Neutrino Probes of Supernovae

Shunsaku Horiuchi (Uni of Tokyo, IPMU)

IPMU ACP Seminar, 14th May 2009

Introduction

□ Thermal neutrinos from supernovae

Detecting the diffuse supernova neutrino background

Non-thermal neutrinos from supernovae

- Gamma-ray burst context
- > (Magnetic stars)

□ Summary

The Dream of Neutrino Astronomy

- "If [there are no new forces] -- one can conclude that there is no practically possible way of observing the neutrino."
 Bethe&Peierls, Nature (1934)
- "The title is more of an expression of hope than a description of the book's contents....the observational horizon of neutrino astrophysics may grow...perhaps in a time as short as one or two decades." Bahcall, <u>Neutrino Astrophysics</u> (1989)
- **U** We now have the technology to detect neutrinos!
- **And we know neutrino sources exist.**
- □ Neutrinos are unique messengers in astrophysics.

It is timely to study astrophysical neutrinos

Some neutrino sources

Radioactive decay

Nuclear reactors

Particle accelerator

Atmospheric

Supernova neutrinos are Many

MeV neutrinos [thermal]

Core-collapse of massive star

How are neutron stars and black holes formed?

GeV – TeV neutrinos [non-thermal]

Supernova, supernova remnants, and gamma-ray bursts

Particle acceleration and hadronic interactions?

> TeV neutrinos [non-thermal]

Gamma-ray bursts?

> What are the origins of high-energy cosmic rays?

Each gives us valuable information

Shunsaku Horiuchi (IPMU)

Supernova classifications

Spectral type	la	Ib	lc	II	
Spectrum	No Hydrogen		o Hydrogen		
	Silicon	No Silicon		Hydrogen	
		Helium	No Helium		
Mechanism	Nuclear (low-mass star)	Core-collapse (massive-star)			
Thermal Neutrinos	Insignificant	Copious			
Compact remnant	None	Neutron star (typically pulsar, sometimes magnetar) or black hole			
Light curve	~ reproducible	Large variations		IS	
		Gamma-ray	/ burst link		

Initiation of core-collapse

Core-collapse (2)

Simulation by Lawrence Livermore group

Delayed explosion by the LL group (1D, "neutron-finger" convection)

- > Thermal spectrum (few MeV) & energy hierarchy neutrinosphere
- > Long duration neutrino trapping and diffusion [Sato (1975)]
- Close to total energy equipartition

Shunsaku Horiuchi (IPMU)

SN 1987A

SN 1987A: successful detection of neutrinos

dawn of extrasolar neutrino astronomy!

- **Confirmation of basic theoretical predictions:**
 - Duration: ~10 sec
 - Neutrino energies: T_{eff} ~ 3-6 MeV
 - ➢ Energetics: E_{tot} ∼3-6 x 10⁵² ergs

[e.g., Sato&Suzuki (1987), many others]

But the shock stalls in robust simulations

 When detailed neutrino interactions, neutrino transport, and GR effects are included, simulations (1D) fail to explode...

 $\gamma + {}^{56}\text{Fe} \rightarrow 13\alpha + 4n$

[Arnett (1982), Rampp (2000), Mezzacappa (2001), Leibendorfer (2001,2004), Thompson (2003)]

Delayed explosion scenario

Only a small (a few %) increase in neutrino luminosity needed!

- Multi-D effects (jets, convections, instabilities, ...)
- Equation of state of dense matter, pasta structures, ...

[e.g., review by Kotake, Sato, Takahashi (2006)]

Neutrino Probes

Neutrinos are one of very few probes of the most inner processes during core-collapse

For example, the simulated supernova signal at Super-Kamiokande (for a supernova at 10kpc, based on LL group)

[from Totani et al. (1998)]

Non-thermal neutrinos

Core-collapse supernova have structures, e.g.

