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Part IPart I

� Motivation: quantifying the number of degrees 
of freedom in odd dimensions

� Relation to entanglement entropy

� Brief review of 3d susy QFT

� Exactly calculating F



Part IIPart II

� Motivation: non-perturbative exact results from non-
renormalizable field theories                  

Also AdS6/CFT5 duality, N5/2 d.o.f.s

� Review of 5d SCFTs and their AdS6 duals

� Localization on S5

� Free energy at large N



Part IPart I

cc--theoremstheorems



cc--theorems in various dimensionstheorems in various dimensions

� A measure of the number of degrees of freedom per 
volume per energy scale in interacting field theories. It 
should decrease along rg flow.

� Generalizes the number of fields in weakly interacting 
systems. Massive objects decouple in the IR, so it 
decreases.

� Monotonicity requires unitarity, locality, and Lorentz 
invariance.



cc--theoremstheorems

� Most obvious conjecture is the high temperature 
thermal free energy. Works in 1+1 dimensions.

� In higher dimensions, not constant along 
conformal manifolds. Also, in 2+1, there are 
explicit counter-examples. 

� Such a quantity is useful for constraining rg
flows non-perturbatively. 



Even dimensions: local anomaliesEven dimensions: local anomalies

� In 2d, the coefficient of the trace anomaly 
famously has this property. RG flow is the 
gradient flow for this quantity.

� In 4d,                                                 , and a
plays this role. 

� In odd dimensions, there are no anomalies, so 
this has long been an open problem. 

16π2〈Tµ
µ〉 = c(Weyl)2 − 2a(Euler)

[Cardy; Komargodski Schwimmer]

[Zamolodchikov]



The rough ideaThe rough idea

� “Measure” the amount of stuff by observing the 
response to a curved background.

� Most of the response is via complicated 
propagation of the CFT fields. However there 
are special local interactions induced for the 
background fields. 

� These have a definite sign due to causality.



Natural holographic versionNatural holographic version

� The scale parameter is geometrized. The new 
coordinate and dynamical gravity is emergent. 
The bulk physics becomes approximately local 
in some limit (roughly large number of d.o.f. and 
strong coupling).

� Now just the “size” of the space 

in Planck units.



Sphere partition functionSphere partition function

� Any conformal field theory can be put on the 
sphere – it is conformal to flat space. 

� IR finite observable in odd dim, but non-local. 

� Weyl invariance is maintained, hence 1-point 
functions vanish, and Z is constant along 
conformal manifolds.



Is the SIs the S33 partition function wellpartition function well--defined?defined?

� In general, a calculation in an effective theory 
with a lower cutoff  Λ’ < Λ differs by a local 
effective action for the background fields. 

� In even dimensions, have the Euler density, 
which integrates to a number. 

∫ √
g,

∫ √
g R

E4 = 1
4
RijklRabcdǫ

ijabǫklcd

ZΛ = ZΛ′ e
const E =

(
Λ
Λ′

)a



� In odd dimensions, all such terms depend on the 
radius of the sphere – they correspond to power 
law divergences. 

� Therefore, the odd-dimensional sphere partition 
function is a well-defined number for conformal 
field theories. 

� Gravitational Chern-Simons term integrates to a 
number, but it only affects the phase.

i
4π

∫
Tr
(
ω ∧ dω + 2

3ω ∧ ω ∧ ω
)



Entanglement entropyEntanglement entropy

� Recently shown that                    is smaller for 
the IR fixed point than in the UV, but it is not 
obviously intrinsically defined.

� Equal to the sphere partition function up to 
possible subtleties involving divergences. 

ρ Sent = Tr(ρ log ρ)

−S + r∂rS

[Casini Huerta Myers]

[Casini Huerta]



From entanglement to spheresFrom entanglement to spheres

� The ball in flat space is conformal to the 
hemisphere in Sd-1 × R. Its casual diamond can 
be mapped by a time dependent Weyl rescaling 
to the static patch in de Sitter. The CFT vacuum 
maps to the euclidean vacuum.

� The reduced density matrix of any QFT in the 
static patch is thermal at the dS temperature.

� Analytic continuation of the static patch is Sd. 

ρ = e−βH

tr(e−βH ) S = tr(ρ log ρ) = tr(ρ(−βH − logZ)) = − logZ



Sketch of the proof of the Sketch of the proof of the monotonitymonotonity

of of entenglemententenglement entropyentropy

� Strong sub-additivity

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B)

√
rR

√
rRR

r

2S(
√
rR ≥ S(R) + S(r)

rS(r) + S(r) ≤ 0
[Casini Huerta]



Chern-Simons-matter theories

� The Yang-Mills coupling,                                   , 
is dimensionful in 3d – it is an irrelevant 
operator that renders the theory free in the UV.

