# Molecular Gas and Star Formation in Early-Type Galaxies

### Martin Bureau, Oxford University

CO

(Katey Alatalo, Estelle Bayet, Leo Blitz, Francoise Combes, Alison Crocker, Timothy Davis, Melanie Krips, Lisa Young)

> Optical (SAURON + Atlas<sup>3D</sup> teams)

Plans: SAURON+Atlas<sup>3D</sup>: E/S0 formation, residual SF, surveys CO: E/S0 H<sub>2</sub> incidence, distribution, kinematics, origin, BHs CO: E/S0 SF tracers, sequence, laws, ISM Summary and future

# Molecular Gas and Star Formation in Early-Type Galaxies

### Martin Bureau, Oxford University

CO

(Katey Alatalo, Estelle Bayet, Leo Blitz, Francoise Combes, Alison Crocker, Timothy Davis, Melanie Krips, Lisa Young)

> Optical (SAURON + Atlas<sup>3D</sup> teams)

Plans: SAURON+Atlas<sup>3D</sup>: E/S0 formation, residual SF, surveys CO: E/S0 H<sub>2</sub> incidence, distribution, kinematics, origin, BHs CO: E/S0 SF tracers, sequence, laws, ISM Summary and future

# Hubble Sequence



### Sauron + Atlas<sup>3D</sup>

# (SAURON+Atlas<sup>3D</sup>): Broad Aims





### <u>Goals:</u>

- Mass assembly history (stars, gas, dark matter)
- Chemical enrichment history (age, metallicity, SFH)

### Context:

- Hierarchical structure formation (merging, harassment, ...)
- Internal dynamical evolution (BH/triaxiality-driven, ...)
- ⇒ Exploit "fossil record" (near-field cosmology)

# **Hierarchical Context**



### Downsizing:

- Star formation history anti-hierarchical ...
- More massive galaxies form their stars earlier and faster (age, metallicity, @-elements)
- Star formation earlier overall in denser environments

⇒ Are the star formation and mass assembly histories of early-type galaxies truly over at z = 0 ?

# UV C-M Relations: Residual SF

(Yi et al. 05; Schawinski et al. 06; Kaviraj et al. 07)

### **GALEX-SDSS Data:**



## <u>UV CMDs:</u>

- Correlations nearly absent
- Red sequence indistinct, blue cloud significant even for E/S0s
- ⇒ Low-level (residual) SF pervasive
  - $(\geq 30\% \text{ of objects};$

few % by mass)

⇒ Significant support for hierarchical formation

# **SAURON:** Stellar Linestrengths

(Kuntschner et al. 06, 10; McDermid et al. 06)

### Main results:

• Standard:

Homogeneously old, decreasing metallicity

Occasional:

Young core/body, varied metallicity

# KDC Dichotomy:

- Small, young, distinct (in fast rotators; dissipation?)
- Large, homogeneously old (in slow rotators)

# 0 0 0 0 -10 0 10 -10 0 10 -10 0 10 -10 0 10

Mgb

Fe5015

Fe5270.

# **SAURON:** Stellar Linestrengths

(Kuntschner et al. 06, 10; McDermid et al. 06)

### Main results:

- Standard: Homogeneously old, decreasing metallicity
- Occasional: Young core/body, varied metallicity

# KDC Dichotomy:

- Small, young, distinct (in fast rotators; dissipation?)
- Large, homogeneously old (in slow rotators)



Molecular Gas and Star Formation in Early-Type Galaxies

# red and dead dynamically simple...boring

<u>Where When How Why</u> does star formation take place in ETGs ???? (What are the origin, dynamics, physical conditions, chemistry, ... of the molecular gas ? )



## Complete Survey of ETGs (Cappellari et al. 2011)

### Science goals:

- Distribution of fast + slow rotators
- Fraction of wet + dry mergers
- Role of SF + AGN feedback
- Strong low-z constraints for simulations

