Isocurvatons During Inflation the Heavy, the Quasi-, and the Light

In collaboration with Xingang Chen, Miao Li, Niayesh Afshordi, Anze Slosar, Francis Duplessis, Robert Brandenberger

Yi Wang (王一), IPMU, Oct. 2, 2012

Isocurvatons during inflation

Theories of

• the heavy • the quasi- • the light

Why $M \gg H$ fields matter?

Why not decouple?

Not only propagators,

but also "coupling constant",

Gravity couples to energy.

depend on mass (and kinetic energy).

$$\mathcal{L}_m = \sqrt{-g} \left[-\frac{1}{2} (\partial_\mu \phi)^2 - V_{\rm sr}(\phi) - \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} M^2 \sigma^2 \right]$$

- the minimal model
- universal "lower bound" of general couplings

$$\mathcal{L}_m = \sqrt{-g} \left[-\frac{1}{2} (\partial_\mu \phi)^2 - V_{\rm sr}(\phi) - \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} M^2 \sigma^2 \right]$$

 $\frac{\Delta P_{\zeta}}{P_{\zeta}} \sim \frac{\Lambda^4 N_e}{\epsilon H^2 M_{\rm Pl}^2} \times \frac{M_{\rm Pl}^2}{M_D^2} \sim \frac{M_D^2 N_e}{\epsilon H^2}$

To show:

- for 1 massive field: $\frac{\Delta P_{\zeta}}{P_{\zeta}} \sim P_{\zeta} \frac{\Lambda^4}{H^4} N_e$
- for a KK-tower:

Steps:

- The pert. action up to 4th order
- The interaction Hamiltonian
- Calc. using in-in formalism
- Calc. integrals: ∫dt and ∫d³p

The pert. action up to 4th order

ζ -gauge

$$ds^{2} = -\hat{N}^{2}d\hat{t}^{2} + \hat{h}_{ij}(d\hat{x}^{i} + \hat{N}^{i}d\hat{t})(d\hat{x}^{j} + \hat{N}^{j}d\hat{t})$$
$$\hat{h}_{ij} = a^{2}(\hat{t})e^{2\zeta(\hat{t},\hat{\mathbf{x}})}\delta_{ij} , \ \hat{\phi}(\hat{t},\hat{\mathbf{x}}) = \phi_{0}(\hat{t}) , \ \hat{\sigma} = \hat{\sigma}(\hat{t},\hat{\mathbf{x}})$$

δφ-gauge

$$h_{ij} = a^2(t)\delta_{ij} , \ \phi = \phi_0(t) + \delta\phi(t, \mathbf{x}) , \ \sigma = \sigma(t, \mathbf{x})$$

gauge-trans $\delta t_{(1)} = -\zeta/H$

$$\sigma(t, x^{i}) = \hat{\sigma}(t, x^{i}) + \dot{\hat{\sigma}}(\delta t_{(1)} + \delta t_{(2)}) + \partial_{i}\hat{\sigma}\delta x^{i}_{(2)} + \frac{1}{2}\ddot{\hat{\sigma}}\delta t^{2}_{(1)}$$

The pert. action up to 4th order

ζ-gauge

- Pros:
 - Conservation for single field
 - Close relation to observables
- Cons:
 - Hard to calculate
 - Slow roll order not manifest

