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2
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With these new displacements, the transverse derivative
of the transverse displacement becomes
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(61)

where the last term is suppressed by the size of the ruler
over the wavelength of the metric perturbation, and is
thus negligible in the small-ruler approximation. We
see that Eq. (61) agrees exactly with the result derived
above, Eq. (56) (after subtracting the trace of Eq. (61)).
In other words, the shear derived in the standard ruler
formalism (§ III) is equivalent to the statement that the
ruler is isotropic in its Fermi frame, the additional term
coming from the transformation from global coordinates
to the local Fermi coordinates. This additional term was
introduced in [15] as “metric shear”, with a similar mo-
tivation as given here. In our case, this term is naturally
included in the standard ruler formalism.

�
ij

is a symmetric trace-free tensor on the sphere,
and can thus be decomposed into spin±2 components
(in analogy to the polarization of the CMB). Following
App. A (see also [28]) we can write �

ij

as

�
ij

=
2

�mi

+

mj

+

+ �2

�mi

�m
j

�

±2

� =mi

⌥m
j

⌥�ij , (62)

where ±2

� are spin±2 functions on the sphere (in analogy
to the combination of Stokes parameters Q ± iU). We
obtain for the shear components

±2

� = � 1

2
h± �mi

⌥m
j

⌥@?i

�x?j

= � 1

2
h± � 1

2
(h±)o �

Z
�̃

0

d�

"✓
1� 2

�

�̃

◆⇥
mk

⌥@±Bk

+ (@±hlk

)ml

⌥n̂
k

⇤� 1

�̃
h± (63)

+ (�̃� �)
�

�̃

(
�mi

⌥m
j

⌥@i@jA+ n̂kmi

⌥m
j

⌥@i@jBk

+
1

2
mi

⌥m
j

⌥(@i@jhkl

)n̂kn̂l

)#
.

Eq. (63) is valid in any gauge. We can now specialize to the synchronous-comoving (sc) and conformal-Newtonian
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Here, the terms / P
ij

in Eq. (49) drop out. The terms in
the second line here is what commonly is regarded as the
shear, i.e. the trace-free part of the transverse derivatives
of the transverse displacements. The first term on the
other hand is important to ensure a gauge-invariant re-
sult. This is the term referred to as “metric shear” in [15].
Its physical significance becomes clear when constructing
the Fermi normal coordinates for the region containing
the standard ruler.

Consider a region of spatial extent R, say centered on
a given galaxy, with R assumed to be much larger than
the scale of individual galaxies. We can construct or-
thornomal Fermi normal coordinates [26, 27] around the
center of this region, which follows a timelike geodesic, by
choosing the origin to be located at the center of the re-
gion at all times, and the time coordinate to be the proper
time of this geodesic. The spacetime in these Fermi co-
ordinates (t

F

, xi

F

) then becomes Minkowski, with correc-
tions going as x2

F

/R2

c

where R
c

is the curvature scale of
the spacetime. Thus, as long as these corrections to the
metric are negligible, there is no preferred direction in
this frame, and the size of the standard ruler has to be
(statistically) independent of the orientation. The most
obvious example is galaxy shapes, which are used for cos-
mic shear measurements. In the Fermi frame, galaxy ori-
entations are random. Note that the Fermi coordinates
are uniquely determined up to three Euler angles. The
statement that galaxy orientations are random in this
frame is thus coordinate-invariant.

As an example, consider the case where we have a
purely spatial metric perturbation (cf. Eq. (2)) at a fixed
time. We can then expand around the origin,

h
ij

(x) = h
ij

(0) + h
ij,k

(0)xk. (57)

Higher order terms are suppressed by (x/R
c

)2. Now,
consider coordinates given by

a�1xi

F

= xi +
1

2
h
ij

(0)xj +
1

4
[2h

ij,k

(0)� h
jk,i

(0)]xjxk.

(58)
In these coordinates, the metric becomes

gF
µ⌫

= ⌘
µ⌫

+O(x2

F

). (59)

Thus, it is in terms of the coordinates xi

F

that galaxies
should be isotropically oriented on average, not in terms
of the cosmological coordinates xi. Correspondingly, in
order to obtain the shear relative to the Fermi frame, we
need to add the transformation Eq. (58) to the displace-
ments �xi:

�xi ! �xi +
1

2
h
ij

(0)xj +
1

4
[2h

ij,k

(0)� h
jk,i

(0)]xjxk.