### Sample selection:

- M<sub>K</sub> < -21.5
- D < 41 Mpc
- |δ-29° | < 35° , |b| > 15°
- All E/S0s, no spiral structure

# Atlas<sup>3D</sup>



 $\Rightarrow$  260 galaxies



## Complete Survey of ETGs (Cappellari et al. 2011)

### Datasets:

- Optical integral-field spectroscopy: WHT/SAURON
- Optical photometry: Multi-bands (SDSS, INT), deep (CFHT)
- Single-dish CO: IRAM 30m (<sup>12</sup>CO(1-0, 2-1))
- CO interferometry: CARMA (<sup>12</sup>CO detections only; 40+ galaxies)
- HI interferometry: WSRI (~150 galaxies excl. Virgo), ALFALFA
- Archival data: Chandra, XMM, GALEX, HST, Spitzer, 2MASS, ...

## **Simulations:**

• Cosmological, binary mergers, individual galaxies, SAMs, ...



# Molecular Gas and Star Formation in Early-Type Galaxies

### Martin Bureau, Oxford University

CO

(Katey Alatalo, Estelle Bayet, Leo Blitz, Francoise Combes, Alison Crocker, Timothy Davis, Melanie Krips, Lisa Young)

> Optical (SAURON + Atlas<sup>3D</sup> teams)

Plans: SAURON+Atlas<sup>3D</sup>: E/S0 formation, residual SF, surveys CO: E/S0 H<sub>2</sub> incidence, distribution, kinematics, origin, BHs CO: E/S0 SF tracers, sequence, laws, ISM Summary and future

# CO: Single-Dish Survey (Combes, Young & Bureau 07; Young et al. 11,13)

#### High S/N:



#### Low S/N:



## IRAM 30m Survey:

- CO(1-0,2-1), 23/12" FWHM
- 260 Atlas<sup>3D</sup> E/SOs
- Sensitivity: 3 mK (30 km s<sup>-1</sup>) 3 x 10<sup>7</sup> M $_{\odot}$

### Results:

- 22% detection rate
- $M_{H2} = 10^{7.1-9.3} M_{\odot}$
- CO(2-1)/CO(1-0) ≈ 1 2
- ⇒ Independent of most structural, dynamical, environmental parameters...

## CO: Single-Dish Survey (Combes, Young & Bureau 07; Young et al. 11,13)

#### Optical CMD + CO



### IRAM 30m Survey:

- CO(1-0,2-1), 23/12" FWHM
- 260 Atlas<sup>3D</sup> E/SOs
- Sensitivity: 3 mK (30 km s<sup>-1</sup>) 3 x 10<sup>7</sup> M $_{\odot}$

### Results:

22% detection rate

• 
$$M_{H2} = 10^{7.1-9.3} M_{\odot}$$

- CO(2-1)/CO(1-0) ≈ 1 2
- ⇒ Independent of most structural, dynamical, environmental parameters...

# CO: Single-Dish Main Results (Young et al. 11)



### IRAM 30m Results:

 Detection rate largely independent of: Luminosity Dynamics (●<sub>R</sub>) Environment (Virgo)

♦ Slow-rotator H<sub>2</sub> poor

Expected correlations with linestrengths (but no simple CO-SF relation; SF sequence?)

# CO: Single-Dish Main Results (Young et al. 11)



### IRAM 30m Results:

Detection rate largely independent of:
 Luminosity
 Dynamics (●<sub>R</sub>)
 Environment (Virgo)

Expected correlations with linestrengths (but no simple CO-SF relation; SF sequence?)