δφ-gauge

The opposite pros and cons

Simplified L₄ in the ζ -gauge

 $-\frac{9}{a^{3}}M^{2}g^{2}\sigma^{2} - \frac{3a^{3}M^{2}g\sigma^{2}\partial_{0}g}{a^{2}} + \frac{9}{a^{3}}g^{2}(\partial_{0}\sigma)^{2} - \frac{3a^{3}g\partial_{0}g(\partial_{0}\sigma)^{2}}{a^{3}g\partial_{0}g(\partial_{0}\sigma)^{2}} + \frac{a^{3}(\partial_{0}g)^{2}(\partial_{0}\sigma)^{2}}{a^{3}(\partial_{0}g)^{2}} - \frac{a\partial_{0}g\partial_{0}g\partial_{1}\sigma}{a^{2}(\partial_{0}\sigma)^{2}} - \frac{1}{a^{3}g^{2}(\partial_{1}\sigma)^{2}} - \frac{a^{3}g\partial_{0}g(\partial_{1}\sigma)^{2}}{a^{3}(\partial_{1}g)^{2}} + \frac{a^{3}(\partial_{0}g)^{2}(\partial_{0}\sigma)^{2}}{a^{3}(\partial_{0}g)^{2}} - \frac{a\partial_{0}g\partial_{1}g\partial_{1}\sigma}{a^{2}(\partial_{1}\sigma)^{2}} - \frac{1}{a^{3}g^{2}(\partial_{1}\sigma)^{2}} + \frac{a^{3}(\partial_{0}g)^{2}}{a^{3}(\partial_{1}g)^{2}} + \frac{a^{3}(\partial_{0}g)^{2}}{a^{3}(\partial_{1}g)^{2}} - \frac{a\partial_{0}g\partial_{1}g}{a^{2}(\partial_{1}\sigma)^{2}} - \frac{1}{a^{3}g^{2}(\partial_{1}\sigma)^{2}} + \frac{a^{3}(\partial_{1}g)^{2}}{a^{3}(\partial_{1}g)^{2}} + \frac{a^{3}(\partial_{1}g)^{2}}{a^{3}(\partial_{1}g)^{2}} - \frac{a\partial_{0}g\partial_{1}g}{a^{2}(\partial_{1}\sigma)^{2}} - \frac{1}{a^{3}g^{2}(\partial_{1}g)^{2}} + \frac{a^{3}(\partial_{1}g)^{2}}{a^{3}(\partial_{1}g)^{2}} + \frac{a^{3}(\partial_{1}g)^{2}}{a^{3}(\partial_{1}g)^{2}} - \frac{a\partial_{0}g\partial_{1}g}{a^{2}(\partial_{1}g)^{2}} - \frac{a\partial_{0}g\partial_{1}g}{a^{3}(\partial_{1}g)^{2}} - \frac{a\partial_{0}g}{a^{3}(\partial_{1}g)^{2}} - \frac{a\partial_{0}g}{a^{3$ $a \zeta \partial_i \partial_i \zeta \partial_j \partial_i \left(\partial^{-2} \left(\partial_0 \sigma\right)^2\right) = a \partial_0 \zeta \partial_i \partial_i \zeta \partial_i \partial_i \left(\partial^{-2} \left(\partial_0 \sigma\right)^2\right) = \zeta \partial_k \partial_i \zeta \partial_k \partial_i \left(\partial^{-2} \left(\partial_i \sigma\right)^2\right) = \partial_0 \zeta \partial_k \partial_i \zeta \partial_k \partial_i \left(\partial^{-2} \left(\partial_i \sigma\right)^2\right) = 3 a \zeta \partial_k \partial_i \zeta \partial_k \partial_i \left(\partial^{-2} \left(\partial_i \sigma \partial_i \partial_0 \sigma\right)\right) = 0$ $3a\partial_{0}g\partial_{k}\partial_{j}g\partial_{k}\partial_{j}\left(\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\sigma\partial_{1}\partial_{0}\sigma\right)\right)\right) = 3ag\partial_{k}\partial_{j}g\partial_{k}\partial_{j}\left(\partial^{-2}\left(\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right)\right)\right) = 3a\partial_{0}g\partial_{k}\partial_{j}g\partial_{k}\partial_{j}g\partial_{k}\partial_{j}\left(\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right)\right)\right) = aM^{2}\partial_{1}g\partial_{j}g\partial_{1}\left(\partial^{-2}\sigma^{2}\right)$ 2 H² $a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{1} g)^{2}\right) = a \partial_{1} g \partial_{j} \partial_{j} g \partial_{1} \left(\partial^{-2} (\partial_{0} \sigma)^{2}\right) = \partial_{j} g \partial_{k} \partial_{k} g \partial_{j} \left(\partial^{-2} (\partial_{1} \sigma)^{2}\right) = 3 a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = \partial_{0} \sigma \partial_{k} \sigma \partial_{k} \left(\partial^{-2} (\partial_{1} g)^{2}\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} g)\right) = a \partial_{0} \sigma \partial_{j} \sigma \partial_{j} \left(\partial^{-2} (\partial_{0} g \partial_{1} g)\right)$ $\partial_{\theta}\sigma\partial_{k}\sigma\partial_{k}\left(\partial^{-2}\left(\partial_{1}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{k}\sigma\partial_{k}\sigma\partial_{k}\sigma\partial_{k}\left(\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\partial_{1}\mathcal{L}\mathcal{L}\mathcal{L}\right)\right)\right) \\ = 3a\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\partial$ $2 a \partial_0 \zeta \partial_k \partial_k \zeta \partial_j \left(\partial^{-2} \left(\partial_1^{-2} \left(\partial_1^{-2} \left(\partial_1^{-2} \left(\partial_1^{-2} \partial_0 \sigma \partial_k \partial_k \zeta \partial_j \left(\partial^{-2} \left(\partial_1^{-2} \left(\partial_1^{-2} \left(\partial_1^{-2} (\partial_1 \partial_0 \sigma \partial_j \partial_1 \sigma \partial_k \sigma \partial_k (\partial^{-2} \left(\partial_1^{-2} \left(\partial_1^{$ $2a\partial_{0}\mathcal{L}\partial_{k}\partial_{k}\mathcal{L}\partial_{j}\left(\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\sigma\partial_{1}\partial_{1}\partial_{0}\sigma\right)\right)\right) \quad 2a\partial_{0}\mathcal{L}\partial_{k}\partial_{k}\mathcal{L}\partial_{j}\left(\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\sigma\partial_{j}\partial_{1}\partial_{0}\sigma\right)\right)\right) \quad 3a\partial_{0}\sigma\partial_{k}\sigma\partial_{k}\left(\partial^{-2}\left(\partial^{-2}\left(\mathcal{L}\partial_{j}\partial_{j}\partial_{1}\partial_{1}\mathcal{L}\right)\right)\right) \quad 2a\partial_{0}\sigma\partial_{j}\sigma\partial^{-2}\left(\partial_{j}\mathcal{L}\partial_{1}\mathcal{L}\partial_{1}\mathcal{L}\right)$ $2a\partial_{0}\sigma\partial_{j}\sigma\partial^{-2}\left(\partial_{j}\partial_{0}\mathcal{L}\partial_{1}\partial_{1}\mathcal{L}\right) = 2a\partial_{0}\sigma\partial_{j}\sigma\partial^{-2}\left(\partial_{1}\mathcal{L}\partial_{j}\partial_{1}\mathcal{L}\right) = 2a\partial_{0}\sigma\partial_{j}\sigma\partial^{-2}\left(\partial_{1}\partial_{0}\mathcal{L}\partial_{j}\partial_{1}\mathcal{L}\right) = a\left(\partial_{j}\mathcal{L}\right)^{2}\partial^{-2}\left(\partial_{1}\sigma\partial_{1}\partial_{0}\sigma\right) = 2a\mathcal{L}\partial_{0}\sigma\partial_{1}\partial_{0}\sigma = 2a\mathcal{L}\partial_{0}\sigma\partial_{1}\sigma\partial_{0}\sigma = 2a\mathcal{L}\partial_{0}\sigma\partial_{0}\sigma = 2a\mathcal{L}\partial_{0}\sigma\partial_{1}\sigma\partial_{0}\sigma = 2a\mathcal{L}\partial_{0}\sigma\partial_{0}\sigma = 2a\mathcal{L}\partial_{0}\sigma\partial_{0}\sigma\partial_{0}\sigma = 2a\mathcal{L}\partial_{0}\sigma\partial_{0}\sigma\partial_{0}\sigma$ $3a\partial^{-2}\left(\partial_{k}\partial_{j}\zeta\right)^{2}\partial^{-2}\left(\partial_{1}\sigma\partial_{1}\partial_{0}\sigma\right) = a\left(\partial_{j}\zeta\right)^{2}\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 