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Another curious date coming up...

Today's Maya date: 12.19.19.17.11, 8 Chuwen, G9, 14 Mak
9 days till 13.0.0.0.0, 4 Ajaw, G9, 3 K'ank'in
(using GMT correlation constant, FAMSI)



Gravitational lensing: the Cheshire Cat

CSWA 2. Two lensing galaxies: z=0.43; left source galaxy: z=0.97;
right source galaxy: z>1.4. [Left image: V. Belokurov et al. 2008.

Right image: Tim Burton's “Alice in Wonderland” © Disney 2010]



Pioneers of astrophysics

Vesto Melvin Slipher (1875-1969),
discovered redshifts in galactic
spectra, at Lowell Observatory

IN 1912.[Picture: Lowell Obs.]

Hertzsprung-Russell diagram (1910):
stellar luminosity versus surface
temperature from spectra,

to study stellar evolution.




Pre-astrophysics: astronomy and geometry

Classical astronomy: astrometry
> Positions of stars
> Magnitudes of stars

e.g. at University of Cambridge:
Lowndean Chair of Astronomy
and Geometry, endowed 1749

First holder of the Lowndean Chair:
Roger Long (1680-1770),
built the first planetarium

[Picture: Wikipedia]




Gravitational lensing in a broad sense:
heir of “classical astronomy”

At least in principle, fundamental to observational astronomy

Applications in three interconnected fields:
> Theoretical physics: testing fundamental theory of gravity
> Astronomy: dark matter distribution, extrasolar planets
> Mathematics: singularity theory, topology

Three approaches to gravitational lensing theory:
> Geometry of null geodesics in Lorentzian manifolds
> Geometry of spatial light rays: optical geometry,
also called Fermat geometry, optical reference geometry
> Framework used in astronomy: impulse approximation



Outline: “strong” gravitational lensing and topology

Introduction to history, basic theory

Gravitational lensing in astronomy: impulse approximation
> Image counting and topology, odd number theorem
> Bounds on image numbers
> Magnification invariants, Lefschetz fixed point theory

Optical geometry in general relativity:
> Schwarzschild, and singular isothermal sphere
> Image counting and the Gauss-Bonnet theorem
> Kerr-Randers optical geometry



Historical overview

> Einstein's first estimate of gravitational light deflection,
June 1911

> First calculations of gravitational lensing (unpublished),
April 1912: Nova Geminorum

> Eddington’s 1919 solar eclipse expedition corroborating
the general relativity value of light deflection

> Einstein's 1936 paper on microlensing, Zwicky's 1937
paper on strong lensing by galaxies

> First extragalactic lens system, a double quasar,
discovered by Walsh, Carswell and Weymann in 1979

[Cf. Sauer (2008)]



The “true pioneer”: Frantisek Link
[Valls-Gabaud (2012): 1206.1165]

> Czech astronomer, 1906-84, discussing the first detailed
microlensing calculations, March 1936 (Comptes Rendus)
and 1937, including: magnification and light curve, finite
source size and arclets (!)

> Compare conclusions of
Link: “/t is extremely interesting to look systematically in
all the domains of stellar astronomy for favourable
Instances where such events can take place”
Einstein, December 1936 (Science): “Of course, there is
no hope of observing this phenomenon directly”



Gravitational lensing theory

Quasi-Newtonian impulse approximation: a useful framework
for lensing problems in astronomy, in the limit of

> (Geometrical optics

> Small deflection angles

> Euclidean space(s), can be extended to cosmology
> Thin lenses, compared to the length of the light rays

Consider the parallel lens plane [ =IR* and source plane
S=IR? containing deflecting masses and light sources,
respectively, at xelL,yeS .



Gravitational lensing theory

Source Plane Lens Plane



Basic theory: the Fermat surface

Time Delay
¢ (X)
Lensed images -
Lens Plane X



The lensing map

Geometrical and gravitational time delay combined yields the
Fermat potential ¢_(%):LxS—IR given by

Then the Fermat's principle V &, (%)=0 implies the lens
equation

Y ()
mapping (physical) images at x surjectively to the source.