# CO: Morphology (Alatalo et al. 2012; Davis et al. 2012)



### Atlas<sup>3D</sup> (CARMA):

> 40 objects so far(CARMA, PdBI, BIMA)

- Centrally-concentrated H<sub>2</sub> (physical size)
- Diverse morphologies (disks, rings, bars, ...)
- Regular kinematics
   (CO best circular velocity and thus mass tracer)

## CO: Extent (Davis et al. 2012)



### Atlas<sup>3D</sup> (CARMA):

 BIMA-SONG spiral galaxy comparison sample (properly redshifted)

- H<sub>2</sub> extent smaller in E/S0s in absolute term
- H<sub>2</sub> extent similar in relative terms (R<sub>e</sub>, R<sub>25</sub>, M<sub>K</sub>, ...)

# CO: Morphology (Alatalo et al. 2012; Davis et al. 2012)



### <u>Atlas<sup>3D</sup> (CARMA):</u>

> 40 objects so far(CARMA, PdBI, BIMA)

- Centrally-concentrated H<sub>2</sub> (physical size)
- Diverse morphologies (disks, rings, bars, ...)
- Regular kinematics (CO best circular velocity and thus mass tracer)

# **CO: Central Disks**

(Young, Bureau & Cappellari 08; Crocker et al. 08, 09, 11)



## Central Disks:

- CO cospatial with young stars and central stellar/gas disk
- CO and stars/gas co-rotating

### <u>CRs:</u>

CO roughly cospatial with young stars and CR/gas (generally less extended)
CO and stars/gas kinematics not always related ? (triggered SF?)

#### Martin Bureau, Oxford University

 $01^{s}$ 

12<sup>h</sup>34<sup>m</sup>05<sup>s</sup> 04<sup>s</sup>

 $03^{s}$ 

Right Ascension (J2000)

02<sup>s</sup>

12h34m05s

04<sup>s</sup>

03<sup>s</sup>

Right Ascension (J2000)

025

015

# **CO: Central Disks**

(Young, Bureau & Cappellari 08; Crocker et al. 08, 09, 11)



### Central Disks:

- CO cospatial with young stars and central stellar/gas disk
- CO and stars/gas co-rotating

## <u>CRs:</u>

CO roughly cospatial with young stars and CR/gas (generally less extended)
CO and stars/gas kinematics not always related ? (triggered SF?)

## CO: Kinematic Misalignment (Davis et al. 11)



# Atlas<sup>3D</sup> (CARMA):

- H<sub>2</sub> and stars often misaligned:
   > 35% external
   < 65% internal gas origin</li>
- H<sub>2</sub> and ionised gas always aligned: common origin
- H<sub>2</sub> and stars always aligned in clusters/Virgo: internal gas origin (stellar mass loss, leftover)
- H<sub>2</sub> and stars very often misaligned in field: significant external gas accretion

## CO: Kinematic Misalignment (Davis et al. 11)



# Atlas<sup>3D</sup> (CARMA):

- $H_2$  and stars often misaligned:
  - > 35% external< 65% internal gas origin</li>
- H<sub>2</sub> and ionised gas always aligned: common origin
- H<sub>2</sub> and stars always aligned in clusters/Virgo: internal gas origin (stellar mass loss, leftover)
- H<sub>2</sub> and stars very often misaligned in field: significant external gas accretion

## CO: Kinematic Misalignment (Davis et al. 11)



# <u>Atlas<sup>3D</sup> (CARMA):</u>

- H<sub>2</sub> and stars often misaligned:
   > 35% external
   < 65% internal gas origin</li>
- H<sub>2</sub> and ionised gas always aligned: common origin
- H<sub>2</sub> and stars always aligned in clusters/Virgo: internal gas origin (stellar mass loss, leftover)
- H<sub>2</sub> and stars very often misaligned in field: significant external gas accretion

# CO: HI imaging

(Morganti et al. 06; Oosterloo et al. 10; Serra et al. 12)

### WSRT: Undisturbed HI



### HI facts:

- CO detections: ≈50% undisturbed, moslty isolated ≈50% disturbed, clear companions
- ⇒ HI (and CO) of external origin in at least half of CO-rich ETGs
- ⇒ Circumstantial evidence for cold accretion and/or minor mergers (gas-rich dwarfs ?)