2a\zeta\partial_{j}\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial_{0}\zeta\partial_{j}\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial^{-2}\left(\partial_{k}\partial_{j}\zeta\right)^{2}\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 2a\zeta\partial_{j}\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial_{0}\zeta\partial_{j}\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial_{0}\zeta\partial_{j}\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial_{0}\zeta\partial_{j}\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial_{0}\zeta\partial_{j}\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial_{0}\zeta\partial_{j}\partial_{j}\zeta\partial_{j}\zeta\partial^{-2}\left(\partial_{0}\sigma\partial_{1}\partial_{1}\sigma\right) = 3a\partial_{0}\zeta\partial_{j}\partial_{1}\sigma$ $\exists a \partial^{-2} (\partial_k \sigma \partial_k \partial_0 \sigma) \partial^{-2} (\partial_j \partial_j \zeta \partial_i \partial_i \partial_0 \zeta) = \exists a \partial^{-2} (\partial_0 \sigma \partial_k \partial_k \sigma) \partial^{-2} (\partial_j \partial_j \zeta \partial_i \partial_i \partial_0 \zeta) = \exists a \partial^{-2} (\partial_k \sigma \partial_k \partial_0 \sigma) \partial^{-2} (\partial_j \partial_j \zeta \partial_j \partial_i \partial_0 \zeta) = \exists a \partial^{-2} (\partial_0 \sigma \partial_k \partial_k \sigma) \partial^{-2} (\partial_j \partial_j \zeta \partial_i \partial_0 \zeta)$ $3a\partial^{-2}\left(\partial_{k}\sigma\partial_{k}\partial_{0}\sigma\right)\partial^{-2}\left(\mathcal{L}\partial_{j}\partial_{j}\partial_{i}\partial_{i}\sigma\right) \quad 3a\partial^{-2}\left(\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\mathcal{L}\partial_{j}\partial_{j}\partial_{i}\partial_{i}\sigma\right) \quad 4a\partial^{-2}\left(\partial_{1}\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\right)\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\partial_{i}\sigma\right)\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\right)\partial^{-2}\left(\partial_{j}\partial_{j}\sigma\partial_{k}\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i}\sigma\partial_{i$ $2a\partial^{-2}(\partial_k\partial_0\sigma\partial_k\partial_i\sigma)\partial^{-2}(\partial^{-2}(\partial_j\partial_j\partial_0g\partial_i\partial_a\partial_ag)) = 2a\partial^{-2}(\partial_i\partial_0\sigma\partial_k\partial_k\sigma)\partial^{-2}(\partial^{-2}(\partial_j\partial_j\partial_0g\partial_i\partial_a\partial_ag)) = 4a\partial^{-2}(\partial_k\partial_0\sigma\partial_k\partial_j\sigma)\partial^{-2}(\partial^{-2}(\partial_i\partial_ag\partial_i\partial_ag))$ $4a\partial^{-2}\left(\partial_{j}\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{i}\partial_{a}g\partial_{j}\partial_{i}\partial_{a}g\right)\right) = 2a\partial^{-2}\left(\partial_{k}\partial_{0}\sigma\partial_{k}\partial_{j}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{i}\partial_{a}\partial_{0}g\partial_{j}\partial_{i}\partial_{a}g\right)\right) = 2a\partial^{-2}\left(\partial_{j}\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{i}\partial_{a}\partial_{0}g\partial_{j}\partial_{i}\partial_{a}g\right)\right) = 2a\partial^{-2}\left(\partial_{j}\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{i}\partial_{a}\partial_{0}g\partial_{j}\partial_{i}\partial_{a}g\right)\right) = 2a\partial^{-2}\left(\partial_{j}\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{i}\partial_{a}\partial_{0}g\partial_{j}\partial_{i}\partial_{a}g\right)\right) = 2a\partial^{-2}\left(\partial_{i}\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\partial_{i}\partial_{0}g\partial_{i}\partial_{i}\partial_{i}g\right)$ $4a\partial^{-2}\left(\partial_{k}\partial_{k}g\partial_{j}\partial_{j}g\partial_{j}g\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\sigma\partial_{a}\partial_{a}\partial_{0}\sigma\right)\right) = 2a\partial^{-2}\left(\partial_{k}\partial_{k}\partial_{0}g\partial_{j}\partial_{j}\partial_{j}g\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\sigma\partial_{a}\partial_{a}\partial_{0}\sigma\right)\right) = 4a\partial^{-2}\left(\partial_{k}\partial_{j}g\partial_{k}\partial_{j}g\partial_{1}g\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\sigma\partial_{a}\partial_{a}\partial_{0}\sigma\right)\right)$ $4a\partial^{-2}\left(\partial_{k}\partial_{j}\underline{c}\partial_{k}\partial_{j}\partial_{\underline{i}}\underline{c}\right)\partial^{-2}\left(\partial_{a}\underline{c}\partial_{\underline{i}}\partial_{a}\partial_{0}\sigma\right) = 2a\partial^{-2}\left(\partial_{k}\partial_{j}\partial_{0}\underline{c}\partial_{k}\partial_{j}\partial_{\underline{i}}\underline{c}\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{a}\sigma\partial_{\underline{i}}\partial_{a}\partial_{0}\sigma\right)\right) = 2a\partial^{-2}\left(\partial_{k}\partial_{0}\sigma\partial_{k}\partial_{\underline{i}}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{j}\underline{c}\partial_{\underline{i}}\partial_{a}\partial_{a}\partial_{0}\underline{c}\right)\right)$ $2a\partial^{-2}\left(\partial_{k}\partial_{0}\sigma\partial_{k}\partial_{j}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\partial_{a}\mathcal{L}\partial_{j}\partial_{1}\partial_{a}\partial_{0}\mathcal{L}\right)\right) = 2a\partial^{-2}\left(\partial_{j}\partial_{0}\sigma\partial_{k}\partial_{k}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\partial_{a}\mathcal{L}\partial_{j}\partial_{1}\partial_{a}\partial_{0}\mathcal{L}\right)\right) = 2a\partial^{-2}\left(\partial_{k}\sigma\partial_{k}\partial_{j}\partial_{0}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{1}\partial_{a}\mathcal{L}\partial_{j}\partial_{1}\partial_{0}\mathcal{L}\right)\right)$ $2a\partial_{0}\sigma^{2}\left(\partial_{j}\sigma\partial_{k}\partial_{k}\partial_{0}\sigma\right)\partial^{-2}\left(\partial^{-2}\left(\partial_{i}\partial_{a}\mathcal{L}\partial_{j}\partial_{i}\partial_{a}\partial_{0}\mathcal{L}\right)\right) = 2a\partial_{0}\sigma\partial_{j}\sigma\partial^{-2}\left(\partial^{-2}\left(\partial_{k}\partial_{k}\mathcal{L}\partial_{j}\partial_{i}\partial_{i}\partial_{0}\mathcal{L}\right)\right) = 2a\partial_{0}\sigma\partial_{k}\sigma\partial^{-2}\left(\partial^{-2}\left(\partial_{j}\partial_{i}\mathcal{L}\partial_{k}\partial_{j}\partial_{i}\partial_{0}\mathcal{L}\right)\right)$