> JETS: Gamma-ray bursts, late time radio

[e.g., Stanek et al. (2003), Soderberg et al. (2004)]

> Asymmetric: SN 1987A, spectropolarimetry, pulsar kicks

[e.g., by HST, Maeda et al (2008)]

Given Structures can be studied by neutrinos?

Shunsaku Horiuchi (IPMU)

Some modern neutrino detectors

IceCube (Gton ice)

KamLAND (1kt liq.sci.)

Shunsaku Horiuchi (IPMU)

Super-Kamiokande $\overline{v}_e + p \rightarrow e^+ + n$ Shunsaku Horiuchi (IPMU)

Summary - why supernova neutrinos?

□ Basics of supernova are understood & confirmed.

□ But, simulations fail to explode

[Arnett (1982), Rampp (2000), Mezzacappa (2001), Leibendorfer (2001,2004), ...]

HOW can the shock be revived?

- Neutrino emission & interactions
- Multi-dimensional effects (e.g., rotation, instabilities, jets) [e.g., review by Kotake, Sato, Takahashi (2006)]

□ Supernovae are by observation not really symmetrical [e.g., SN1987A, Stanek et al. (2003), Soderberg et al. (2004), Maeda et al (2008)]

What hidden structures are there inside the supernovae?

→ We can study these effects by neutrinos from supernova interiors

□ Introduction

Thermal neutrinos from supernovae

Detecting the diffuse supernova neutrino background

Non-thermal neutrinos from supernovae

- Gamma-ray burst context
- > (Magnetic stars)

□ Summary

Neutrino Detection Methods

Milky Way Supernova

Excellent statistics (10⁴ events for 10kpc), high sensitivity to explosion scenarios [e.g. Totani et al. (1998)] and e.g. neutrino oscillation parameters [e.g. Takahashi et al. (2003)]. 1 supernova per ~40 years

2. Supernova in nearby galaxies Few to 10 neutrinos per supernova, but requires a ~1 Mton volume (SK x30) detector. [Ando et al. (2005), Kistler et al. (2008)] 1 supernova per ~vear

1 supernova per ~year

3. Diffuse Supernova Neutrino Background (DSNB)

Neutrinos from all past core-collapse; emission is averaged, no timing or direction. [e.g., Bisnovatyi-Kogan (1984), many others] (faint) signal is always there

Shunsaku Horiuchi (IPMU)

Diffuse SN Neutrino Background (DSNB)

\Box Inputs for the DSNB (positron flux from DSNB anti- v_e)

- > Neutrino emission per supernova
- Rate of Supernovae
- Detector capabilities

$$\psi(E_{e^+}) = c \sigma(E_v) N_t \int R_{CCSN}(z) \frac{dN(E_v')}{dE'} (1+z) \frac{dt}{dz} dz$$

want to study

1

$$\overline{v}_e + p \rightarrow e^+ + n$$

Information Flow

[Totani et al. (1998), Fukugita&Kawasaki (2003), Ando (2004), Hopkins&Beacom (2006)]

QUESTIONS:

1. When can we detect the DSNB?

2. Can the DSNB be used to study stellar/neutrino physics?

Shunsaku Horiuchi (IPMU)

Star Formation Rate

Determination

- 1. Observe luminosity
- 2. Calibration: stellar pop. code

Sources of uncertainty

- Dust correction
- Stellar pop. code inputs
 - Star formation duration, metallicity, ...

Initial mass function

 Different indicators are consistent to ~ 20% (at z < 1, which yields 90% of DSNB events)

[Hopkins (2004), Hopkins&Beacom (2006), Yuksel et al. (2008)]

Shunsaku Horiuchi (IPMU)

Extragalactic Background Light: Prediction

- Non-nucleosynthesis sources (e.g., AGNs) are negligible [Hopkins et al. (2006)], i.e., the background light acts as a calorimetric test of the star formation history.
- Predictions from the star formation rate:

$$I(\nu) = \frac{c}{4\pi} \int_0^{z_*} \epsilon(\nu', z) \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \mathrm{d}z$$

$$\epsilon(\nu, z) = \int_{t_*}^{t_z} \dot{\rho}_*(t) \mathrm{d}t \int_{0.1}^{M(t')} L(\nu, M, t') \psi(M) \mathrm{d}M,$$

