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Another curious date coming up...

Today's Maya date: 12.19.19.17.11, 8 Chuwen, G9, 14 Mak
9 days till 13.0.0.0.0, 4 Ajaw, G9, 3 K'ank'in
(using GMT correlation constant, FAMSI) 



  

Gravitational lensing: the Cheshire Cat

 CSWA 2. Two lensing galaxies: z=0.43; left source galaxy: z=0.97; 
right source galaxy: z>1.4. [Left image: V. Belokurov et al. 2008.
Right image: Tim Burton's “Alice in Wonderland” © Disney 2010]



  

Pioneers of astrophysics 

Vesto Melvin Slipher (1875-1969),
discovered redshifts in galactic
spectra, at Lowell Observatory 
in 1912.[Picture: Lowell Obs.]

Hertzsprung-Russell diagram (1910):
stellar luminosity versus surface 
temperature from spectra,
to study stellar evolution. 



  

Pre-astrophysics: astronomy and geometry

Classical astronomy: astrometry
> Positions of stars
> Magnitudes of stars

e.g. at University of Cambridge:
Lowndean Chair of Astronomy 
and Geometry, endowed 1749

               First holder of the Lowndean Chair: 
                               Roger Long (1680-1770), 
                                built the first planetarium
                                         [Picture: Wikipedia]  



  

Gravitational lensing in a broad sense: 
heir of “classical astronomy”

At least in principle, fundamental to observational astronomy 

Applications in three interconnected fields:
> Theoretical physics: testing fundamental theory of gravity
> Astronomy: dark matter distribution, extrasolar planets
> Mathematics: singularity theory, topology

Three approaches to gravitational lensing theory:
> Geometry of null geodesics in Lorentzian manifolds
> Geometry of spatial light rays: optical geometry,
   also called Fermat geometry, optical reference geometry
> Framework used in astronomy: impulse approximation



  

Outline: “strong” gravitational lensing and topology

Introduction to history, basic theory

Gravitational lensing in astronomy: impulse approximation
> Image counting and topology, odd number theorem
> Bounds on image numbers
> Magnification invariants, Lefschetz fixed point theory

Optical geometry in general relativity:
> Schwarzschild, and singular isothermal sphere
> Image counting and the Gauss-Bonnet theorem
> Kerr-Randers optical geometry



  

Historical overview

> Einstein's first estimate of gravitational light deflection,  
   June 1911
> First calculations of gravitational lensing (unpublished), 
   April 1912: Nova Geminorum
> Eddington's 1919 solar eclipse expedition corroborating  
   the general relativity value of light deflection
> Einstein's 1936 paper on microlensing, Zwicky's 1937
   paper on strong lensing by galaxies
> First extragalactic lens system, a double quasar,
   discovered by Walsh, Carswell and Weymann in 1979

[Cf. Sauer (2008)]



  

The “true pioneer”: František Link
[Valls-Gabaud (2012): 1206.1165]

> Czech astronomer, 1906-84, discussing the first detailed 
   microlensing calculations, March 1936 (Comptes Rendus)
   and 1937, including: magnification and light curve, finite  
   source size and arclets (!)

> Compare conclusions of
Link: “It is extremely interesting to look systematically in 
all the domains of stellar astronomy for favourable 
instances where such events can take place”
Einstein, December 1936 (Science): “Of course, there is 
no hope of observing this phenomenon directly” 



  

Gravitational lensing theory

Quasi-Newtonian impulse approximation: a useful framework 
for lensing problems in astronomy, in the limit of

> Geometrical optics
> Small deflection angles
> Euclidean space(s), can be extended to cosmology
> Thin lenses, compared to the length of the light rays

Consider the parallel lens plane            and source plane
          containing deflecting masses and light sources, 

respectively, at                    .

L=ℝ2

S=ℝ2

x∈L ,y∈S



  

Gravitational lensing theory



  

Basic theory: the Fermat surface

Lensed images



  

The lensing map

Geometrical and gravitational time delay combined yields the 
Fermat potential                             given by

Then the Fermat's principle                     implies the lens 
equation

mapping (physical) images at      surjectively to the source.

The lensing map is                         .

y x : L×Sℝ

y x =
1
2
∣x−y∣2− x 

∇ y x =0

y=x−∇ x 

x⃗

 : L S ,xy



  

Image properties



  

Question: how many lensed images can occur?

Theorem:
For an isolated, non-singular gravitational lens, the number 
of lensed images of a given light source is odd.