The pert. action up to 4th order

δφ-gauge:

$$\mathcal{L}_{2} = \frac{a^{3}}{2}\delta\dot{\phi}^{2} - \frac{a}{2}(\partial_{i}\delta\phi)^{2} + \frac{a^{3}}{2}\dot{\sigma}^{2} - \frac{a}{2}(\partial_{i}\sigma)^{2} - \frac{a^{3}}{2}M^{2}\sigma^{2}$$

higher orders: slow roll suppressed.

Note that for σ , gauge transformation is

$$\hat{\sigma} = \sigma - \frac{\zeta \dot{\sigma}}{H} + \mathcal{O}(\zeta^3, \zeta \sigma^2)$$

Not slow roll restricted!

c.f.
$$\delta arphi^2 \, \sim \, \epsilon \zeta^2$$

The pert. action up to 4th order

$$\mathcal{L}_2 = \frac{a^3}{2}\delta\dot{\phi}^2 - \frac{a}{2}(\partial_i\delta\phi)^2 + \frac{a^3}{2}\dot{\sigma}^2 - \frac{a}{2}(\partial_i\sigma)^2 - \frac{a^3}{2}M^2\sigma^2$$
$$\hat{\sigma} = \sigma - \frac{\zeta\dot{\sigma}}{H} + \mathcal{O}(\zeta^3, \zeta\sigma^2)$$

$$\mathcal{L}_{3} = \mathcal{O}(\epsilon \zeta \sigma^{2}) ,$$

$$\mathcal{L}_{4} = \frac{a^{3}}{2H^{2}} \left[\left(\partial_{t}(\dot{\sigma}\zeta) \right)^{2} - \frac{1}{a^{2}} \left(\partial_{i}(\dot{\sigma}\zeta) \right)^{2} - M^{2}(\dot{\sigma}\zeta)^{2} \right]$$

(up to total derivatives)

The interaction Hamiltonian

$$F^{ab}f^{(0)}_{bc} = \delta^a_c$$

$$\mathcal{L} = f_{ab}^{(0)} \dot{\alpha}^a \dot{\alpha}^b + j_2$$

$$+ g_{abc}^{(0)} \dot{\alpha}^a \dot{\alpha}^b \dot{\alpha}^c + g_{ab}^{(1)} \dot{\alpha}^a \dot{\alpha}^b + g_a^{(2)} \dot{\alpha}^a + j_3$$

$$+ h_{abcd}^{(0)} \dot{\alpha}^a \dot{\alpha}^b \dot{\alpha}^c \dot{\alpha}^d + h_{abc}^{(1)} \dot{\alpha}^a \dot{\alpha}^b \dot{\alpha}^c + h_{ab}^{(2)} \dot{\alpha}^a \dot{\alpha}^b + h_a^{(3)} \dot{\alpha}^a + j_4$$