Star formation rate Initial mass function

Numerical values:

- Salpeter IMF (-2.35, 1995)
 Kroupa IMF (-2.3, 2001)
 I_{tot} ~ 95 nW m⁻² sr⁻¹
 I_{tot} ~ 88 nW m⁻² sr⁻¹
- > Baldry-Glazebrook (-2.1, 2003) IMF : $I_{tot} \sim 78 \text{ nW m}^{-2} \text{ sr}^{-1}$

Extragalactic Background Light: Obs

Background light observations:

Upper: goes through data error bars

[Bernstein 2002, 2005, 2007, etc]

- Nominal: respects gamma-ray constraints [by HESS (2006), MAGIC (2008)]
- Lower: galaxy counts [Madau&Pozzetti (2000), etc]
- Total background light:

$$73_{-21}^{+26} \text{ nWm}^{-2} \text{sr}^{-1}$$

[Horiuchi et al. (2008)] Maximum (99 nW m⁻² sr Central (73 nW m^{-2} sr 100 Minimum (52 nW m⁻² sr vl_v [nW m⁻² sr⁻¹ 10 1001000 100.1 $\lambda [\mu m]$

Choice of IMF

□ Baldry-Glazebrook IMF (2003) is a modern IMF, suggested to be <u>the</u> <u>average IMF</u> by stellar mass density studies [e.g., Wilkins et al. (2008)]

Core-Collapse Supernova Rate

Prediction: follows from the star formation rate

$$\dot{\rho}_{\text{SNII}}(z) = \dot{\rho}_{*}(z) \frac{\int_{8}^{50} \psi(M) dM}{\int_{0.1}^{100} M\psi(M) dM}$$

- M_{min}: 8.5 M_{sun} for Type II-P [Smartt et al. (2008)]
- Almost independent of the initial mass function
- Observed: most likely low limits
 - Incompleteness
 - Host galaxy dust
 - Type Ia / CCSN ratio

Predictions in the Literature

Studies of neutrino emission at the core ("production"). Many works:

Author	time ^a	$T_{\nu_e}{}^{\mathrm{b}}$	$T_{\bar{v}_e}{}^{\mathrm{b}}$	$T_{\nu_x}^{b}$
Myra & Burrows (1990)	0.2	3.3	4.0	8.0
Totani et al. (1998)	0.5	3.9	4.9	6.3
	10	3.5	6.3	7.9
Rampp & Janka (2000)	0.5	2.3	3.4	
Liebendoerfer et al. (2001)	0.5	4.2	4.6	5.3
Mezzacappa et al. (2001)	0.5	3.6	4.2	5.2
Keil et al. (2003)		3.7	4.0	5.2
Thompson et al. (2003)	0.2	2.9	3.8	4.6
Liebendoerfer et al. (2004)	0.5	3.7	4.2	4.5
	0.5 ^c	4.5	4.8	7.5
Sumiyoshi et al. (2007)	1.4 ^c	6.6	7.0	10

□ Collective effects and neutrino oscillation → flavor mixing in stellar matter [MSW; Takahashi et al. (2001, 2003),DasguptaDighe (2008)]

→ the "effective" $\overline{V_e}$ temperature is a mix of $\overline{V_e}$ and $\overline{V_x}$ at production

SN 1987A Spectrum Reconstruction

Reconstruction of the neutrino spectrum from SN 1987A neutrino data [Fukugita&Kawasaki 2003, Lunadini 2006]

Model-independent reconstruction [Yuksel Beacom 2007] yields a slightly pinched spectrum.

DSNB event spectrum @SK

One last issue : background

Background limited search @19-30 MeV because of neutrino (reactor, atmospheric) and positron (spallation, invisible μ) backgrounds.