(60)
With these new displacements, the transverse derivative
of the transverse displacement becomes

@?(i

�x? j)

! @?(i

�x? j)

+
1

2
P k

i

P k

j

h
kl

+O(h
ij,k

xk),

(61)

where the last term is suppressed by the size of the ruler
over the wavelength of the metric perturbation, and is
thus negligible in the small-ruler approximation. We
see that Eq. (61) agrees exactly with the result derived
above, Eq. (56) (after subtracting the trace of Eq. (61)).
In other words, the shear derived in the standard ruler
formalism (§ III) is equivalent to the statement that the
ruler is isotropic in its Fermi frame, the additional term
coming from the transformation from global coordinates
to the local Fermi coordinates. This additional term was
introduced in [15] as “metric shear”, with a similar mo-
tivation as given here. In our case, this term is naturally
included in the standard ruler formalism.

�
ij

is a symmetric trace-free tensor on the sphere,
and can thus be decomposed into spin±2 components
(in analogy to the polarization of the CMB). Following
App. A (see also [28]) we can write �

ij

as

�
ij

=
2

�mi

+

mj

+

+ �2

�mi

�m
j

�

±2

� =mi

⌥m
j

⌥�ij , (62)

where ±2

� are spin±2 functions on the sphere (in analogy
to the combination of Stokes parameters Q ± iU). We
obtain for the shear components

±2

� = � 1

2
h± �mi

⌥m
j

⌥@?i

�x?j

= � 1

2
h± � 1

2
(h±)o �

Z
�̃

0

d�

"✓
1� 2

�

�̃

◆⇥
mk

⌥@±Bk

+ (@±hlk

)ml

⌥n̂
k

⇤� 1

�̃
h± (63)

+ (�̃� �)
�

�̃

(
�mi

⌥m
j

⌥@i@jA+ n̂kmi

⌥m
j

⌥@i@jBk

+
1

2
mi

⌥m
j

⌥(@i@jhkl

)n̂kn̂l

)#
.

Eq. (63) is valid in any gauge. We can now specialize to the synchronous-comoving (sc) and conformal-Newtonian

New!!

• First fully relativistic, covariant expression for the cosmic shear!!

Here,                        is a spin ±2 component of the shear, where

                        are spin ±1 vector field on sphere in the sense that 
it transforms                          under the rotation          with angle ψ.

• Conformal Newtonian gauge:

±2�(n̂) ⌘ mi
⌥m

j
⌥Aij

m± =
1p
2
(e1 ⌥ ie2)

m± ! m0
± = e±i m± ei ! e0i

±2�(n̂) =

Z �̃

0
d�(�̃� �)

�

�̃
mi

⌥m
j
⌥@i@j( � �)



C, B, M, γ from scalar perturbations
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FIG. 3: Angular power spectra of the di↵erent standard ruler
perturbations produced by a standard scale-invariant power
spectrum of curvature perturbations: C, E-mode of Bi, E-
mode of the shear, and magnification M. All quantities are
calculated for a non-evolving ruler and a sharp source redshift
of z̃ = 2. For comparison, the thin dotted line shows the
angular power spectrum at z = 2 of the matter density field in
synchronous-comoving gauge. Note that all quantities shown
here, except for �

sc
m, are gauge-invariant and (in principle)

observable.

VI. VECTOR

Next, we have the two-component vector

B
i

= � P j

i

h
jk

n̂k � v?i

� @? i

�xk � @
�̃

�x? i

+
�x? i

�̃

= � v?i

+B?i

+
1 + z̃

H(z̃)
@?i

� ln a, (43)

where we have inserted projection operators for clarity
(these are trivial since B

i

is contracted with �x̃i

?). As
expected, this vector involves the transverse derivative of
the line-of-sight displacement and the line-of-sight deriva-
tive of the transverse displacement. Note that these two
quantities are not observable individually.

Using the spin±1 unit vectors m±, Bi

can be decom-
posed into spin±1 components:

B
i

=
+1

Bmi

+

+ �1

Bmi

�

±1

B ⌘mi

⌥Bi

= �v± +B± +
1 + z̃

H(z̃)
@±� ln a, (44)

where we have used the notation of Eq. (11). Similar
to before, we can specialize this general result to the

synchronous-comoving and conformal-Newtonian gauges:

(±1

B)
sc

=
1 + z̃

2H(z̃)

Z
�̃

0

d�
�

�̃
@±h

0
k (45)

(±1

B)
cN

= � v± +
1 + z̃

H(z̃)
@±� ln a

= � v± +
1 + z̃

H(z̃)

 
� @± + @±[vk � vko]

+

Z
�̃

0

d�
�

�̃
@±(�

0 � 0)

!
.