$$\begin{split} \mathcal{H} = & f_{ab}^{(0)} \dot{\alpha}_{I}^{a} \dot{\alpha}_{I}^{b} - j_{2} \\ & - g_{abc}^{(0)} \dot{\alpha}_{I}^{a} \dot{\alpha}_{I}^{b} \dot{\alpha}_{I}^{c} - g_{ab}^{(1)} \dot{\alpha}_{I}^{a} \dot{\alpha}_{I}^{b} - g_{a}^{(2)} \dot{\alpha}_{I}^{a} - j_{3} \\ & - h_{abcd}^{(0)} \dot{\alpha}_{I}^{a} \dot{\alpha}_{I}^{b} \dot{\alpha}_{I}^{c} \dot{\alpha}_{I}^{d} - h_{abc}^{(1)} \dot{\alpha}_{I}^{a} \dot{\alpha}_{I}^{b} \dot{\alpha}_{I}^{c} - h_{ab}^{(2)} \dot{\alpha}_{I}^{a} \dot{\alpha}_{I}^{b} - h_{a}^{(3)} \dot{\alpha}_{I}^{a} - j_{4} \\ & + \frac{9}{4} F^{ab} g_{acd}^{(0)} g_{bef}^{(0)} \dot{\alpha}_{I}^{c} \dot{\alpha}_{I}^{d} \dot{\alpha}_{I}^{e} \dot{\alpha}_{I}^{f} + 3 F^{ab} g_{acd}^{(0)} g_{be}^{(1)} \dot{\alpha}_{I}^{c} \dot{\alpha}_{I}^{d} \dot{\alpha}_{I}^{e} + \frac{3}{2} F^{ab} g_{acd}^{(0)} g_{b}^{(2)} \dot{\alpha}_{I}^{c} \dot{\alpha}_{I}^{d} \\ & + F^{ab} g_{ac}^{(1)} g_{bd}^{(1)} \dot{\alpha}_{I}^{c} \dot{\alpha}_{I}^{d} + F^{ab} g_{ac}^{(1)} g_{b}^{(2)} \dot{\alpha}_{I}^{c} + \frac{1}{4} F^{ab} g_{a}^{(2)} g_{b}^{(2)} \,. \end{split}$$

The interaction Hamiltonian

(only listed a few sample terms)

$$\mathcal{H}_0 = \epsilon a^3 \dot{\zeta}^2 + \epsilon a (\partial \zeta)^2 + \frac{a^3}{2} \dot{\sigma}^2 + \frac{a}{2} (\partial_i \sigma)^2 + \frac{a^3}{2} M^2 \sigma^2 ,$$
$$\mathcal{H}_I = -\frac{3a^3}{H} \zeta \dot{\zeta} \dot{\sigma}^2 + \frac{a}{4} \zeta^2 (\partial_i \sigma)^2 + \frac{9a^3}{4} M^2 \zeta^2 \sigma^2 + \cdots .$$

Calc. using in-in formalism

$$\begin{aligned} \langle Q \rangle = \langle \Omega | F^{-1}(t, t_0) Q^I(t) F(t, t_0) | \Omega \rangle , \\ = \langle \Omega | \left[\bar{T} \exp\left(i \int_{t_0}^t H_I(t) dt \right) \right] Q^I(t) \left[T \exp\left(-i \int_{t_0}^t H_I(t) dt \right) \right] | \Omega \rangle \end{aligned}$$

Calc. using in-in formalism

 $\zeta_{\mathbf{k}} = u_{\mathbf{k}}a_{\mathbf{k}} + u_{-\mathbf{k}}^{*}a_{-\mathbf{k}}^{\dagger}, \quad \sigma_{\mathbf{k}} = v_{\mathbf{k}}b_{\mathbf{k}} + v_{-\mathbf{k}}^{*}b_{-\mathbf{k}}^{\dagger}$ $u_{\mathbf{k}}^{\prime\prime} - \frac{2}{\tau}u_{\mathbf{k}}^{\prime} + k^2 u_{\mathbf{k}} = 0$ $v_{\mathbf{k}}'' - \frac{2}{\tau}v_{\mathbf{k}}' + k^2 v_{\mathbf{k}} + \frac{M^2}{H^2 \tau^2} v_{\mathbf{k}} = 0$ $u_{\mathbf{k}} = -\frac{H}{\sqrt{4\epsilon k^3}}(1+ik\tau) \ e^{-ik\tau} \ ,$ $v_{\mathbf{k}} = -ie^{i\pi/2}e^{-\pi\mu/2}\frac{\sqrt{\pi}}{2}H(-\tau)^{3/2}H_{i\mu}^{(1)}(-k\tau)$

$$\mu = \sqrt{M^2/H^2 - 9/4}$$

Calc. using in-in formalism

$$\begin{split} &\Delta \langle \zeta^2 \rangle \supset 2i \left(u_k^*(\tau_{\text{end}}) \right)^2 (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}') \\ &\times \int_{-\infty}^{\tau_{\text{end}}} d\tau \left[-\frac{3a}{H} u_k u_k' \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |v_p'|^2 \right. \\ &\quad + \frac{a^2}{4} u_k^2 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} p^2 |v_p|^2 + \frac{9M^2 a^4}{4} u_k^2 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |v_p|^2 \right] \\ &\quad + \text{c.c.} \end{split}$$

$$u_{\mathbf{k}} = -\frac{H}{\sqrt{4\epsilon k^3}} (1 + ik\tau) \ e^{-ik\tau} \ ,$$
$$v_{\mathbf{k}} = -ie^{i\pi/2} e^{-\pi\mu/2} \frac{\sqrt{\pi}}{2} H(-\tau)^{3/2} H_{i\mu}^{(1)}(-k\tau)$$

Calc. integrals: $\int dt \text{ and } \int d^3p$

UV expansion:

$$\begin{aligned} H_{i\mu}^{(1)}(-p\tau) &\to e^{-i\pi/4} e^{\pi\mu/2} \sqrt{-\frac{2}{\pi p\tau}} e^{-ip\tau} \\ \frac{\Delta P_{\zeta}}{P_{\zeta}} \supset \frac{\Lambda^4}{8\pi^2 H^2 M_{\rm Pl}^2 \epsilon} \left(\frac{19}{12} + \frac{3M^2}{2\Lambda^2}\right) \ln(-2k\tau_{\rm end}) \end{aligned}$$