Addition of Gd in SK water enables *n* to be tagged: $\overline{U}_e + p \rightarrow e^+ + n$

 $Gd + n \rightarrow 8 MeV$ photon

 \overline{v}_e can be identified by delayed coincidence.

Test tank being built now in Kamioka mine.

0

5

Shunsaku Horiuchi, University of Tokyo

15

20

Positron energy

10

Beacom, Vagins PRL (2004)

25

30

40

35

Event Rates @SK

$\bar{\nu}_e$ spectrum	events $[(22.5 \text{ kton yr})^{-1}]$		
(effective $T_{\bar{\nu}_e}$)	$10 < E_e/{ m MeV} < 26$	$18 < E_e/{ m MeV} < 26$	
$8 { m MeV}$	4.2 ± 1.4	2.0 ± 0.7	
$6 { m MeV}$	3.5 ± 1.1	1.3 ± 0.4	
$4 { m MeV}$	1.8 ± 0.5	0.4 ± 0.1	
SN 1987A	1.7 ± 0.5	0.5 ± 0.1	

Compatible with literature

- Theoretical range (Ando&Sato)
- SN1987A analysis (Lunardini, FukugitaKawasaki)

Importantly, we are able to set the normalization to within +/- 40%

Addition of Gadolinium big boost!

Author	Event / yr
Ando, Sato (2005)	(0.25–2.3) <i>f</i>
Lunardini (2006)	0.1 - 0.7
Fukugita, Kawasaki (2003)	0.2–1.2

Summary of DSNB

 $\Box \text{ Star formation rate } \rightarrow DSNB \ detectability$

□ <u>The QUESTIONS</u>:

- Q1. When can we detect the DSNB?
- Q2. Can the DSNB be used to study stellar/neutrino physics?

□ <u>The ANSWERS</u>:

A1. There are many past core-collapse supernovae

DSNB event > 1 /yr @Gd-enhanced SK

A2. Uncertainty in R_{CCSN} is small

DSNB temperature can be probed eventually

□ In the future:

- > Uncertainty in R_{CCSN} will continue to decrease
- \succ Galactic CCSN \rightarrow generic properties, distances, BH population

□ Introduction

□ Thermal neutrinos from supernovae

Detecting the diffuse supernova neutrino background

Non-thermal neutrinos from supernovae

- Gamma-ray burst context
- > (Magnetic stars)

□ Summary

Production processes & sites

Gamma-ray bursts

How about gamma-dark jets?

Supernovae are typically not symmetric (late time radio, gammaray bursts, neutron star kicks, etc)

a JET can be "hidden" or "choked"

- Choked: stalls inside the star (depends on the progenitor, jet energetics, collimation, central engine activity, etc)
- Hidden: heavy baryon-load jets (also called failed-GRB jets)

Can Neutrinos Escape?

Neutrino Production (2)

Shunsaku Horiuchi, University of Tokyo

Shunsaku Horiuchi, University of Tokyo

Shunsaku Horiuchi, University of Tokyo

Conclusion

	Choked		Successful	
	$\Gamma_j = 10$	$\Gamma_j = 100$	$\Gamma_j = 10$	$\Gamma_j = 100$
γ rays	dark	dark	typically dark	bright
ν	our work	our work	our work	well studied

□ Investigated neutrino emission from gamma-dark jets

- Kaons important
- **Detectability** @IceCube:
 - > Choked jet: detectable up to 5 Mpc
 - "hidden" jet: detectable out to ~ 20 Mpc

(Rate of core-collapse ~ 0.5 per year within 5 Mpc; w/out beaming)

- □ Implications
 - Jet distribution can be studied

 \succ Information for jet production timing (\rightarrow mechanism)

Shunsaku Horiuchi, University of Tokyo

□ Introduction

□ Thermal neutrinos from supernovae

Detecting the diffuse supernova neutrino background

Non-thermal neutrinos from supernovae

- Gamma-ray burst context
- (Magnetic stars)

□ Summary

Where are we looking?