The lensingmapis n:L—-S5,x—- 7 .



Image properties
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Question: how many lensed images can occur?

Theorem:

For an isolated, non-singular gravitational lens, the number
of lensed images of a given light source is odd.

This fact is a topological property:
It remains true for any continuous deformation of the lens or
source position.

Proof:

By Fermat's Principle, images are local maxima/ saddles/
minima of the time delay surface, so need to count critical
points of the Fermat surface.



A precursor of Morse Theory:
the idea of Cayley (1859) and Maxwell (1870)

Arthur Cayley James Clerk Maxwell
(1821-95) (1831-79)



“On Hills and Dales” (1870)
and gravitational lensing

Summits (maxima) and passes:

=k

summits passes

Immits (minima) and bars:

n

n

immits n bars

Saddles: n

saddles — n passes +n bars

Hence, the total number (e.g., of lensed images) is odd:

n —n +n, a nsaddles i 2nsaddles i 1

total — " summits immits



More formally,

Images are non-degenerate critical points of the Morse
function ¢_(x), with Morse index A .

Theorem [Morse, 1925]. Let M be a smooth closed real
manifold with dimension d and Euler characteristic x (M) ,
and n, non-degenerate critical points with Morse index A .
Then E

Z ny\ X (M)

A=0



Closing the Fermat surface

Time Delay




The odd number theorem...

Hence from Morse theory:

g e e + 1= ="2

min

Total number of images:

nmin_l_nsad—l_nmax:ntot

Therefore, the odd number theorem follows:

ntotzznsad_l_l

[Cf. Burke (1981), Petters (1995). Spacetime version: McKenzie (1985)]



...seems to work!

\ #| ensed
Quasar

SDSS J1004+4112. Cluster: z=0.68; quasar: z=1.73; galaxy: z=3.33.
[Image: ESA, NASA, K. Sharon, E. Ofek, also Kavli IPMU's M. Oguri!]



Bounds on image numbers: a simple case

Consider N>1 coplanar point lenses with masses
proportional to m.>0,1<i<N .

Question: what is the maximum number N of lensed images
(of any type) that can be produced (by suitably arranging the
lenses the plane)?

Well-known cases: N=2:N,, =5
N=3:N__=10

Conjecture (Rhie 2001): N, . =5(N—1)
Sharpness (Rhie 2003): N —1 equal masses in regular
polygon plus tiny mass at centre.



Bounds on image numbers: complexification

Complexify lens plane coordinates z=x,+ix, , and source
plane coordinates w=y, +iy, .

N m.

1

Then the lens equation becomes w=z—)

iz =

l

Theorem [Khavinson and Neumann, 2005]: Let
r(z),degr=N>1 be a rational harmonic function, then

number (z:r(z)—z=0)<5(N—1)

proving Rhie's conjecture, sharpness provided by Rhie's
result - a case of astronomy informing mathematics!



Bounds on image numbers

Expository article:

Khavinson and Neumann:
Not. Amer. Math. Soc. 55
(2008), 666

From the Fundamental
Theorem of Algebra

to Astrophysics:

A *Harmonious” Path

Dmitry Khavinson and Genevra Neumann

Research paper:

Khavinson and Neumann:
Proc. Amer. Math. Soc. 134
(2005), 1077

he fundamental theorem of algebra

(FTA) tells us that every complex

polynomial of degree n has precisely

n complex roots. The first published

proofs (including those of J. d’Alembert
in 1746 and C. F. Gauss in 1799) of this conjecture
from the seventeenth century had flaws, though
Gauss’s proof was generally accepted as correct
at the time. Gauss later published three correct
proofs of the FTA (two in 1816 and the last
presented in 1849). It has subsequently been
proved in a multitude of ways, using techniques
from analysis, topology, and algebra; see [Bur 07],
[FR 97], [Re91], [KP02], and the references
therein for discussions of the history of FTA
and various proofs. In the 1990s T. Sheil-Small
and A. Wilmshurst proposed to extend FTA to
a larger class of polynomials, namely, harmonic
polynomials. (A complex polynomial h(x,y) is
called harmonic if it satisfies the Laplace equation
A =0, where A :=22/dx? + 3%/dy?.)