This fact is a topological property: 
It remains true for any continuous deformation of the lens or 
source position.

Proof:
By Fermat's Principle, images are local maxima/ saddles/ 
minima of the time delay surface, so need to count critical 
points of the Fermat surface. 



  

A precursor of Morse Theory:
the idea of Cayley (1859) and Maxwell (1870)

      Arthur Cayley 
         (1821-95)

  James Clerk Maxwell
          (1831-79)
   



  

“On Hills and Dales” (1870)
and gravitational lensing

Summits (maxima) and passes:

Immits (minima) and bars:

Saddles:

Hence, the total number (e.g., of lensed images) is odd:

nsummits=n passes+1

nimmits=nbars

nsaddles=n passes+nbars

ntotal=nsummits+nimmits+nsaddles=2n saddles+1

Summit

Immit

Pass

Bar



  

More formally,

Images are non-degenerate critical points of the Morse 
function           , with Morse index     .

Theorem [Morse, 1925]. Let       be a smooth closed real 
manifold with dimension     and Euler characteristic           , 
and      non-degenerate critical points with Morse index     . 
Then

y x 



M
 M d

n



∑
=0

d

−1 n=M 



  

Closing the Fermat surface



  

The odd number theorem...

Hence from Morse theory:

Total number of images:

Therefore, the odd number theorem follows:

[Cf. Burke (1981), Petters (1995). Spacetime version: McKenzie (1985)]

nmin−nsadnmax1==2

nminnsadnmax=ntot

ntot=2nsad1



  

...seems to work!

SDSS J1004+4112. Cluster: z=0.68; quasar: z=1.73; galaxy: z=3.33.

[Image: ESA, NASA, K. Sharon, E. Ofek, also Kavli IPMU's M. Oguri!]



  

Bounds on image numbers: a simple case

Consider           coplanar point lenses with masses 
proportional to                         .

Question: what is the maximum number        of lensed images 
(of any type) that can be produced (by suitably arranging the 
lenses the plane)?

Well-known cases:

Conjecture (Rhie 2001): 
Sharpness (Rhie 2003):           equal masses in regular
                                       polygon plus tiny mass at centre. 
 

N>1

N=2:N max=5
N=3:N max=10

mi>0,1≤i≤N

N max

N−1
N max=5(N−1)



  

Bounds on image numbers: complexification

Complexify lens plane coordinates                  , and source 
plane coordinates                   .

Then the lens equation becomes                                .

Theorem [Khavinson and Neumann, 2005]: Let 
                              be a rational harmonic function, then

proving Rhie's conjecture, sharpness provided by Rhie's 
result - a case of astronomy informing mathematics!

 

z=x1+ix2

w= z−∑i=1

N mi

z̄− z̄i

number ( z : r ( z)− z̄=0)≤5(N−1)

r( z) , deg r=N>1

w= y1+iy2



  

Bounds on image numbers

Expository article:

Khavinson and Neumann: 
Not. Amer. Math. Soc. 55 
(2008), 666

Research paper:

Khavinson and Neumann: 
Proc. Amer. Math. Soc. 134 
(2005), 1077



  

Properties of image magnification

Due to Liouville's theorem, the intensity obeys

Achromaticity of gravity:                 (cosmology ignored here) 

Hence flux is proportional to solid angle, and the signed 
image magnification is

                             

                                       where

The sign defines image parity.

I  /
3=const.

=const.

= 1
det Jac  Jac  = ∂ y1∂ x1

∂ y1
∂ x2

∂ y2
∂ x1

∂ y2
∂ x2





  

Properties of image magnification

The critical set              of the lensing map is defined by    
                       in     , corresponding to infinite 
magnification    .

The critical set is mapped to caustics in     by the lensing 
map,                                     .

Caustics delimit domains of constant image number in    .

According to singularity theory, only certain types of 
caustics occur generically.

L

S



Crit  

Caustic = Crit  

det Jac  =0

S



  

Singularities: the cusp caustic



  

Singularities: big caustic of the elliptic umbilic



  

Singularities: big caustic of the swallowtail



  

The flux ratio anomaly: an astronomical problem...

Gravitational lens system 
CLASS B2045+265:

Quasar at z=1.28 lensed by 
galaxy at z=0.87, in H band.

Indicative of substructure?