# CO: HI imaging

(Morganti et al. 06; Oosterloo et al. 10; Serra et al. 12)

### WSRT: Disturbed HI



### HI facts:

- CO detections: ≈50% undisturbed, moslty isolated ≈50% disturbed, clear companions
- ⇒ HI (and CO) of external origin in at least half of CO-rich ETGs
- ⇒ Circumstantial evidence for cold accretion and/or minor mergers (gas-rich dwarfs ?)

# Gas Counter-Rotation: S0s

(Bureau & Chung 06; Chung et al. 06, 12)

### VLA + ATCA:



### lonised Gas:

- Literature compilation: 15±4% total 23±5% with gas
- ⇒ Accretion of external gas non-negligible in at least half of S0s

### <u>HI:</u>

⇒ Circumstantial evidence for cold accretion and/or minor mergers (gas-rich dwarfs ?)

# **Gas Accretion:** Timescales

### Hand-waving argument:

| tgas_depletion                                                 | < t <sub>torque</sub><br>< few t <sub>dynamical</sub><br>< few 3x10 <sup>7</sup> yr<br>< 100 Myr                                      |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| tgas_replenishment                                             | <ul> <li>≈ t<sub>gas_depletion</sub> / detection_rate</li> <li>&lt; few t<sub>dynamical</sub> / 0.22</li> <li>&lt; 0.5 Gyr</li> </ul> |
| $\Rightarrow$ Rapid das replenishment (das accretion, mergers) |                                                                                                                                       |

✗ Problem: t<sub>gas\_depletion</sub> expected to be 1-2 Gyr ...

# CO: Morphology (Alatalo et al. 2012; Davis et al. 2012)



### Atlas<sup>3D</sup> (CARMA):

> 40 objects so far(CARMA, PdBI, BIMA)

- Centrally-concentrated H<sub>2</sub> (physical size)
- Diverse morphologies (disks, rings, bars, ...)
- Regular kinematics (CO best circular velocity and thus mass tracer)

# **CO:** Kinematics tracer

(Davis et al. 2012a)



# <u>CO vs. V<sub>c</sub>:</u>

- CO rotating faster (colder) then ionised gas (and stars)
- Nearly perfect tracer of the circular velocity
- ⇒ Best (and excellent) tracer of dynamical mass
- x 📕 : CARMA CO (1-0)
  - Modeled CO (1-0) from JAM model
  - --- : SAURON JAM model
  - + : SAURON stars
  - + : SAURON ionised gas

# CO: Tully-Fisher Relation (Davis et al. 2011)

### **CO Tully-Fisher relations:**



### <u>Tully-Fisher:</u>

- High-mass end traditionally available only through stellar dynamical modelling: hard, time-consuming
- Many (potential) pitfalls to CO-derived velocities: simple workarounds, easy to improve
- ⇒ Stellar / Jeans T-F recovered
- ⇒ CO appears to work with no or minimum efforts !
- ⇒ Great prospect to probe M/L (z) with ALMA...

(Davis et al. 2013)

### HST WFC3 NUV-optical data:



### BIMA low-res (4.5") data:



### <u>NGC4526:</u>

- High resolution (0.25") CARMA CO(2-1) data
- Regular (central) disk
   kinematics
- Free M/L<sub>\*</sub> and M.
- ⇒ Strong constraints on M.  $(M_{\bullet} = 4.1 \times 10^8 M_{\odot})$ (consistent with M. -  $\sigma$ )
- ⇒ Great prospects across Hubble sequence with ALMA...

(Davis et al. 2013)

### <u>CARMA high-res (0.25" = 20 pc) data:</u>



### BIMA low-res (4.5") data:



## <u>NGC4526:</u>

- High resolution (0.25")
   CARMA CO(2-1) data
- Regular (central) disk
   kinematics
- Free M/L<sub>\*</sub> and M.
- ⇒ Strong constraints on M.  $(M_{\bullet} = 4.1 \times 10^8 M_{\odot})$ (consistent with M<sub>•</sub> -  $\sigma$ )
- ⇒ Great prospects across Hubble sequence with ALMA...