A simple complex-linear change of variables
z=x+1y,Z = x — iy allows us to write any com-
plex valued harmonic polynomial of two variables
in the complex form

h(z) := p(z) - q(2)
where p, g are analytic polynomials. While includ-
ing terms in Z looks harmless, the combination of
these terms with terms in z can have drastic effects.

Dmitry Khavinson is professor of mathematics at the
University of South Florida, Tampa. His email address
is dkhavins@cas.usf.edu. He gratefully acknowledges
partial support from the National Science Foundation un-
der the grant DMS-0701873.

Genevra Neumann is assistant professor of mathematics
at the University of Northern Iowa, Cedar Falls. Her email
address is neumann@nath. uni.edu.

NOTICES OF THE AMS

Indeed, the harmonic polynomial h(z) = z" —z"
has an infinite number of zeros (the zero set
consists of n equally spaced lines through the
origin). In 1992 Sheil-Small conjectured that if
n:=deg p > m = deg q, then h has at most n?
zeros, In 1994 Wilmshurst found a more general
sufficient condition for h to have a finite num-
ber of zeros and settled this conjecture using
Bézout's theorem from algebraic geometry. While
Wilmshurst’s bound on the number of zeros is
sharp, he also conjectured a smaller bound when
the degrees of p and g differ by more than one.

In 2001 the first author and G. Swigtek [KS 03]
proved that the bound in Wilmshurst’'s conjecture
held for the case of f(z) = p(z) — Z. Because this
proof involves complex dynamics, it is natural to
wonder whether this approach can be extended to
find a bound on the number of zeros of the ration-
al harmonic function f(z) = p(z)/q(2) — 2. The
authors explored this question in 2003 [KN 06].
After posting a preprint, we learned that this
bound settles a conjecture of S. H. Rhie concern-
ing gravitational lensing. More precisely, it gives
the maximal possible number of images of a light
source (such as a star or a galaxy) that may occur
due to the deflection of light rays by some massive
obstacles. Even more surprising, Rhie had already
shown that this bound is attained.

In this expository article we give a brief intro-
duction to gravitational lensing. We also describe
necessary background concerning harmonic poly-
nomials and Wilmshurst’s conjecture, as well as
related results. We then discuss the ideas behind
the proofs and also look at the question of sharp-
ness. We close with a discussion of several possible
directions for further study.

VOLUME 55, NUMBER 6



Properties of image magnification

Due to Liouville's theorem, the intensity obeys 1,/v’=const.
Achromaticity of gravity: v=const. (cosmology ignored here)

Hence flux is proportional to solid angle, and the signed
Image magnification is

1 Gy OV
i OXq. -~ Gl
U— = 1 2

det Jac(n) where Jac(n) oy

C XSG

The sign defines image parity.



Properties of image magnification

The critical set Crit(n) of the lensing map is defined by
det Jac(n)=0 in L , corresponding to infinite
magnification p .

The critical set is mapped to caustics in S by the lensing
map, Caustic(n)=n(Crit(n)) -

Caustics delimit domains of constant image numberin § .

According to singularity theory, only certain types of
caustics occur generically.



Singularities: the cusp caustic




Singularities: big caustic of the elliptic umbilic




Singularities: big caustic of the swallowtail




The flux ratio anomaly: an astronomical problem...

Gravitational lens system
CLASS B2045+265: Cleaned

Quasar at z=1.28 lensed by
galaxy at z=0.87, in H band.

+H gt
LBl A0
|HA|+|HB|+|UC|

Indicative of substructure?