[Cf. Fassnacht et al. (1999), Koopmans 
et al. (2003), Keeton et al. (2003), 
McKean et al. (2007). Image: 
CASTLES lensing database]

 A BC
∣ A∣∣ B∣∣C∣

=0.51



  

...inspires a mathematical question: 
What are magnification invariants?

A constant sum of signed image magnifications, for

>   Source near caustic, in maximal caustic domain

>   Subset of      images of the caustic multiplet

>   Independent of lens model: genericity of caustics

Well-known for folds and cusps, recently extended to 
higher singularities by Aazami and Petters:

[Blandford & Narayan (1986), Schneider & Weiss (1992), Aazami & 
Petters (2009, 2010), Aazami, Petters & Rabin (2011). Application of 
Lefschetz: Werner (2009)]

∑
i=1

n

 i=0

n



  

Is there a topological interpretation?
Lefschetz fixed point formalism



  

Lefschetz and lensing

F :ℂ P2ℂ P2

f :M M
f

L= ∑
Fix  f 



f :ℂ2ℂ2

Fix Fℂ2=Fix  f 

Given                 , then Lefschetz fixed point theory connects 
local fixed point indices      with a global property of     on      ,
the Lefschetz number (a homotopy invariant):

Recast the lens equation as a holomorphic map                      
such that             in the maximal caustic domain are the real 
(physical) images. Then it turns out that the fixed point index

Homogenize to extend      to a map                          such that

Fix  f 



f

M

= 1
det  I−D  f 

=



  

Explaining (some) magnification invariants

Applying the holomorphic Lefschetz fixed point formula,

yields the result [Werner 2009, currently working on extension].

1=Lhol F = ∑
Fix F 

1
det  I−D F 

= ∑
Fix Fℂ2

1
det  I−D F 

 ∑
Fix F ℂP 1

1
det  I−DF 

=∑
Fix ( f )

1
det ( I−D( f ))

+1

=∑
i=1

n

 i1



  

So what have we learnt with this?

> A successful topological explanation of a subset of the
  currently known magnification invariants, and the first 
  application of Lefschetz fixed point theory in astronomy 

> Connecting magnification invariants with topology will help
   understanding an astronomically important question: under 
   which perturbations of the lens model do the invariants
   continue to hold (i.e., are applicable in a real situation)   

> Can this approach be extended to all magnification
   invariants? Connecting geometrical quantities at critical
   points with topology: an interesting problem in algebraic
   geometry and topology



  

Solomon Lefschetz

Born 1884 in Moscow, died 
1972 in Princeton, NJ.

Engineering in Paris, then 
emigration to USA at 21.

Turned to mathematics after 
accident. PhD at Clark, MA, in 
1911.

A founding father of algebraic 
topology, in Topology (AMS, 
1930).

[Picture: from the St. Andrews, UK, 
History of Mathematics Site]



  

Optical geometry

Also called Fermat geometry and optical reference 
geometry:
Metric manifold whose geodesics are the spatial 
projections of spacetime null geodesics, by Fermat's 
principle

Useful for the study of
> Inertial forces in general relativity [e.g.,  Abramowicz, Carter & 
     Lasota (1988)]
> Gravitational lensing: deflection angle, multiple images
   and topology, using Gauss-Bonnet [c.f. Gibbons 1993, 
     Gibbons & Werner (2008), Werner (2012)]

Static spacetime: Riemannian optical geometry
Stationary spacetime: Finslerian optical geometry



  

Optical geometry of static spacetimes

Consider a static spacetime             with chart             
and line element

The coordinate time along spatial projections of null 
curves obeys

with optical metric

whose geodesics are spatial light rays, by Fermat's 
principle.

ds2=g  dx
 dx

M , g 

dt 2=gab
opt dxadxb

gab
opt=gab /−g tt 

x=t , xa



  

Optical geometry of Schwarzschild

Given the line element of the Schwarzschild solution in 
Schwarzschild coordinates,

the metric of the optical geometry can be read off from

ds2=−1− 2r dt 21− 2r 
−1

dr 2r 2 d 2sin2d2 

dt 2=1− 2r 
−2

dr 21− 2r 
−1

r 2 d 2sin2d2 



  

Optical geometry of Schwarzschild

Isometric embedding of the equatorial plane              in
      , thick line indicates the photon sphere at             .

=/2
r=3ℝ3



  

Lensing in this optical geometry

Geodesics on this surface correspond to spatial light rays.
However, the Gaussian curvature at every point 

so geodesics must locally diverge.