IR expansion:

$$H_{i\mu}^{(1)}(-p\tau) \to e^{i\delta} e^{\pi\mu/2} \sqrt{\frac{2}{\pi\mu}} (-p\tau)^{i\mu}$$
$$\frac{\Delta P_{\zeta}}{P_{\zeta}} \supset \frac{\Lambda^4}{8\pi^2 H^2 M_{\rm Pl}^2 \epsilon} \left(\frac{3M}{\Lambda} + \frac{\Lambda}{15M}\right) \ln(-2k\tau_{\rm end})$$

Calc. integrals: $\int dt \text{ and } \int d^3p$

Full result:

$$i_{1}(\lambda,\mu) = \frac{e^{-\pi\mu}x^{3}}{\lambda^{3}} \int_{0}^{\lambda/x} dp \ p^{2} |H_{i\mu}^{(1)}(px)|^{2}$$
$$i_{2}(\lambda,\mu) = \frac{e^{-\pi\mu}x^{5}}{\lambda^{5}} \int_{0}^{\lambda/x} dp \ p^{4} |H_{i\mu}^{(1)}(px)|^{2}$$
$$i_{3}(\lambda,\mu) = \frac{e^{-\pi\mu}x^{5}}{\lambda^{5}} \int_{0}^{\lambda/x} dp \ p^{2} |\partial_{x}H_{i\mu}^{(1)}(px)|^{2}$$

$$i_{1}(\lambda,\mu) = e^{-\pi\mu} [1 + \coth(\pi\mu)] \left[\frac{\cosh(\pi\mu)f(\frac{1}{2},\frac{3}{2};\frac{5}{2},1-i\mu,1+i\mu)}{3\pi\mu} + \frac{(2/\lambda)^{2i\mu}f(\frac{1}{2}-i\mu,\frac{3}{2}-i\mu;1-i\mu,\frac{5}{2}-i\mu,1-2i\mu)}{\sinh(\pi\mu)(-3+2i\mu)\Gamma^{2}(1-i\mu)} \right] + c.c.$$

$$\begin{split} i_2(\lambda,\mu) = & e^{-\pi\mu} [1 + \coth(\pi\mu)] \left[\frac{\cosh(\pi\mu) f(\frac{1}{2}, \frac{5}{2}; \frac{7}{2}, 1 - i\mu, 1 + i\mu)}{5\pi\mu} \right. \\ & \left. + \frac{(2/\lambda)^{2i\mu} f(\frac{1}{2} - i\mu, \frac{5}{2} - i\mu; 1 - i\mu, \frac{7}{2} - i\mu, 1 - 2i\mu)}{\sinh(\pi\mu)(-5 + 2i\mu)\Gamma^2(1 - i\mu)} \right] + c.c. \end{split}$$

$$\begin{split} (\lambda,\mu) &= e^{-\pi\mu} [1 + \coth(\pi\mu)] \left\{ -\frac{1}{6} J_{-i\mu}(\lambda) J_{i\mu}(\lambda) \coth(\pi\mu) - \frac{\coth(\pi\mu) f(\frac{1}{2},\frac{5}{2};\frac{7}{2},2-i\mu,i\mu)}{10\Gamma(2-i\mu)\Gamma(i\mu)} \right. \\ &+ \frac{\mu \cosh(\pi\mu) f(-\frac{1}{2};-i\mu,i\mu)}{3\pi\lambda^2} - \frac{\lambda^2 \cosh(\pi\mu) f(\frac{3}{2},\frac{7}{2};\frac{9}{2},2-i\mu,2+i\mu)}{42\pi\mu(1+\mu^2)} \\ &+ \frac{2^{2i\mu} f(-\frac{1}{2}-i\mu,\frac{3}{2}-i\mu;\frac{5}{2}-i\mu,-1-2i\mu,-i\mu)}{\lambda^{2+2i\mu}(-3+2i\mu)\sinh(\pi\mu)\Gamma^2(-i\mu)} - \frac{J_{1-i\mu}(\lambda)[\lambda J_{1-i\mu}(\lambda)+2i\mu J_{-i\mu}(\lambda)]}{6\lambda\sinh(\pi\mu)} \\ &- \frac{2^{2i\mu} \mu f(\frac{1}{2}-i\mu,\frac{5}{2}-i\mu;\frac{7}{2}-i\mu,1-2i\mu,-i\mu)}{3(5i+2\mu)\lambda^{2i\mu}\sinh(\pi\mu)\Gamma^2(1-i\mu)} \\ &+ \frac{\lambda^{2-2i\mu} f(\frac{3}{2}-i\mu,\frac{7}{2}-i\mu;2-i\mu,\frac{9}{2}-i\mu,3-2i\mu)}{2^{4-2i\mu}(-7+2i\mu)\sinh(\pi\mu)\Gamma^2(2-i\mu)} \right\} + c.c. \end{split}$$

$$f(a_1,\ldots,a_p;b_1,\ldots,b_q) \equiv {}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;-\lambda^2)$$

 $\Delta P_{\zeta}/P_{\zeta}/\left[P_{\zeta}(\Lambda/H)^4N_e
ight]$

 M/Λ

How to understand the result?

$$\begin{split} &\Delta\langle\zeta^2\rangle \supset 2i\left(u_k^*(\tau_{\rm end})\right)^2 (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}') \\ &\times \int_{-\infty}^{\tau_{\rm end}} d\tau \left[-\frac{3a}{H} u_k u_k' \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |v_p'|^2 \\ &+ \frac{a^2}{4} u_k^2 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} p^2 |v_p|^2 + \frac{9M^2 a^4}{4} u_k^2 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |v_p|^2 \right] \\ &+ {\rm c.c.} \; . \end{split}$$