(46)

On small scales, the dominant contribution to B
i

comes
from the transverse derivative of the line-of-sight compo-
nent of the velocity @±vk, which is of the same order as
the tidal field.

Applying the spin-lowering operator ḡ to
1

B (see
App. A) yields a spin-zero quantity, which can be ex-
panded in terms of the usual spherical harmonics1. We
then obtain the multipole coe�cients of B as

aB
lm

(z̃) = �
s

(l � 1)!

(l + 1)!

Z
d⌦

⇥
ḡ

1

B(n̂, z̃)⇤Y ⇤
lm

(n̂). (47)

An equivalent result is obtained for g�1

B. In general,
the multipole coe�cients aB

lm

are complex, so that we
can decompose them into real and imaginary parts,

aB
lm

= aBE

lm

+ i aBB

lm

. (48)

One can easily show (App. A) that under a change of
parity aBE

lm

transform as the spherical harmonic coe�-
cients of a vector (parity-odd), whereas aBB

lm

, picking up
an additional minus sign, transforms as those of a pseudo-
vector (parity-even). These thus correspond to the polar
(“E”) and axial (“B”) parts of the vector B

i

.
As required by parity, scalar perturbations do not con-

tribute to the axial part aBB

lm

(this is shown explicitly in
App. D). Thus, a measurement of the vector component
B
i

of standard ruler distortions o↵ers an additional pos-
sibility to probe tensor modes with large-scale structure,
as tensor modes do contribute to aBB

lm

(App. D). Thus, in
principle the axial component of B

i

could be of similar
interest for constraining tensor modes as weak lensing B-
modes [20], though one likely requires accurate redshifts
to measure B

i

to su�cient accuracy. We leave a detailed
investigation of this for future work.

The power spectrum of the E-mode of B due to stan-
dard scalar perturbations is shown in Fig. 3 (see App. E).
While the dominant contribution to C is / k2k/k

2 �sc
m

(k, z̃)
for a given Fourier mode of the matter density con-
trast in synchronous-comoving gauge (§ V), the cor-
responding contribution to B is / k?kk/k

2 �sc
m

(k, z̃).

1
This is of course equivalent to expanding 1B in terms of spin-1

spherical harmonics.

• On small scales, C  is dominated by 
line-of-sight velocity. When 
projecting onto sphere, velocity 
(solid line) and density (dotted 
line) have different slope

• Small scale B is dominated by 
perpendicular derivative of l.o.s. 
velocity.

• On small scales, |M| = 2|κ| = 2|γ|:
ClM = 4 Clγ



Large-Scale Structure with GW II
: Shear

Donghui Jeong & Fabian Schmidt [arXiv:1205.1512]



Cosmic shear with GW
ds

2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

• With only tensor perturbation, shear expression becomes

• Dodelson, Rozo & Stebbins (2003)
“Assuming physical isotropy, we must add a ‘metric shear’ 
caused by the shearing of the coordinates with respect to 
physical space, i.e. Δγij, which is just the traceless transverse 
projection of -hij/2”

±2�(n̂) = �1

2
h±o

� 1

2
h± �

Z
�̃

0
d�

⇢
�̃� �

2

�

�̃
(mi

⌥m
j

⌥@i@jhkl

)n̂kn̂l +

✓
1� 2

�

�̃

◆
n̂lmk

⌥m
i

⌥@ihkl

� 1

�̃
h±

�

Metric Shear

???



What “metric shear” really is
ds

2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

• The cosmic shear measurement are referenced to the frame 
within which galaxies are statistically round.

• The most natural choice of such coordinate is the local inertial 
frame defined along the time-like geodesic of the galactic 
center, or so called Fermi Normal Coordinate (FNC)!

