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The Cosmological Constant Problem



In GR, the vacuum energy gravitates

L =
√
−g

(
R

16πG
− ρvac

)

Gµν = −8πGρvacgµν



ρobs
vac ! ρtheory

vac

Universe would not even extend to the moon!



ρtheory
vac ∼ ρbare

Λ

+
zero point energies of each particle

+ 
contributions from phase transitions in 

early universe



zero point energies of each particle

ρvac ⊃
∑

m

∫
d3k

1
2

!
√

k2 + m2

∼ cνm4
ν + cem

4
e + cµm4

µ + . . . + M4
cut−off



contributions from phase transitions in 
early universe

∆VEW ∼ (200 GeV )4

∆VQCD ∼ (0.3 GeV )4
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Ask not why 
the vacuum 
energy is so 

small...



..but why it 
hardly 

gravitates. 



Self tuning: 
vacuum energy does not gravitate at all!





Weinberg’s no go theorem



Self tuning = Poincare invariant solution for any 
vacuum energy.
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Self tuning = Poincare invariant solution for any 
vacuum energy.

S[π, gµν ] =
∫

d4x
√
−gR + ∆L(π, gµν ,derivatives)

∆L|g,π=const = −V0
√
−g

On shell field eqns:
∂∆L

∂gµν

∣∣∣
g,π=const

= 0,
∂∆L

∂π

∣∣∣
g,π=const

= 0
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Scalar eqn =⇒ trace of gravity eqn

gµν
∂∆L

∂gµν
− f(π)

∂∆L

∂π
= ∂µJµ

If gµν and π are constant then ∆L is invariant under

δgµν = εgµν , δφ = −ε

where we define φ = π/f

Then ∆L =
√
−ĝL(ĝµν ,derivatives) where ĝµν = eφgµν .

φ =
∫

dπ

f(π)



=⇒ ∂∆L

∂gµν

∣∣∣
g,π=const

=
1
2
gµν∆L

∣∣∣
g,π=const

recall ∆Lg,π=const = −V0
√
−g



=⇒ ∂∆L

∂gµν

∣∣∣
g,π=const

=
1
2
gµν∆L

∣∣∣
g,π=const

EOMs imply LHS = 0, so RHS = 0 =⇒ V0 = 0

recall ∆Lg,π=const = −V0
√
−g



Scalar eqn =⇒ trace of gravity eqn

gµν
∂∆L

∂gµν
− f(π)

∂∆L

∂π
= ∂µJµ

If gµν and π are constant then ∆L is invariant under

δgµν = gµν , δφ = −ε

where we define φ = π/2f

Then ∆L =
√
−ĝL(ĝµν ,derivatives)

Sufficient but
 not necessary

φ =
∫

dπ

f(π)



Self tuning = Poincare invariant solution for any 
vacuum energy.

S[π, gµν ] =
∫

d4x
√
−gR + ∆L(π, gµν ,derivatives)

∆L|g,π=const = −V0
√
−g

On shell field eqns:
∂∆L

∂gµν

∣∣∣
g,π=const

= 0,
∂∆L

∂π

∣∣∣
g,π=const

= 0
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“The Beatles [have made] negligible 
contributions to cosmological theory”  

PRL, June 2011





Horndeski in

Fab Four outSelf tuning filter



Horndeski in



G. W. Horndeski, Int. J. Theor. Phys. 10 (1974) 363-384.

Deffayet et al Phys.Rev. D80 (2009) 064015 

Kobayashi et al 1105.5723 [hep-th])

a panoptic scalar tensor theory

L = K(φ, X)−G3(φ, X)!φ + G4(φ, X)R + G4,X

[
(!φ)2 − (∇µ∇νφ)2

]

+ G5(φ, X)Gµν∇µ∇νφ− G5,X

6
[
(!φ)3 − 3!φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3

]
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Kobayashi et al 1105.5723 [hep-th])

a panoptic scalar tensor theory

L = K(φ, X)−G3(φ, X)!φ + G4(φ, X)R + G4,X

[
(!φ)2 − (∇µ∇νφ)2

]

+ G5(φ, X)Gµν∇µ∇νφ− G5,X

6
[
(!φ)3 − 3!φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3

]

Aside: for multi-scalar generalisation see AP & V. Sivanesan arXiv 1210.4206

+ matter minimally coupled to metric only





The self tuning filter
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this should remain true before and after any 
phase transition where the cosmological constant 

jumps instantaneously by a finite amount.



 the theory should admit a Minkowski vacuum

this should remain true before and after any 
phase transition where the cosmological constant 

jumps instantaneously by a finite amount.