[Cf. Fassnacht et al. (1999), Koopmans
et al. (2003), Keeton et al. (2003),

McKean et al. (2007). Image: CASTLES
CASTLES lensing database]




...Inspires a mathematical question:
What are magnification invariants?

A constant sum of signed image magnifications, for

> Source near caustic, in maximal caustic domain

> Subset of » images of the caustic multiplet

> |ndependent of lens model: genericity of caustics

Well-known for folds and cusps, recently extended to
higher singularities by Aazami and Petters:

Z ;=0
i=1

[Blandford & Narayan (1986), Schneider & Weiss (1992), Aazami &
Petters (2009, 2010), Aazami, Petters & Rabin (2011). Application of
Lefschetz: Werner (2009)]



Is there a topological interpretation?
Lefschetz fixed point formalism

f(x)

&
-9

V-' =+1
Vo =1
V3 =+1




Lefschetz and lensing

Given f: M — M , then Lefschetz fixed point theory connects
local fixed point indices v with a global property of f on M,
the Lefschetz number (a homotopy invariant):

L=Zv

e £}

Recast the lens equation as a holomorphic map f:C°— C’
such that Fix( /) in the maximal caustic domain are the real

(physical) images. Then it turns out that the fixed point index
1

YR
Homogenize to extend f toamap F:C pP*—C P> such that
Fix(F.)=Fix(f)




Explaining (some) magnification invariants

Applying the holomorphic Lefschetz fixed point formula,

]
1= Ll Z det (I —D(F))

Fix(F)

1 1
:FD; det([ D<F>)+mZ der (Il

(D

7 R

i) det (1= D(f))

Z W+ 1
i=1

yields the result [werner 2009, currently working on extension].

S



So what have we learnt with this?

> A successful topological explanation of a subset of the
currently known magnification invariants, and the first
application of Lefschetz fixed point theory in astronomy

> Connecting magnification invariants with topology will help
understanding an astronomically important question: under
which perturbations of the lens model do the invariants
continue to hold (i.e., are applicable in a real situation)

> Can this approach be extended to all magnification
invariants? Connecting geometrical quantities at critical
points with topology: an interesting problem in algebraic
geometry and topology



Solomon Lefschetz

Born 1884 in Moscow, died
1972 in Princeton, NJ.

Engineering in Paris, then
emigration to USA at 21.

Turned to mathematics after
accident. PhD at Clark, MA, in
1911.

A founding father of algebraic
topology, in Topology (AMS,
1930).

[Picture: from the St. Andrews, UK,
History of Mathematics Site]




Optical geometry

Also called Fermat geometry and optical reference
geometry:
Metric manifold whose geodesics are the spatial

projections of spacetime null geodesics, by Fermat's
principle

Useful for the study of

> Inertial forces in general relativity [e.g., Abramowicz, Carter &
Lasota (1988)]

> Gravitational lensing: deflection angle, multiple images

and topology, using Gauss-Bonnet [c.f. Gibbons 1993,
Gibbons & Werner (2008), Werner (2012)]

Static spacetime: Riemannian optical geometry
Stationary spacetime:  Finslerian optical geometry



Optical geometry of static spacetimes

Consider a static spacetime (M, g) with chart x"=(z, x“)
and line element

iR

The coordinate time along spatial projections of null
curves obeys dt’ = o dx’ dx’

with optical metric g%'=g.,/(—g,)

whose geodesics are spatial light rays, by Fermat's
principle.



Optical geometry of Schwarzschild

Given the line element of the Schwarzschild solution in
Schwarzschild coordinates,

E 1

_2H) 524,24 0%+sin?0d ¢

4

L2
r

ds” =— dt*+

the metric of the optical geometry can be read off from

=1

el r2|d 0 +sin*0d ¢

r




Optical geometry of Schwarzschild

Isometric embedding of the equatorial plane 0=1t/2 in
IR’, thick line indicates the photon sphere at »=3u .



Lensing in this optical geomeftry

Geodesics on this surface correspond to spatial light rays.
However, the Gaussian curvature at every point

K <0

so geodesics must locally diverge.