• Coordinate transformation from FRW to FNC coordinate:

      leads to an additional shear of  

x

i
F = x

i � 1

2
hijx

j � 1

2
�i
jkx

j
x

k +O(x3)

@?(i�x?j) ! @?(i�x?j) +
1

2
Pk
i P l

jhkl + · · ·
γij γij

FNC term

t F
 : 
tim

e-
lik

e 
ge

od
es

ic

xF



Metric shear vs. l.o.s. integral
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FIG. 1: Lensing (projection) contributions to the observed an-
gular power spectrum of the E-mode component of the shear
from tensor modes, separated into terms / Q̂1 (observer and

FNC terms), / Q̂2 and / Q̂3 respectively. Note that power
spectra are multiplied by l6. We have assumed a sharp source
redshift of z̃ = 2.

z̄). Further, we have adopted a value of C
1

⇢
cr0

= 0.12
as measured in the Sloan Digital Sky Survey [19]. This
coe�cient will depend on the specific galaxy sample con-
sidered, in particular on the redshift. Here we extrapolate
the value of C

1

⇢
cr0

measured for galaxies at z ⇡ 0.3�0.5
to galaxies at z = 2, assuming no evolution. Thus our
results should only be seen as a rough estimate of the
magnitude of this e↵ect (note however that we assume
a constant alignment strength with respect to the phys-
ical, not comoving tidal field). Even with this caveat
in mind however, it is clear that the intrinsic alignment
contribution is far larger than the lensing contribution.
This is in contrast to the scalar case, where for source
galaxies at cosmological redshifts the lensing signal is
significantly larger than the intrinsic alignment contri-
bution. The underlying reason is that the projected con-
tributions from lensing are relatively suppressed in the
tensor case. While scalar perturbations with transverse
wavevector deflect light coherently along the past line
cone to the source, tensor perturbations propagate and
decay, such that no such coherent deflection occurs even
for transverse wavevectors [14]. The result is that the
lensing contributions are mostly localized at the source
for tensor modes, and down-weighted by the lensing ker-
nel (/ �̃� �).

Apart from C
1

⇢
cr0

, the linear alignment model has an-
other free parameter in the redshift z

p

at which the tidal
field is evaluated. By default, we choose z

p

= z̃. How-

FIG. 2: Same as Fig. 2, but for the B-mode component.

ever, choosing z
p

to correspond to a time 5 ⇥ 108 years
before observation (z

p

⇡ z̃ + 0.04 for z̃ = 2), which cor-
responds to several dynamical times for typical galax-
ies, only yields a slight increase in the power spectrum
contribution by ⇠3%. Varying z

p

thus does not have
a significant impact on the intrinsic alignment contribu-
tion. On the other hand, this mild dependence on z

p

indicates that the bulk of the IA contribution induced
by tensor modes is due to slowly varying tidal fields, i.e.
tensor modes with k/H ⇠ 1, rather than rapidly oscillat-
ing modes with k/H � 1 (this is confirmed by numeri-
cal inspection of the intrinsic alignment contribution to
FE,B

l

). Such tidal fields, which vary on a Hubble time,
are not expected to have a qualitatively di↵erent e↵ect
on the formation of galaxies and halos than scalar tidal
fields, given that the relevant time scale is the dynam-
ical time of the collapsing dark matter halo. We thus
expect that the value of C

1

⇢
cr0

relevant for the IA con-
tributions to shear from tensor modes will not be very
di↵erent from that for scalar tidal fields. However, one
would expect C

1

⇢
cr0

to be generically scale-dependent for
tensor modes, decaying from its low-k limit to smaller
values as 1/k approaches the scale of halos and galaxies
(k & 0.3 h/Mpc).

Fig. 5 shows the redshift evolution of the B-modes of
the shear. As expected, larger source redshifts yield sig-
nificantly larger signals, due to the decay of the tensor
modes and since at higher redshifts, larger scales are be-
ing probed at a given l. However, we also see that the
intrinsic alignment contribution evolves even faster with
source redshift (note that here we have assumed the same
value for C

1

⇢
cr0

at all redshifts). This can be traced back

• They are about the same order of magnitude, but with 
opposite sign...

E-mode B-mode



FNC metric and tide
ds

2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

• The metric in the Fermi Normal Coordinate is given by

• Equation of motion for non-relativistic body in FNC is 
determined by the effective gravitational potential 𝛹eff =-𝛿g00/2.

• 𝛹 generates tidal force:

11

where here and throughout, dots denote derivatives with respect to t. The Riemann tensor is given by

Ri

00m

=
⇣

Ḣ +H2

⌘

�
im

+
1

2
ḧ
im

+Hḣ
im

(A18)

Rn

0im

=
1

2

⇣

ḣ
nm,i

� ḣ
ni,m

⌘

(A19)

Rn

ijm

= a2H2 [�
nj

�
im

� �
nm

�
ij

] +
1

2
(h

mn,ij

+ h
ij,nm

� h
im,nj

� h
jn,im

)