Non-thermal neutrinos from the supernovae of strongly magnetic stars. Emission is possible near the surface of the star.

Motivation: origin of magnetic field

Source	B-field /G	Radius /cm	B-flux /G cm ²
Ap, Bp stars	$100 - 10^4$	1011	< 10 ²⁷
White dwarfs	10 ⁶ -10 ⁹	5 10 ⁸	< 10 ²⁷

So we want to probe the magnetic field <u>inside</u> the star.

Shunsaku Horiuchi (IPMU)

Supernova of a Magnetic star

 R_{Fe}

Shunsaku Horiuchi (IPMU)

Fe

surface

Acceleration time scale

Shunsaku Horiuchi (IPMU)

Particle Acceleration

Acceleration vs. energy loss

Protons must be accelerated faster than the lose energy.

Energy-loss by collisions with heavy nuclei: "stopping power" is max ~ 300 MeV/(g cm⁻²)

 Energy loss by synchrotron, inverse-Compton (includeng feedback from electron synchrotron), pairproduction are all negligible small.

Energy-loss by collisions with target protons is fastest

Acceleration Limit

Horiuchi et al. MNRAS (2008)

Neutrino Detection

dn/dE

Neutrino spectrum shape:

Event number, for 10⁵¹ erg supernova at 10 kpc :

energy

Source	@ Super-K	@ IceCube	due to low
type ll	130	200	maximum energy
type lb	160	6000	
type lc	70	600	due to energy loss of pions
Backgro	und ~ 10 /day	Background	~ 100 /day

□ Introduction

□ Thermal neutrinos from supernovae

Detecting the diffuse supernova neutrino background

Non-thermal neutrinos from supernovae

- Gamma-ray burst context
- (Magnetic stars)

Summary

Summary of Neutrinos from Supernovae

Neutrinos provide unique information on supernova interiors.

On thermal neutrino detectability

Plenty of past supernovae:

- DSNB is not small
- → DSNB can probe neutrino emission models
- Implications for dark-collapses
- **On non-thermal neutrinos emission**
 - > Neutrinos reveal hidden jets, up to a few Mpc away

→ constraints on jets

> Strong stellar magnetic fields can produce neutrinos

➔ info for origin of B-field

Neutrino Emission Processes

Simulation details

1D simulations		Neutrino transport	Notes
Myra 1990	GR	MGFLD	
Totani 1998	GR	MGFLD	neutron finger convection
Rampp 2000	Newton	Accurate Boltzmann	15Msun
Lieben 2001	GR/New	Boltzmann	13 Msun
Mezzacappa 2001	Newton	Accurate Boltzmann	13 Msun
Keil 2003	(GR)	(MC)	solved on background
Thompson 2003	Newton	Boltzmann solver	11, 15, 20 Msun
Lieben 2004	GR	MGFLD / Boltzmann	13 <i>,</i> 40 Msun
Sumiyoshi 2007	GR	Boltzmann solver	BH formation

<u>Keil (2003) neutrino interactions:</u> scattering (elastic) on electrons and neutrinos scattering (elastic) on nucleons + recoil Nuclear bremsstrahlung Pair annihilation processes (e+e- & n n-bar)

One last issue : background

- Background neutrinos
 - > Solar
 - Reactor
 - > Atmospheric
- Background positrons
 - Spallation products
 - Invisible muons

- \rightarrow directional
- → problem E < 10 MeV
- \rightarrow problem E > 40 MeV
- → problem E < 19 MeV
- → problem 19-60 MeV
- → window is 19-40 MeV, but background limited!
- □ Addition of Gd in SK water enables *n* to be tagged:

 $\overline{v}_e + p \rightarrow e^+ + n$

Gd + *n* \rightarrow 8 MeV photon ; $\overline{\nu}_e$ can be identified by delayed coincidence.

Test tank being built now in Kamioka mine.

Shunsaku Horiuchi, University of Tokyo