Then how can two light rays from a light source refocus at
the observer, so that the two images of the Schwarzschild

lens are obtained?



Gravitational lensing and Gauss-Bonnet

Consider aregion 4 of a totally geodesic surface (e.g., the
equatorial plane of Schwarzschild) in the optical geometry,
with Euler characteristic x(4), Gaussian curvature K |,

the boundary curve 04 with geodesic curvature k and
exterior jump angles ¢. at vertices.

Then the Gauss-Bonnet theorem says

IJ [Kda+ ], xdi+3 e=2nx(4)



Gravitational lensing and Gauss-Bonnet

Consider a region 4, in A bounded by two geodesics Y, vy,
from light source S to the observer O , enclosing the lens L
surrounded by the closed photon orbit y, as inner boundary.
The geodesics intersect at angles 6,>0 at S ando,>0at O.
The exterior jump angles at the vertices S and O are
e,=nt—90, and e,=n—9, respectively.

Also, consider aregion 4, in 4 boundedby Yy, anda
circle segment ¥z between O and § centeredon L |
such that 7(S)=r(O)=R and 4,NA4,=Y, .



Gravitational lensing and Gauss-Bonnet

-'".-
e
-



Image multiplicity and Gauss-Bonnet

Suppose, for the moment, that the lens L€ 4, is

non-singular so that 4, is topologically simply connected
with x(4,)=1.

Since k(y,)=k(y,)=0 , Gauss-Bonnet implies that
d5+08,=J] , KdA

However, if K<0 then 04+0,>0 isimpossible.
Hence, the occurence of multiple images requires either
> non-trivial topology of the surface, or

> a region with positive Gaussian curvature.



Image multiplicity and Gauss-Bonnet

In fact, the Schwarzschild lens is singular, with x(4,)=0 .
Since k(y,)=k(y,)=k(y,)=0,

8+8,=2m+ ||, K da>0

IS possible even if K<0 .

Hence, the non-trivial topology of 4, is essential for two
lensed images to occur.



Deflection angle and Gauss-Bonnet

Now consider region A4, with ¥ (4,)=1 andk(y,)=0 on
Its geodesic boundary.

As the radius of the circular perimeter R — o | the exterior
jump angles at source and observer become €;=€,—n/2 .

Hence, ¥
fo i (y )d—q)dq) T=— H K dA
where o is the asymptotic deflection angle. Since
x(y,)—1/R we obtain
= , ka4

where A, is the infinite region bounded by ¥: and
excluding the lens.



Application to Schwarzschild

Computing the Gaussian curvature of the equatorial plane
In the optical geometry,

_2py
4

K = wh
i

To evaluate the leading term of the asymptotic deflection
angle, take the line r($)=>b/sin¢ as first approximation of
Y1 bounding A4, . Hence,

a=—[f, kKaa~[.[", 2Mdrdq)—47M

sin ¢

as required. Higher order terms can be computed
iteratively.



Application to the singular isothermal sphere

The singular isothermal sphere with mass density

)
0)

_21'( Gr’

IS a simple (non-relativistic) model for a galaxy with velocity
dispersion o. Computing the optical metric, the Gaussian

curvature of the equatorial plane is K(r>0)=0.

p(7)

An isometric embedding in IR’ with cylindrical coordinates
(R,z,d), i.e. setting
dt’=dz(r)’+dR(rV+R(r)d o’

: 2 4
yields a cone z(R)z\/SU —3620 »
6y



Application to the singular isothermal sphere

Using the Gauss-Bonnet method as before, the leading term of
the asymptotic deflection angle is

2
a~4mo

which is constant, and half the cone's deficit angle e~8TO”

Notice the similarity with gravitational lensing by cosmic
strings, with mass per unit length 1 . The deflection angle is
likewise constant,

a~4mnGug

and also half the deficit angle of the conic spacetime, e~8m G ug



Optical geometry of Kerr

In Boyer-Lindquist coordinates (¢,x'), x'=(r,0, $), the Kerr
solution is

ds2:_pé<dt asin?0d ¢ )+ 81229((r2+a2)dc|>—adt)2
2
P 2 R )
4 e Gl
A

defining as usual A=r"—2ur+a” and p’=r’+a’cos 0 .
Solving for the optical geometry, one finds

G /) \/ay )dx' dx’+b,(x)dx’
where a; is a Riemannian metric and 5, a one-form.