 $\begin{array}{c} \Delta P \supset \zeta\zeta(0) \left(\int a d\tau\right) \left(a^3 \operatorname{Im} \zeta\zeta\right) \left(\int d^3 p \left|\sigma^2\right|\right) \\ \uparrow & \uparrow & \uparrow & \uparrow \\ P & N & P & (\Lambda / H)^4 \end{array}$

Case study: $\frac{\Delta P_{\zeta}}{P_{\zeta}} \sim P_{\zeta} \frac{\Lambda^4}{H^4} N_e$ one massive field: $\frac{\Delta P_{\zeta}}{P_{\zeta}} \sim P_{\zeta} \frac{\Lambda^4}{H^4} N_e$

non-perturbative when $\Lambda \sim O(100)$ H

Case study:

KK tower is always non-perturbative!

$$M_{\rm Pl}^2 \sim M_D^{D-2} L^{D-4}$$

 $N_{\rm tot} \sim (M_D L)^{D-4} \sim \frac{M_{\rm Pl}^2}{M_D^2}$

$$\frac{\Delta P_{\zeta}}{P_{\zeta}} \sim \frac{\Lambda^4 N_e}{\epsilon H^2 M_{\rm Pl}^2} \times \frac{M_{\rm Pl}^2}{M_D^2} \sim \frac{M_D^2 N_e}{\epsilon H^2}$$

Inflation is UV-sensitive

- η -problem \rightarrow worse in pert
- trans-Planckian \rightarrow non-linear level

Theory of the heavy -- conclusion:

- As a problem: vac fluct. in the pert level
- As a challenge: may be observed

Discussions:

- SUSY
- Resummation in non-pert regime
- Non-G? Tensor? ...

Part 2: Theory of the quasi-:

quasi-single field
 Chen, YW (09, 09)
 Baumann, Green (11)

scale of perturbations \Rightarrow

scale of background $\Rightarrow \ll H$

single field @ bgnd level multiple fields @ pert level ↓ Quasi-single field inflation

Why cares m~H?

- η-problem: $m \ll H \rightarrow m \sim H$
 - inflaton: may be fine tuned
 - isocurvaton: naturally m~H

A simple model

$$S_m = \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\tilde{R} + \sigma)^2 g^{\mu\nu} \partial_\mu \theta \partial_\nu \theta - \frac{1}{2} g^{\mu\nu} \partial_\mu \sigma \partial_\nu \sigma - V_{\rm sr}(\theta) - V(\sigma) \right]$$

 $f_{NL} \sim P_{\zeta}^{-1/2} \left(\dot{\theta} / H \right)^3 \left(V''' / H \right)$

$$P_{\zeta} = \frac{H^4}{4\pi^2 R^2 \dot{\theta}_0^2} \left[1 + 8\mathcal{C} \left(\frac{\dot{\theta}_0}{H} \right)^2 \right]$$

$$\mathcal{C}(\nu) \equiv \frac{\pi}{4} \operatorname{Re} \left[\int_0^\infty dx_1 \int_{x_1}^\infty dx_2 \left(x_1^{-1/2} H_{\nu}^{(1)}(x_1) e^{ix_1} x_2^{-1/2} H_{\nu}^{(2)}(x_2) e^{-ix_2} \right. \\ \left. - x_1^{-1/2} H_{\nu}^{(1)}(x_1) e^{-ix_1} x_2^{-1/2} H_{\nu}^{(2)}(x_2) e^{-ix_2} \right) \right]$$

$$\langle \delta \theta^3 \rangle \equiv \langle 0 | \left[\bar{T} \exp\left(i \int_{t_0}^t dt' H_I(t') \right) \right] \delta \theta_I^3(t) \left[T \exp\left(-i \int_{t_0}^t dt' H_I(t') \right) \right] | 0 \rangle$$

Perhaps they can be resummed, using the method by Burgess, Leblond, Holman and Shandera (2009)

$$\langle \delta \theta^3 \rangle \equiv \langle 0 | \left[\bar{T} \exp\left(i \int_{t_0}^t dt' H_I(t') \right) \right] \delta \theta_I^3(t) \left[T \exp\left(-i \int_{t_0}^t dt' H_I(t') \right) \right] | 0 \rangle$$

$$\langle \delta \theta^3 \rangle \equiv \langle 0 | \left[\bar{T} \exp\left(i \int_{t_0}^t dt' H_I(t') \right) \right] \delta \theta_I^3(t) \left[T \exp\left(-i \int_{t_0}^t dt' H_I(t') \right) \right] | 0 \rangle$$

A continuous family of shapes with continuous squeezed limit not a superposition of knowns

What if, say, local non-G detected?

Next logical step:

- if exactly local (~ $1/k^3$)

– or quasi-local (~ $1/k^{3+\delta}$, not from n_s)

QSFI: a (so far unique) model for quasi-local

$$t_{NL} \sim \max\left\{ P_{\zeta}^{-1} \left(\dot{\theta} / H \right)^4 \left(V''' / H \right)^2 , P_{\zeta}^{-1} \left(\dot{\theta} / H \right)^4 V'''' \right\}$$

Connection to feeding mechanism (Barnaby & Shandera 2011)

Part 2.1: a bit heavier

- H/M order effects modifies c_s of inflaton
- energy injection
 brings in new scale
 may have oscillations

Tolley, Wyman (09) Achucarro, et. al. (10) Jackson, Schalm (10) Chen (11), Shiu, Xu (11) Gao, Langlois, Mizuno (12) Chen, YW (12) Sasaki, Pi (12)

Part 3: Theory of the light:

- single field
- multi-field
- random dynamics

 a landscape of fields:
 Easther, McAllister (05)
 Huang, Tye (08)