+ a2H2 (h
im

�
nj

� h
ij

�
nm

) +
a2H

2

⇣

ḣ
nj

�
im

+ ḣ
im

�
nj

� ḣ
ij

�
nm

� ḣ
nm

�
ij

⌘

. (A20)

We then have

R
i00m

= g
ij

Rj

00m

= a2
⇣

Ḣ +H2

⌘

�
im

+ a2


1

2
ḧ
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+Hḣ
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⇣

Ḣ +H2

⌘

h
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(A21)

R
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⇣
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� ḣ
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⌘

(A22)
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�
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⇣

ḣ
lj

�
im
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� ḣ
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�
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. (A23)

Finally, the Riemann tensor in terms of FNC is given by

RF

l00m

= (e
l

)µ (e
0

)⌫ (e
0

) (e
m

)� R
µ⌫�
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⇣
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⌘

�
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
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ḧ
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+Hḣ
lm

�

(A24)

RF
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=
1
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⇣
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� ḣ
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Combining all with Eq. (A8), we find that the metric in FNC is

gF
00

= � 1 +
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
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Here, we define r2
F

= �
ij

xi

F

xj

F

and denote the partial derivative with respect to the FNC by r
i

⌘ @/@xi

F

. Note that
in Eq. (A27), the derivative terms are already order x2

F

, hence we can use r
i

= (1/a)@/@xi here. We reiterate that
Eq. (A27) is valid for any spatial metric perturbation h

ij

, and thus also encompasses scalar cosmological perturbations
written in synchronous-comoving gauge.
It is also useful to have an explicit expression for the transformation from global coordinates xµ to Fermi coordinates

x⌫

F

. Evaluating Eq. (A7) for the metric Eq. (A11) yields

xi =

✓

�
ij

� 1

2
h
ij

◆

1

a
xj

F

� 1

2
�i

jk

1

a2
xj

F

xk

F

+O(x3

F

) (A28)
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This result is used in § VIIB of [1].
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Intrinsic alignment (IA) model
ds

2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij)dx
i
dx

j
⇤

• Intrinsic alignment: tidal fields (anisotropic gravitational 
potential) tends to align galaxies

• Linear alignment model

• consistent with observations on large (>10 [Mpc/h]) scales
Blazek+(2011), Joachimi+(2011)

�IA
ij (n) = � C1
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PikPjlt
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Shear vs. intrinsic alignment
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FIG. 3: Angular power spectrum of the observed E-
component of the shear from lensing and intrinsic alignment
a↵ects, as well as the total power spectrum. We assumed
C1⇢cr0 = 0.12 (following the results of [19]), and a Gaussian
distribution of source redshifts centered at z̃ = 2 with RMS
width of �z = 0.03(1 + z̃).

FIG. 4: Same as Fig. 3, but for B-modes.

to the factor of ã�2 in the IA contribution [Eq. (20)],
which is due to the transformation from conformal time

FIG. 5: Dependence of the lensing and intrinsic alignment
contributions to the B-mode shear power spectrum on the
source redshift z̃. We have assumed a Gaussian redshift dis-
tribution centered at z̃ = 5, 2, 1 (from top to bottom), and
RMS width �z = 0.03(1 + z̃). The black dotted line near
the top of the figure shows the 1� error on the shear power
spectrum per multipole induced by shape noise [Eq. (24)], for
a survey with n̄ = 100 arcmin�2, �e = 0.3, and fsky = 0.5.

derivatives to physical time derivatives. It is also interest-
ing to consider the dependence of the signal on the width
of the source galaxy redshift distribution. This is illus-
trated in Fig. 6. The lensing contributions are largely
independent of �z for the range of multipoles relevant
here. On the other hand, the IA contribution is notice-
ably increased for sharp source redshifts at l & 10, a
consequence of the fact that this contribution is not pro-
jected along the line of sight but evaluated at the source.
Thus, unlike the lensing contribution, the IA contribution
is essentially a three-dimensional field. Note also that in
this case l(l + 1)CBB

�

(l) ⇡ const, i.e. there is roughly
equal power per decade in multipole for the IA contribu-
tion. However, following our discussion above, we expect
the approximation of a scale-independent alignment coef-
ficient to break down once the wavelength of contributing
tensor modes approaches the scale of halos, roughly at l
greater than a few hundred.