the theory should permit a non-trivial cosmology



Scalar EOM should be trivial on 
Minkowski for any scalar

Scalar is completely determined by 
vacuum Friedmann eqn



Scalar EOM should be trivial on 
Minkowski for any scalar

Scalar is completely determined by 
vacuum Friedmann eqn

“matter tells scalar how to move, 
scalar tells spacetime not to curve”



Other constraints

 gravity equation should NOT be trivial on 
Minkowski

“matter tells scalar how to move”

Scalar equation should be a dynamical equation 
with a Minkowski fixed point 

“scalar tells spacetime not to curve, BUT ONLY 
IN VACUUM”



The Fab Four



Ljohn =
√
−gVjohn(φ)Gµν∇µφ∇νφ

Lpaul =
√
−gVpaul(φ)Pµναβ∇µφ∇αφ∇ν∇βφ

Lgeorge =
√
−gVgeorge(φ)R

Lringo =
√
−gVringo(φ)Ĝ

where Ĝ = RµναβRµναβ − 4RµνRµν + R2 and Pµναβ = − 1
4εµνλσ Rλσγδ εαβγδ



Something deeper?

George and Ringo both take the form

V (φ)(Euler density)

John and Paul both take the form

V (φ)∇µφ∇νφ
δW

δgµν

with

Wjohn =
∫

d4x
√
−gR

Wpaul = −1
4

∫
d4x
√
−gφĜ



Fab Four cosmology

Ejohn = 6
d

dt

[
a3Vjohn(φ)φ̇∆2

]
− 3a3V ′

john(φ)φ̇2∆2

Epaul = −9
d

dt

[
a3Vpaul(φ)φ̇2H∆2

]
+ 3a3V ′

paul(φ)φ̇3H∆2

Egeorge = −6
d

dt

[
a3V ′

george(φ)∆1

]
+ 6a3V ′′

george(φ)φ̇∆1

+6a3V ′
george(φ)∆2

1

Eringo = −24V ′
ringo(φ)

d

dt

[
a3

(
κ

a2
∆1 +

1
3
∆3

)]

Hjohn = 3Vjohn(φ)φ̇2
(
3H2 +

κ

a2

)
)

Hpaul = −3Vpaul(φ)φ̇3H
(
5H2 + 3

κ

a2

)

Hgeorge = −6Vgeorge(φ)
[(

H2 +
κ

a2

)
+ Hφ̇

V ′
george

Vgeorge

]

Hringo = −24V ′
ringo(φ)φ̇H

(
H2 +

κ

a2

)

Hjohn +Hpaul +Hgeorge +Hringo = − [ρΛ + ρmatter]

Ejohn + Epaul + Egeorge + Eringo = 0

where ∆n = Hn −
(√

−κ
a

)n



Matter without Matter

 

Vjohn(φ) = c1φ
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c1φ
n̂+6.
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Matter without Matter

 

Vjohn(φ) = c1φ
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Also radiation, inflation, ....



Plenty to think about...

Solar system tests and good cosmology?

Radiative stability?

Stability stability?

Vainshtein effects from John & Paul?

Significance of geometrical structure?

ghosts etc?
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MISSION STATEMENT

“To prevent the vacuum energy from gravitating, 
allowing us to set the vacuum curvature as a 

boundary condition”



MISSION STATEMENT

“To prevent the vacuum energy from gravitating, 
allowing us to set the vacuum curvature as a 

boundary condition”

Reminiscent of unimodular gravity



• Matter is minimally coupled to a physical metric g̃ab = g̃ab(φi, ∂φi, . . .).

• It is a composite of the fundamental fields φi, with the property that

δ

δφi

∫
d4x

√
−g̃ = 0

• As the vacuum energy contributes a term of the form (constant)
∫

d4x
√
−g̃

it cannot enter the dynamics!

The plan



zero point energies of each particle

ρvac ⊃
∑

m

∫
d3k

1
2

!
√

k2 + m2

∼ cνm4
ν + cem

4
e + cµm4

µ + . . . + M4
cut−off



contributions from phase transitions in 
early universe

∆VEW ∼ (200 GeV )4

∆VQCD ∼ (0.3 GeV )4



Do NOT explain why Λobs goes like H02



Example: conformally related metrics

Physical metric is conformally related to fundamental metric

g̃ab = Ω(φi, ∂φi, . . .)gab

with
δ

δφi

∫
d4x Ω2√−g = 0

Possible examples: Ω2 = !Φ or Ω2 = Gauss-Bonnet combination, etc.



Kinetic term?



Kinetic term?

Obvious choice: standard kinetic terms for fundamental fields

issues with solar system tests of gravity



Kinetic term?