(Davis et al. 2013)

### CARMA high-res (0.25" = 20 pc) data:



### Model PVD and major-axis trace:



### <u>NGC4526:</u>

- High resolution (0.25") CARMA CO(2-1) data
- Regular (central) disk
   kinematics
- Free M/L<sub>\*</sub> and M.
- ⇒ Strong constraints on M.  $(M_{\bullet} = 4.1 \times 10^8 M_{\odot})$ (consistent with M<sub>•</sub> -  $\sigma$ )
- ⇒ Great prospects across Hubble sequence with ALMA...

(Davis et al. 2013)

### CARMA high-res (0.25" = 20 pc) data:



### BH mass $\chi^2$ and likelihood:



## <u>NGC4526:</u>

- High resolution (0.25") CARMA CO(2-1) data
- Regular (central) disk
   kinematics
- Free M/L<sub>\*</sub> and M.
- ⇒ Strong constraints on M.  $(M_{\bullet} = 4.1 \times 10^8 M_{\odot})$ (consistent with M<sub>•</sub> -  $\sigma$ )
- ⇒ Great prospects across Hubble sequence with ALMA...

(Davis et al. 2013)

#### CARMA high-res (0.25" = 20 pc) data:



#### ALMA BH mass measurement prospects:



## <u>NGC4526:</u>

- High resolution (0.25") CARMA CO(2-1) data
- Regular (central) disk
   kinematics
- Free M/L<sub>\*</sub> and M.
- ⇒ Strong constraints on M.  $(M_{\bullet} = 4.1 \times 10^8 M_{\odot})$ (consistent with M<sub>•</sub> -  $\sigma$ )
- ⇒ Great prospects across Hubble sequence with ALMA...

# Molecular Gas and Star Formation in Early-Type Galaxies

### Martin Bureau, Oxford University

CO

(Katey Alatalo, Estelle Bayet, Leo Blitz, Francoise Combes, Alison Crocker, Timothy Davis, Melanie Krips, Lisa Young)

> Optical (SAURON + Atlas<sup>3D</sup> teams)

Plans: SAURON+Atlas<sup>3D</sup>: E/S0 formation, residual SF, surveys CO: E/S0 H<sub>2</sub> incidence, distribution, kinematics, origin, BHs CO: E/S0 SF tracers, sequence, laws, ISM Summary and future

### Type 1: Currently Star-Forming (Crocker et al. 11)

#### NGC3032







NGC4526













### Ionization dominated by young stars, and young stars are present

### Type 2: Recently Star-Forming ? (Crocker et al. 11)

#### NGC3489





#### NGC4150



#### NGC4550











 Ionization not dominated by young stars, but young stars are present (pervasive)

### Type 3: Not Star-Forming ? (Crocker et al. 11)



 Ionization not dominated by young stars, and young stars are not present

# CO: Star Formation Laws (Crocker et al. 11)



### **SAURON:**

- Star formation sequence ?
- Possible offset from Schmidt-Kennicutt law (≈ 1σ ; lower SFE)
- TIR enhanced over 8 and 24 Om
- FIR radio correlation not respected: too many FIR-excess
- ⇒ SF possibly slightly different from that in disk/starburst galaxies
- ⇒ Need to probe gas dynamics and physical conditions...

# SF Physics: Differences

### **Dynamics:**

• Toomre's Q :

#### Q α σκ/Σ

- σ velocity dispersion(effective sound speed)
- κ epicyclic frequency (function of  $V_c$  or Φ)
- $\Sigma$  surface density

### ⇒ Much more freedom in ETGs than in disk galaxies (esp. central vs. outer parts) (high κ, decreased disk self-gravity) ⇒ Morphological quenching ? (Kawata et al. 07; Martig et al. 09,...)