VII. DISCUSSION

In this paper, we have studied the shear induced by a
primordial GW background. In addition to the projec-
tion (lensing) e↵ects, for which we use a gauge-invariant
expression, we derive for the first time the contribution

• Intrinsic alignment dominates over the lensing signal, and IA 
signal increases at higher redshifts!

noise for a half sky survey with 
n=100/arcmin2, σe=0.3

E-mode B-mode



Clustering Fossils from the Early Universe 

Donghui Jeong & Marc Kamionkowski [arXiv:1203.0302]



• Probability of finding two galaxies at separation 
r is given by the two-point correlation function:

• Power spectrum is the Fourier transform of it:

or in terms of density contrast,

 

Two-point correlation functions

r

dV1

dV2

P2(r) = n̄2[1 + ⇠(r)]dV1dV2

⇠(r) ⌘ h�(x)�(x+ r)i
statistical homogeneity (translational invariance)

P (k) =

Z
d3r⇠(r)eik·r

h�(k)�(k0)i = (2⇡)3P (k)�D(k + k0)



Linear evolution of power spectrum

Primordial density P(k)~kns

tran
sfer functio

n T2 (k)

keqality

Transfer function is given from CMB anisotropy.

h�(k)�(k0)i = (2⇡)3 [T (k)]2 Pinitial(k)�
D(k + k0)

h�i(k)�i(k0)i = (2⇡)3Pinitial(k)�
D(k + k0) Initial statistical 

homogeneity is sustained! 



Non-Gaussianity and homogeneity

•  IF we have a following non-linear coupling between 
primordial density fluctuations and new field hp (JK coupling):

•  THEN, density power spectrum we observe now has non-
zero off-diagonal components: Fossil equation

(local)

h�i(k1)�i(k2)hp(K)i = (2⇡)3Pp(K)fp(k1,k2)✏
p
ijk

i
1k

j
2�

D(k1 + k2 +K)

h�i(k1)�i(k2)i|hp(K) = hp(k1 + k2)fp(k1,k2)✏
p
ijk

i
1k

j
2�

D
k1+k2+K

polarization basis (scalar, vector, tensor) 

power spectrum of new field

coupling amplitude

Jeong & Kamionkowski (2012)



Why worrying about new fields?
• Inflaton(s) : a scalar field(s) responsible for inflation

• But, inflaton might not be alone. Many inflationary models need/
introduce additional fields. But, direct detection of such fields 
turns out to be very hard:

• Additional Scalar: not contributing to seed fluctuations

• Vector: decays as 1/[scale factor] 

• Tensor: decays after coming inside of comoving horizon

• Off-diagonal correlation (Fossil equation) opens new way of 
detecting them!



εpij: six independent modes

• In a symmetric 3x3 tensor, we have 6 degrees of freedom, which 
are further decomposed by Scalar, Vector and Tensor 
polarization modes.

• They are orthogonal:

• Scalar (p=0,z): 

• Vector (p=x,y):                                        where 

• Tensor (p=x,+): transverse and traceless

✏pij✏
p0,ij = 2�pp0

✏0ij / �ij ✏zij(K) / KiKj �K2/3

✏x,y
ij

(K) / 1

2
(K

i

e
j

+K
j

e
i

) Kiei = 0

Ki✏
+,⇥
ij (K) = 0 �ij✏

+,⇥
ij (K) = 0



ξ(r) with single tensor mode (p=+,x)
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ξ(r) with single scalar mode (p=0,z)
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ξ(r) with single vector mode (p=x,y)
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Naive estimator

• Let’s start from Fossil equation

• Rearranging it a bit, we get a naive estimator for the new field, 
which is far from optimal:

h�(k1)�(k2)i|hp(K) = hp(k1 + k2)fp(k1,k2)✏
p
ijk

i
1k

j
2�

D
k1+k2+K

k1

k1

k1

k1

k2

k2

k2

k2

K

k2

k1

\hp(K) =
X

k1+k2=K

�(k1)�(k2)

fp(k1,k2)✏
p
ijk

i
1k

j
2



Optimal estimator 
for a single mode

• Inverse-variance weighting gives an optimal estimator for a 
single mode

• With a noise power spectrum (Ptot = Pgalaxy + Pnoise)
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\
h

p

(K) = �(k
1

)�(k
2

)
h
f

p

(k
1

,k

2

)✏p
ij

k

i

1

k

j

2

i�1

, (2)

for the Fourier-polarization amplitude h

p

(K). Since⌦
|�(k)|2

↵
= V P

tot(k), where P

tot(k) = P (k) + P

n(k) is
the measured matter power spectrum, including the sig-
nal P (k) and noise P

n(k), the variance of this estimator
is

2V P

tot(k
1

)P tot(k
2

)
���f

p

(k
1

,k

2

)✏p
ij

k

i

1

k

j

2

���
�2

. (3)