Hence, the optical geometry here is not Riemannian.



Finsler geometry

A Finsler manifold (M, F), writing xe M and X €T M, has a
real, non-negative, smooth function F:7M —IR; which is

positively homogeneous of degree one in X and convex
such that the Hessian 1 8 F(x, X)

T — . :
4 ) 1 Ve

IS positive definite. Hence, by homogeneity,

0 — o (x,

The deviation from Riemann can be c(harac)terized with the
Cartan tensor en 1
Cl-jk<x,X)=5 éXk




Kerr-Randers optical geometry

The Kerr optical geometry is defined by a Finsler metric of
Randers type,

SR \/al] Vdx' dx’ +b.(x)dx’

provided a’ (x)b,(x)b, ( il for non-negativity and convexity,

translating to the condition
(2warsin®)’

Ap’
which holds precisely outside the ergoregion.

<1

The equatorial plane 6=1/2 is geodesically complete, with

optical metric . ;
o dr dc|> r dr T r*A do| 2parddd
Sl Al A=) dt A — o Jnid NGl ol



Geodesics in Finsler geometry

The Hessian can be used to define vector duals,
Vi:gy'<x’X>X]
an inverse such that
gij<x’ X)g

(=0

1

; | Bl 8gl.(x,X) aglk<x’X) ag'k(x’X>
o x , X 3 ol - —
(%, X) D 3 0 x" 2 Ox'

which reduce to Levi-Civita connection components if the
Cartan tensor vanishes.

and hence formal Chri(toffel symbols

Then arc-length parametrized geodesics Y in(M, F), so
that dt=F (x,dx), can be written

R (s =0



Gauss-Bonnet method for Kerr-Randers:
applying Nazim's consftruction

In (M, F), choose a non-zero smooth vector field X (x) such
that X (y,.)=x . Then the Hessian can be converted to a
Riemannian metric thus, 1
g_ij<x):gij<x’ X<x))

with compatible Levi-Civita connection I'’;, . While geometric
guantities depend on the choice of vector field, Y is also a
geodesic of (M, g) since

G = & H () i
so angles defined along it do not depend on that choice.

Hence the deflection angle of ¥ can be computed in (M, g),
the osculating Riemannian manifold, using the Gauss-Bonnet
method as discussed above. [Cf. Nazim (1936), Werner (2012)]



Lensing and Gauss-Bonnet in Kerr-Randers

S



Concluding remarks

Topology plays an important role in gravitational lensing, e.qg.

> constraining image number: Morse theory and the odd
number theorem, optical geometry and Gauss-Bonnet

> explaining certain magnification invariants in terms of
Lefschetz fixed point theory

Some open problems:

> Can the Lefschetz fixed point formalism be applied to
all magnification invariants? Are there spacetime
versions of magnification invariants

> Find an intrinsically Finslerian description of lensing in
the Kerr-Randers optical geometry, e.g. with a Finsler
version of Gauss-Bonnet



Opening remarks

> Math-Astro Seminars, a new joint series. In 2011/12:
9 introductory lectures on lensing theory and geometry in
the fall semester, 4 specialized lectures on research topics
In lensing theory in the spring semester.
To be continued and broadened in 2013

> New postdoc Amir Aazami (Mathematics, Duke University)
arriving in January 2013: mathematical theory of lensing

> A symposium on “Gravity and Light in Non-Lorentzian
Geometries” planned for 30 September- 3 October 2013.
Invited speakers include Gary Gibbons (Cambridge)
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