Obvious choice: standard kinetic terms for fundamental fields

Alternative choice: Einstein-Hilbert action for physical metric

issues with solar system tests of gravity

automatically compatible with solar system tests
possible issue with Ostrogradski ghosts
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• vacuum energy T̃ ab = −σg̃ab

• vacuum curvature R̃ab = Λ̃g̃ab

DO NOT ENTER DYNAMICS!



matter minimally coupled
to physical metric
g̃ab = Ω(φi, ∂φi, . . .)gab

• vacuum energy T̃ ab = −σg̃ab

• vacuum curvature R̃ab = Λ̃g̃ab

DO NOT ENTER DYNAMICS!
ANY SOLUTION TO GR (with any vacuum 

curvature) IS A SOLUTION TO OUR THEORY



GHOSTS?



GHOSTS?

generically “yes”...but not always



Ghost-free theories

Ω2 = RGB(Ξ,g)
µ4 =⇒

Effective action about de Sitter vacuum is

δ2S =
Ω̄

16πG
δ2SGR[eψ/2g] +

∫
d4xλ(δR(g) +∇aXa − 2Λψ)

where Xa = Bab
b −Bb

ba and

Bc
ab = δ

[
Ξc

ab −
1
2
gcd(gda,b + gdb,a − gab,d)

]



Summary:

• couple matter to a composite metric, such that 
covariant measure for composite is non-
dynamical 

• VACUUM ENERGY DOES NOT GRAVITATE!
• build the EH action out of composite aswell
• solar system tests easily satisfied
• Ostrogradski ghosts can be avoided



Future directions:

• extra solutions: cosmology, solar system?
• radiative stability of choice of Ω ?
• disformally related metrics?
• selection criteria?
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"Those of you in the cheaper seats, 
clap your hands... And the rest of 
you... just rattle your jewellary."

John Lennon



µ3H
3 + µ2H

2 + µ1H + µ0 = ρm

H(a, ȧ, φ, φ̇) =
1
a3

[
ȧ
∂Leff

H

∂ȧ
+ φ̇

∂Leff
H

∂φ̇
− Leff

H

]
= −ρm

Friedmann eqn:

At most cubic in H



µ3H
3 + µ2H

2 + µ1H + µ0 = ρm

H(a, ȧ, φ, φ̇) =
1
a3

[
ȧ
∂Leff

H

∂ȧ
+ φ̇

∂Leff
H

∂φ̇
− Leff

H

]
= −ρm

Friedmann eqn:

At most cubic in H

Scalar eqn:

E(a, ȧ, ä, φ, φ̇, φ̈) =
d

dt

[
∂Leff

H

∂φ̇

]
− ∂Leff

H

∂φ
= 0

Linear in both φ̈ and ä



1. Vacuum solution is 
always Minkowski 

whatever the vacuum 
energy

2. Solution remains 
Minkowski even after a 

phase transition



1. Vacuum solution is 
always Minkowski 

whatever the vacuum 
energy

2. Solution remains 
Minkowski even after a 

phase transition

〈ρm〉vac = ρΛ, H2 = − κ

a2
, φ = φΛ(t)

piecewise 
constant but
discontinuous 
at transition 

always true continuous 
everywhere 
but certainly 
not constant 
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“On-shell-in-a” EOMs
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H̄(φΛ, φ̇Λ, a) = −ρΛ Ē = f(φΛ, φ̇Λ, a)φ̈Λ + g(φΛ, φ̇Λ, a) = 0

“On-shell-in-a” EOMs

continuous continuous

discontinuous discontinuous

contains 
delta function

contains no
delta function

f(φΛ, φ̇Λ, a) = 0
g(φΛ, φ̇Λ, a) = 0

=⇒



f(φΛ, φ̇Λ, a) = 0

If LHS depends on φ̇Λ it must be discontinouus.

But RHS is not discontinuous, so this means that LHS cannot be either.

Thus f = f(φΛ, a).



f(φΛ, a) = 0



f(φΛ, a) = 0

∂f

∂φΛ
φ̇Λ +

∂f

∂a

√
−κ = 0

Take derivatives wrt time and use H2 = −κ/a2,



f(φΛ, a) = 0

Identical logic gives ∂f
∂φΛ

= 0, or equivalently f = f(a).

Also g = g(a).

∂f

∂φΛ
φ̇Λ +

∂f

∂a

√
−κ = 0

Take derivatives wrt time and use H2 = −κ/a2,



Stability?

 

Cosmological perturbations in Horndeski (Kobayashi et al 1105.5723 [hep-th])

∫
dtd3xa3

[
GT ḣ2

ij −
FT

a2
(∇hij)2

]

∫
dtd3xa3

[
GS ζ̇2 − FS

a2
(∇ζ)2

]
tensors

scalars