The minimum-variance estimator for h

p

(K) is then ob-
tained by summing over all these individual (k
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) pairs
with inverse-variance weighting:
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is the variance with which \
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(K) is measured. This
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(K) is a function only of the magnitude K (not its
orientation) as a consequence of global SI, and for the
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signal and noise power spectra, and similarly P
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In general, the amplitudes h

p

(K) arise as realizations

of random fields with power spectra P
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(K) = A

h

P

f

h

(K),
for h = {s, v, t}, which we write in terms of amplitudes
A

h

and fiducial power spectra P
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(K). We now proceed
to write the optimal estimator for the amplitudes A
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.

Each Fourier-mode estimator \
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(K) for the appropri-
ate polarizations (s for scalar, x and y for vector, and +
and ⇥ for tensor) provides an estimator,
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for the appropriate power-spectrum amplitude. Here we
have subtracted out the noise contribution to unbias the
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Adding the estimators from each Fourier mode with
inverse-variance weighting leads us to the optimal esti-
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For the vector-power-spectrum amplitude c
A

v

we sum
over p = {x, y} and for the tensor-power-spectrum am-

plitude c
A

t

over p = {+,⇥}. Following the discussion

above, the sum on p is only for p = s for c
A

s

.
The estimator in Eq. (8), along with the quadratic

minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
tion, or trispectrum. The dependence of the trispectrum
on the azimuthal angle about the diagonal of the Fourier-
space quadrilateral distinguishes the shape dependences
of the trispectra for scalar, vector, and tensor modes. To
specify this trispectrum more precisely, though, requires
inclusion of the additional contribution induced by modes
K that involve the other two diagonals of the quadrilat-
eral. Likewise, if a signal is detected—i.e., if the null-
hypothesis estimators above are found to depart at > 3�
from the null hypothesis—then the optimal measurement
and characterization of the trispectrum requires modifi-
cation of the null-hypothesis estimators in a manner anal-
ogous to weak-lensing estimators [13].
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plitude c
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over p = {+,⇥}. Following the discussion

above, the sum on p is only for p = s for c
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The estimator in Eq. (8), along with the quadratic

minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
tion, or trispectrum. The dependence of the trispectrum
on the azimuthal angle about the diagonal of the Fourier-
space quadrilateral distinguishes the shape dependences
of the trispectra for scalar, vector, and tensor modes. To
specify this trispectrum more precisely, though, requires
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K that involve the other two diagonals of the quadrilat-
eral. Likewise, if a signal is detected—i.e., if the null-
hypothesis estimators above are found to depart at > 3�
from the null hypothesis—then the optimal measurement
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The estimator in Eq. (8), along with the quadratic

minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
tion, or trispectrum. The dependence of the trispectrum
on the azimuthal angle about the diagonal of the Fourier-
space quadrilateral distinguishes the shape dependences
of the trispectra for scalar, vector, and tensor modes. To
specify this trispectrum more precisely, though, requires
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eral. Likewise, if a signal is detected—i.e., if the null-
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from the null hypothesis—then the optimal measurement
and characterization of the trispectrum requires modifi-
cation of the null-hypothesis estimators in a manner anal-
ogous to weak-lensing estimators [13].

We now evaluate the smallest amplitudes A
s

, A
v

, and
A

t

that can be detected with a given survey. To do
so, we take for our fiducial models nearly scale-invariant
spectra P

h

(K) = A

h

K

nh�3, with |n
h

| ⌧ 1. We more-
over take the density-density–new-field bispectrum to be
of the form in Ref. [7]. We then find that the inte-
grand (using

P
k ! V

R
d

3

k/(2⇡)3) in Eq. (5) is dom-
inated by the squeezed limit (K ⌧ k

1

' k

2

) where
f

p

(k
1

,k

2

) ' �(3/2)P (k
1

)/k2
1

. We then approximate
P (k)/P tot(k) ' 1 for k < k

max

, where k
max

is the largest
wavenumber for which the power spectrum can be mea-
sured with high signal to noise, and P (k)/P tot(k) ' 0
for k > k

max

. This then yields a noise power spectrum
P

n

{v,t}(K) ' 20⇡2

/k

3

max

and P

n

s

(K) ' 8⇡2

/k

3

max

. Evalu-

ating the integral in Eq. (9), we find the scalar, vector,
and tensor amplitudes detectable at & 3� (for n

h

' 0)
to be

3�
h

' 30⇡
p
3⇡C

h

✓
k

max

k

min

◆�3

' 288C
h

✓
k

max

k

min

◆�3

,

(10)
where C{t,v} = 1 and C

s

= 2/5. The smallest detectable
power-spectra amplitudes are thus inversely proportional