Then how can two light rays from a light source refocus at 
the observer, so that the two images of the Schwarzschild 
lens are obtained?  

K0



  

Gravitational lensing and Gauss-Bonnet

Consider a region        of a totally geodesic surface (e.g., the 
equatorial plane of Schwarzschild) in the optical geometry, 
with Euler characteristic          ,  Gaussian curvature      ,        
the boundary curve           with geodesic curvature       and 
exterior jump angles       at vertices. 

Then the Gauss-Bonnet theorem says

K


A

∬A
K dA+∫∂ A κdt+∑

i

ϵi=2π χ(A)

χ(A)

ϵi
∂ A



  

Gravitational lensing and Gauss-Bonnet

Consider a region       in       bounded by two geodesics         
from light source       to the observer      , enclosing the lens   
surrounded by the closed photon orbit        as inner boundary. 
The geodesics intersect at angles            at     and          at     .
The exterior jump angles at the vertices       and      are            
                   and                    respectively. 

Also, consider a region        in        bounded by        and a 
circle segment         between       and      centered on      ,  
such that                           and                     . 

1,2

δS>0

AL
L

AR

AL∩AR=γ1

γR S

O
 L

δO>0

r(S )=r (O)=R

ϵS=π−δS ϵO=π−δO

A 1

S

LO

S O
S O

A



  

Gravitational lensing and Gauss-Bonnet



  

Image multiplicity and Gauss-Bonnet

Suppose, for the moment, that the lens              is             
non-singular so that       is  topologically simply connected 
with                .

Since                            , Gauss-Bonnet implies that

However, if            then                    is impossible.
Hence, the occurence of multiple images requires either
> non-trivial topology of the surface, or
> a region with positive Gaussian curvature.

δS+δO=∬AL

K dA

L∈AL

χ(AL)=1

K0 δS+δO>0

1=2=0

AL



  

 Image multiplicity and Gauss-Bonnet

In fact, the Schwarzschild lens is singular, with                .
Since                                       , 

is possible even if           .

Hence, the non-trivial topology of         is essential for two 
lensed images to occur.

δS+δO=2π+∬AL

K dA>0

AL

χ(AL)=0

K0

1=2=L=0



  

Deflection angle and Gauss-Bonnet

Now consider region        with                  and                on 
its geodesic boundary. 

As the radius of the circular perimeter             , the exterior 
jump angles at source and observer become                       .
Hence,

where       is the asymptotic deflection angle. Since
                     we obtain

where         is the infinite region bounded by        and 
excluding the lens. 

∫0
π+α

κ(γR)
dt
d ϕ

d ϕ−π=−∬AR

K dA

R→∞

χ(AR)=1

ϵS=ϵO→π/2

κ(γR)→1/R

1=0

A∞ 1

α=−∬A∞
K dA

α

AR



  

Application to Schwarzschild

Computing the Gaussian curvature of the equatorial plane 
in the optical geometry,

To evaluate the leading term of the asymptotic deflection 
angle, take the line                         as first approximation of  
      bounding       . Hence,

as required. Higher order terms can be computed 
iteratively.

α=−∬A∞
K dA≈∫0

π

∫ b
sin ϕ

∞ 2μ
r2
dr d ϕ=

4μ
b

r =b /sin

K dA=−
2μ
r2 (1−

2μ
r )

−3/2

(1−3μ2 r )dr d ϕ

A∞1



  

Application to the singular isothermal sphere

The singular isothermal sphere with mass density

is a simple (non-relativistic) model for a galaxy with velocity 
dispersion     . Computing the optical metric, the Gaussian 
curvature of the equatorial plane is                   .

An isometric embedding in        with cylindrical coordinates  
              ,  i.e. setting 

yields a cone             
z R=8

2−36 4

1−6 2
R



r = 2

2Gr 2

ℝ3

R , z ,
dt2=dz r 2dR r 2R r 2d2

K r0=0



  

Application to the singular isothermal sphere

Using the Gauss-Bonnet method as before, the leading term of 
the asymptotic deflection angle is

which is constant, and half the cone's deficit angle                .

Notice the similarity with gravitational lensing by cosmic 
strings, with mass per unit length       . The deflection angle is 
likewise constant,

and also half the deficit angle of the conic spacetime,              

 S

α≈4πσ2

α≈4πGμS

ε≈8πGμS

ε≈8πσ2



  

Optical geometry of Kerr

In Boyer-Lindquist coordinates                              , the Kerr 
solution is 

defining as usual                             and                            . 
Solving for the optical geometry, one finds

where       is a Riemannian metric and      a one-form.