### Physical Conditions:

- Stellar populations: Old (> 8 - 10 Gyr) High metallicities (>  $Z_{\odot}$ ) Non-Solar abundances ([ $\alpha$ /Fe])
- Radiation Field: Frequent hot gas (10<sup>6</sup> K) Frequent AGN UV-upturn (dep. on Z, age)
- ⇒ Different abundances, excitation
  ⇒ SFR indicators contaminated...

## CO: Star Formation Laws (Crocker et al. 11; Martig et al. 2012)



### SAURON:

- Star formation sequence ?
- Possible offset from Schmidt-Kennicutt law (≈ 1σ ; lower SFE)
- TIR enhanced over 8 and 24 Om
- FIR radio correlation not respected: too many FIR-excess
- ⇒ SF possibly slightly different from that in disk/starburst galaxies
- ⇒ Need to probe gas dynamics and physical conditions...

## CO: Star Formation Laws (Crocker et al. 11)

#### E/S0s vs SINGS spirals:



### SAURON:

- Star formation sequence ?
- Possible offset from Schmidt-Kennicutt law (≈ 1σ ; lower SFE)
- TIR enhanced over 8 and 24 Om
- FIR radio correlation not respected: too many FIR-excess
- ⇒ SF possibly slightly different from that in disk/starburst galaxies
- ⇒ Need to probe gas dynamics and physical conditions...

## CO: Star Formation Laws (Crocker et al. 11)

### E/S0s vs Condon et al. (2002):





### **SAURON:**

- Star formation sequence ?
- Possible offset from Schmidt-Kennicutt law (≈ 1σ ; lower SFE)
- TIR enhanced over 8 and 24 Om
- FIR radio correlation not respected: too many FIR-excess
- ⇒ SF possibly slightly different from that in disk/starburst galaxies
- ⇒ Need to probe gas dynamics and physical conditions...

# CO: Line Diagnostics (Krips et al. 10; Crocker et al. 12)



### **CO-Brightest Galaxies:**

- Ratios: <sup>12</sup>CO/<sup>13</sup>CO occ. low HCN/<sup>13</sup>CO low HCN/HCO<sup>+</sup> often high
- ⇒ <sup>13</sup>CO occasionally enhanced, HCO<sup>+</sup> often suppressed
   \* Usual IR-CO and IR-HCN trends

- Corr.:  $M_{H2}/M_{HI}$ ,  $f_{60}/f_{100}$ , dust morph. Star L<sub>K</sub>, age, metallicity, ...
- ⇒ Consistent with downsizing?

# CO: Line Diagnostics (Krips et al. 10; Crocker et al. 12)

### **CO-Brightest Galaxies:**

- Ratios: <sup>12</sup>CO/<sup>13</sup>CO occ. low HCN/<sup>13</sup>CO low HCN/HCO<sup>+</sup> often high
- ⇒ <sup>13</sup>CO occasionally enhanced, HCO<sup>+</sup> often suppressed
  - Usual IR-CO and IR-HCN trends

- Corr.:  $M_{H2}/M_{HI}$ ,  $f_{60}/f_{100}$ , dust morph. Star L<sub>K</sub>, age, metallicity, ...

⇒ Consistent with downsizing?



# CO: Line Diagnostics (Krips et al. 10; Crocker et al. 12)

### **CO-Brightest Galaxies:**

- Ratios: <sup>12</sup>CO/<sup>13</sup>CO occ. low HCN/<sup>13</sup>CO low HCN/HCO<sup>+</sup> often high
- ⇒ <sup>13</sup>CO occasionally enhanced, HCO<sup>+</sup> often suppressed
   \* Usual IR-CO and IR-HCN trends

• Corr.:  $M_{H2}/M_{HI}$ ,  $f_{60}/f_{100}$ , dust morph. Star L<sub>K</sub>, age, metallicity, ...