Optimal estimator
for the power amplitude Ah

• For a stochastic background of new fields with power 
spectrum Pp(K)=AhPhf(K), we optimally summed over different 
K-modes to estimate the amplitude by (w/ NULL hypothesis):

• Here, the minimum uncertainty of measuring amplitude is

cAh = �2
h

X

K,p

h
P f
h (K)

i2

2
⇥
Pn
p (K)

⇤2

0

B@

��� \hp(K)
���
2

V
� Pn

p (K)

1

CA

��2
h =

X

K,p

h
P f
h (K)

i2
/2

⇥
Pn
p (K)

⇤2



When new “fields” are 
usual metric fluctuations

• Then, new field only rescales the wave-vector k2 → k2 - hijkikj, 
which reads fp=-3/2P(k)/k2 (Maldacena, 2003)
      

        

4

FIG. 2: The smallest scalar, vector, and tensor power-
sepctrum amplitudes As, Av and At, respectively, detectable
at the 3� level as a function of the maximum wavenumber
k

max

of the survey. Shown are results for survey volumes
of 10 [Gpc/h]3 and 200 [Gpc/h]3, or minimum wavenumbers
k

min

' 0.001 [h/Mpc] and k

min

' 0.003 [h/Mpc], respectively.

to the number of Fourier modes in the survey. We show
the projected detection sensitivities for surveys with vol-
umes of 200 [Gpc/h]3 and 10 [Gpc/h]3 in Fig. 2.

For example, if we apply this estimate to a tensor field
and assume this tensor field to be primordial gravita-
tional waves, then a sensitivity to a tensor amplitude
A

t

' 2 ⇥ 10�9 near the current upper limit requires
k

max

/k

min

& 5200. Such a dynamic range is probably
beyond the reach of galaxy surveys, but it may be within
reach of the 21-cm probes of neutral hydrogen during the
dark ages envisioned in Refs. [10, 14]. Of course, the sig-
nal could be larger if the inflaton is correlated with a
scalar, vector, or tensor field that leaves no other trace.
Finally, several new tests for parity-violating early-

Universe physics can be developed from simple modifi-
cation of the estimators above. To do so, we substitute
the x and y polarizations, and + and ⇥ polarizations,
with circular-polarization tensors ✏

±v

ij

= ✏

x

ij

± i✏

y

ij

and

✏

±t

ij

= ✏

+

ij

± i✏

⇥
ij

. The two right-most patterns shown in
Fig. 1 are the circular polarization patterns for tensor
and vector modes. It may then be tested whether the
power spectra for right- and left-circular polarizations are
equal. For example, chiral-gravity models [15] may pre-
dict such parity-violating signatures in primordial gravi-
tational waves, and similar models with parity-violating
vector perturbations are easily imaginable.
Of course, “real-world” e↵ects like redshift-space dis-

tortions, biasing, and nonlinear evolution, must be taken
into account before the estimators written above can be
implemented, but there are well-developed techniques to
deal with these issues [16].
In summary, we have shown that the most general

two-point correlation functions for the cosmological mass

distribution can be decomposed into scalar, vector, and
tensor distortions. We have presented straightforward
recipes for measuring these distortions. Such e↵ects may
arise if the inflaton is coupled to some new field during
inflation. We have avoided discussion of specific models,
but the introduction of new fields during inflation is quite
generic to inflationary models. We therefore advocate
measurement of these correlations with galaxy surveys,
and in the future with 21-cm surveys, as a simple and
general probe of new inflationary physics.
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• projected 3-sigma (99% 
C.L.) detection limit with 
galaxy survey parameters

• To detect the gravitational 
wave, we need a large 
dynamical range

• Current survey (e.g. SDSS) 
should set a limit on 
primordial V and T!



Conclusion
• We present three different ways of detecting primordial GW. 

For all three methods, effect at the source location is important 
as GW itself decays in time.

• Galaxy clustering: impossible to probe as the signal is too 
weak compared to that of scalar perturbations

• Cosmic shear: a bit challenge, but possible to detect GW on 
large scales thanks to the intrinsic alignment effect!

• Fossil equation: requires large dynamical range to beat the 
small signal (21cm map?). Interesting potential to detect 
primordial vector fields as well.