Hence, the optical geometry here is not Riemannian.

ds2=−
2
dt−a sin2d2 sin

2
2

r2a2d−adt 2

t , xi , xi=r , ,


2

 dr 22d 2

2=r2a2cos2=r2−2 ra2

dt=F  x ,dx =aij  xdxi dx jbi x dx
i

biaij



  

Finsler geometry

A Finsler manifold             , writing           and               , has a 
real, non-negative, smooth function                      which is 
positively homogeneous of degree one in       and convex 
such that the Hessian

is positive definite. Hence, by homogeneity,

The deviation from Riemann can be characterized with the 
Cartan tensor     

F 2 x , X =g ij x , X X
i X j

g ij  x , X =
1
2
∂2 F 2 x , X 
∂ X i∂ X j

F :TM ℝ0


x∈M X ∈T xM

C ijk x , X =
1
2

∂ g ij x , X 

∂ X k

M , F 

X



  

Kerr-Randers optical geometry

The Kerr optical geometry is defined by a Finsler metric of 
Randers type,

provided                                for non-negativity and convexity, 
translating to the condition

which holds precisely outside the ergoregion.

The equatorial plane                is geodesically complete, with 
optical metric

F  x , dx =aij  x dx idx jbi  xdx
i

aij x bi  xb j  x 1

(2μar sinθ)2

Δρ4
<1

=/2

F r , , drdt , ddt = r 4

 −a2  drdt 
2

 r 4
−a22  ddt 

2

− 2 a r
−a2

d
dt



  

Geodesics in Finsler geometry

The Hessian can be used to define vector duals,

an inverse such that 

and hence formal Christoffel symbols

which reduce to Levi-Civita connection components if the 
Cartan tensor vanishes.

Then arc-length parametrized geodesics       in            , so 
that                     , can be written

vi=g ij  x , X  X
j

g ij  x , X  g
jk  x , v =i

k

 jk
i x , X = 1

2
g il  x , v  ∂ g lj  x , X ∂ xk


∂ g lk x , X 

∂ x j
−
∂ g jk x , X 

∂ xl 

ẍi jk
i  x , ẋ  ẋ j ẋk=0

F

dt=F  x ,dx 
M , F 



  

Gauss-Bonnet method for Kerr-Randers: 
applying Nazım's construction

In             , choose a non-zero smooth vector field           such 
that                  . Then the Hessian can be converted to a 
Riemannian metric thus,

with compatible Levi-Civita connection       . While geometric 
quantities depend on the choice of vector field,        is also a 
geodesic of             since

so angles defined along it do not depend on that choice. 

Hence the deflection angle of      can be computed in            , 
the osculating Riemannian manifold, using the Gauss-Bonnet 
method as discussed above.  [Cf. Nazım (1936), Werner (2012)]

X F = ẋ
M , F 

M , g 

g ij  x =g ij  x , X x 

X  x 

0= ẍi jk
i x , ẋ  ẋ j ẋk= ẍi jk

i x  ẋ j ẋk

 jk
i

F

F M , g 



  

Lensing and Gauss-Bonnet in Kerr-Randers



  

Concluding remarks

Topology plays an important role in gravitational lensing, e.g.
>  constraining image number: Morse theory and the odd     
     number theorem, optical geometry and Gauss-Bonnet
>  explaining certain magnification invariants in terms of  

Lefschetz fixed point theory

Some open problems:
>  Can the Lefschetz fixed point formalism be applied to  
     all magnification invariants? Are there spacetime  
     versions of magnification invariants
>  Find an intrinsically Finslerian description of lensing in   

the Kerr-Randers optical geometry, e.g. with a Finsler  
version of Gauss-Bonnet



  

Opening remarks

>  Math-Astro Seminars, a new joint series. In 2011/12:
    5 introductory lectures on lensing theory and geometry in
    the fall semester, 4 specialized lectures on research topics  
    in lensing theory in the spring semester.
    To be continued and broadened in 2013

>  New postdoc Amir Aazami (Mathematics, Duke University)
    arriving in January 2013: mathematical theory of lensing

>  A symposium on “Gravity and Light in Non-Lorentzian
    Geometries” planned for 30 September- 3 October 2013.
    Invited speakers include Gary Gibbons (Cambridge)
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