Duplessis, YW, Brandenberger (12)

scale of background $\Rightarrow \ll H$

Li, YW (09), Afshordi, Slosar, YW (10) Duplessis, YW, Brandenberger (12)

Multi-stream inflation

bifurcations { under control \Rightarrow realistic models not under control \Rightarrow constraints

The nearly-symmetric case: Bifurcation scale: $\zeta = \delta N$ Smaller scales: different path, different power Their correlation: non-Gaussianity

The asymmetric case: a spot on the CMB / LSS

The disaster case:

- bifurcations with large δN
- bifurcations with domain wall

They could happen in a random potential

$$\begin{split} \ddot{\varphi}_1 + 3H\dot{\varphi}_1 + \partial_1 V(\varphi_1) + \partial_1 U(\varphi_1, \varphi_2) &= 0 , \\ \ddot{\varphi}_2 + 3H\dot{\varphi}_2 + \partial_2 U(\varphi_1, \varphi_2) &= 0 , \\ \lambda &\equiv \sqrt{\langle (\partial_1 U)^2 \rangle} / |\partial_1 V|. \end{split}$$

$$\begin{split} \delta &\equiv \varphi_2^{(A)} - \varphi_2^{(B)} \\ \ddot{\delta} + 3H\dot{\delta} + (\partial_2^2 U)\delta &= 0 \\ \partial_2^2 U &\simeq \frac{\lambda\xi\partial_1 V}{\Delta_p\varphi_2} \sin\left(\frac{2\pi\dot{\varphi}_1 t}{\Delta_p\varphi_1}\right) \end{split}$$

oscillate? or grow?

Analytical calculation

The δN problem from the constraint

The above example: 2-dim random potential

Multiple-dim random potential:
bifurcation probability still unknown
– linear scaling?
– exponential scaling?
most probable bifurcate path?

To conclude:

- the heavy ⇒ UV sensitivity from one loop
- the quasi- \Rightarrow QSFI, shape of non-G
- the light \Rightarrow bifurcations could happen

Thank you!

imesFAQ: "Your effect is " gauge artifact! canceled by counter terms! an artifact of Lorentz violating regulator! calculated on an unstable background! canceled by tadpole diagrams! wrong in the decoupling limit! wrong because it breaks scaling of dS!

Are you calculating a gauge artifact?

- General problem:
 - lack of local observables in QG
- What we calculate:
 - $\langle \zeta \zeta \rangle$ in the ζ -gauge
- What they measure?
 - comoving curvature perturbation
 - or things that are consistent
- The $\delta \phi$ gauge + transformation way:
 - interactions seems O(ε)
 - however, vacuum shakes
 - $-\zeta$ -obs + $\delta\phi$ -vac is not reasonable

Canceled by counter terms?

Our divergence: Λ^4 , $M^2\Lambda^2$

 Λ is UV cutoff in the EFT sense. It parameterize our ignorance of UV theory.

As the case of c.c. / Higgs mass hierarchy,

It is not natural that the UV completion provides counter terms to cancel them.

And fine tuning is equivalent to lowering Λ .

Artifact of Lorentz violating regulator?

Counter arguments:

- c.c. analogue
- FRW breaks Lorentz anyway
- intuition: vac fluct gravitates

Explicit example:

∫d³p / p

 $\rightarrow \int d^{3-\delta}p / p \rightarrow a^{2-\delta}\int d^{3-\delta}q / q$ (q: physical)

 $\rightarrow \sim a^{2-\delta} \delta^{-1} \sim a^2 \delta^{-1}$, where $\delta^{-1} \sim \Lambda^2$

Calculated on an unstable background?

local expansion correction Mp² Δ (H²) ~ Λ ⁴

 $\Delta(H^2) \sim H^2 \rightarrow (\Lambda / H)^4 (H^2 / Mp^2) \sim 1$

 $\rightarrow \epsilon$ (Λ / H)⁴ P ~ 1

compared with our result:

 $\Delta P / P \sim (\Lambda / H)^4 P Ne \gg \epsilon (\Lambda / H)^4 P$

our effect is perturbative \rightarrow bkgd is stable

i.e. instability of bkgd < loop

Calculated on an unstable background?

inflaton mass correction $\Delta m^2 \sim \Lambda^4$ / Mp²

 Δm breaks slow roll $\rightarrow \Delta m^2 \sim H^2$

```
\rightarrow \epsilon ( \Lambda / H )<sup>4</sup> P ~ 1
```

compared with our result:

 $\Delta P / P \sim (\Lambda / H)^4 P Ne \gg \epsilon (\Lambda / H)^4 P$

our effect is perturbative \rightarrow bkgd is stable

i.e. instability of bkgd < loop

Canceled by tadpole diagrams?

tadpole \rightarrow small

Wrong in the decoupling limit?

Asked: Mp $\rightarrow \infty$, with P fixed, or Λ / Mp fixed

Not every Mp $\rightarrow \infty$ limit is a decoupling limit

Checked decoupling limit:

(\checkmark) Mp $\rightarrow \infty$ with Λ , V fixed

(\checkmark) Mp $\rightarrow \infty$ with Λ , H fixed

 $\Delta P \sim P^2 N \log(-k\tau) \rightarrow 0$ (decouple)

Wrong because it breaks scaling of dS?

$$\frac{\Delta P_{\zeta}}{P_{\zeta}} \supset \frac{\Lambda^4}{8\pi^2 H^2 M_{\rm Pl}^2 \epsilon} \left(\frac{19}{12} + \frac{3M^2}{2\Lambda^2}\right) \ln(-2k\tau_{\rm end})$$

Assume reheat later: (a shift of τ_{end})

Then momenta k need rescaling as well.

We observe the same CMB, with

- rescaled comoving k
- the same physical k

dS scaling respected