⇒ Consistent with downsizing?

#### Martin Bureau, Oxford University



 $P_0 = 0.002$ 

r = -0.84,  $P_{o} = 0.002$ 

 $r = 0.68, P_0 = 0.002$ 

 $r = 0.41, P_0 = 0.10$ 

 $r = -0.38, P_0 = 0.12$ 

## CO: Line Modeling (Bayet et al. 12)





# LVG Modeling:

. . .

. . .

 Usual models but: High metallicities (> Z<sub>☉</sub>) Non-Solar abundances ([α/Fe])

### Likelihood:



Frequent hot gas (10<sup>6</sup> K) Frequent AGN UV-upturn (dep. on Z, age)

## CO: Line Modeling (Bayet et al. 12)

### **Physical Conditions:**

- "CO" gas:  $T_K = 10 110 \text{ K}$   $n(H_2) = 10^{3-4} \text{ cm}^{-3}$  $N(CO) = 10^{11-19} \text{ cm}^{-2}$
- ⇒ Similar to Milky Way SF?
- "HCN" gas: Unconstrained

## LVG Modeling:

. . .

. . .

 Usual models but: High metallicities (> Z<sub>☉</sub>) Non-Solar abundances ([α/Fe])

> Frequent hot gas (10<sup>6</sup> K) Frequent AGN UV-upturn (dep. on Z, age)

## NGC4710: Line Diagnostics (Topal et al., in prep)



## NGC4710: MW similarities (Topal et al., in prep; Torii et al., in prep)





### <u>CO P/VD:</u>



### <u>CO PVD:</u> Temperature: <sup>12</sup>CO(2-1) / <sup>12</sup>CO(1-0)



# Molecular Gas and Star Formation in Early-Type Galaxies

### Martin Bureau, Oxford University

CO

(Katey Alatalo, Estelle Bayet, Leo Blitz, Francoise Combes, Alison Crocker, Timothy Davis, Melanie Krips, Lisa Young)

> Optical (SAURON + Atlas<sup>3D</sup> teams)

Plans: SAURON+Atlas<sup>3D</sup>: E/S0 formation, residual SF, surveys CO: E/S0 H<sub>2</sub> incidence, distribution, kinematics, origin, BHs CO: E/S0 SF tracers, sequence, laws, ISM Summary and future

# Conclusions

- CO: Atlas<sup>3D</sup>: Unprecedented 3D survey/database (optical, CO, HI, ...)
  - Common in local E/S0s: ≅22%; independent of most properties
  - Distribution: Centrally-concentrated; "self-similar" to spirals
  - Decoupled structures: Co-spatial/co-rotating with gas/young stars
  - Origin: Internal in clusters, 50% external in field Probable minor mergers/cold accretion
  - SF: Sequence (current, recent, no/weak SF) ?, E/S0s FIR-bright
     E/S0s great laboratory to study SF laws, possible offset from K-S law
  - ISM: <sup>13</sup>CO enhanced, HCO<sup>+</sup> suppressed; correlated with galaxy properties First determination of physical properties, great future
  - X Ending exploratory phase; starting spatially-resolved multiple line studies



CO: - Atlas<sup>3D</sup>: Unprecedented 3D survey/database (optical, CO, HI, ...)

- Common in local E/S0s: ≅22%; independent of most properties
- Distribution: Centrally-concentrated; "self-similar" to spirals - Decoupled str Great Syntergy ating with gas/young stars optical of Use minor mergers/cold accretion
- SF: Sequence (current, recent, no/weak SF) ?, E/S0s FIR-bright E/S0s great laboratory to study SF laws, possible offset from K-S law
- ISM: <sup>13</sup>CO enhanced, HCO<sup>+</sup> suppressed; correlated with galaxy properties First determination of physical properties, great future
- **X** Ending exploratory phase; starting spatially-resolved multiple line studies