� The Chern-Simons coupling,                        , is 
dimensionless – in fact a topological field theory

� When coupled to matter, gives rise to non-trivial 
IR fixed points with a tunable coupling.

1
g2YM

∫
d3x Tr(FµνFµν)

k
4π

∫
Tr(A ∧ F )



Can supersymmetrize. Here with 4 supercharges:

SN=2 =

∫
k

4π
(A ∧ dA+

2

3
A3) +Dµφ̄iD

µφi + iψ̄iγ
µDµψi

−16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rj

φj)(φ̄kT
a
Rk

T b
Rk

φk)−
4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj

ψj)

−8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj

ψj).

Note that this action has classically marginal 
couplings. It is has been argued that it does not 
renormalize, up to shift of k, and so is a CFT. 



Exact result for SUSY theoriesExact result for SUSY theories

� One may preserve supersymmetry on the 
sphere, even without conformal invariance.

� Requires a choice of R-symmetry, since the R-
charge appears in the algebra – one turns on a 
background value of the R-gauge field.

� Localization (non-renormalization theorem) 
implies that 1-loop is exact.

SU(2|1)× SU(2) ⊂ OSp(2|4)



SuperconformalSuperconformal symmetries on Ssymmetries on S33

� The conformal group in 3d is USp(4) = SO(3,2).

� In Euclidean signature, one has the real form USp(2,2) 
= SO(4,1). 

� On S3, the USp(2) × USp(2) = SO(4) subgroup acts as 
rotations of the sphere.

� The N = 2 superconformal group is OSp(2|4).

� The R-symmetry is SO(2) = U(1).



Localizing the path integralLocalizing the path integral

� In Euclidean path integrals, the meaning of 
supersymmetry is that the expectation values of Q(..) 
vanish. 

� This can be used to show that the full partition function 
localizes to an integral over Q-fixed configurations. 
There is a 1-loop determinant from integrating out the 
other modes.

Z(t) =
∫ ∏

dΦ e−S−tSloc

d
dtZ = −

∫ ∏
dΦe−S−tSloc{Q,V } = 0

Sloc = {Q,V }, [Q2, V ] = 0

[Witten]



The recipeThe recipe

× ∏
chirals

in rep Ri

DetRi

(
eℓ(1−∆i+i σ

2π )
)

ℓ(z) = −z log
(
1− e2πiz

)
+ i

2

(
πz2 + 1

πLi2(e
2πiz)

)
− iπ

12

∂zℓ(z) = −πz cot(πz)

Z =
∫ ∏

Cartan
dσ
2π exp

[
i
4πk trσ2

]
DetAd

(
sinh σ

2

)

[Kapustin Willett Yaakov; DJ; Hama Hosomichi S. Lee]



|Z| |Z| extremizationextremization

� Using the vanishing of 1-point functions in a 
CFT, one can show that  

at the superconformal value of ∆.

� In fact, |Z| is always minimized. 

∂∆|Z| = 0

[Closset Dumitrescu Festuccia Komargodski Seiberg]



PunchlinesPunchlines
� The S3 partition function measures the number 

of degrees of freedom.

� With N=2 susy, the IR partition function can be 
computed exactly from a UV Lagrangian as a 
function of R-charge parameterized curvature 
couplings. 

� |Z| is minimized by the IR superconformal R, 
determining the superconformal R-charge 
exactly. 



Part IIPart II

5d 5d SCFTsSCFTs



Exact results from nonExact results from non--

renormalizablerenormalizable field theories?field theories?

� Usually a situation in which one is simply 
ignorant of the UV      No.

� But sometimes there is a non-trivial UV fixed 
point, or gravity. In the former case, one may try 
to demand background field Weyl covariance.

� The idea: Higher order operators won’t affect 
certain supersymmetric quantities.



NN=1 =1 supersymmetricsupersymmetric 5d Yang5d Yang--Mills Mills 

� Describes a relevant deformation from the UV 
point of view. Renders the theory weakly 
coupled in the IR.

� Various 5d SCFTs, the (2,0) and (1,0) theory in 
6d, and no known non-trivial CFTs in higher 
dimensions. Very hard to write Lagrangians.

1
g2YM

∫
F µνFµν



An amusing patternAn amusing pattern

2d        3d         4d        5d 6d

N        N3/2 N2 N5/2 N3

For supersymmetric CFTs with the “simplest”
gravity duals. Other scalings are possible, so not 
to be taken too seriously. 



Partition function on SPartition function on S55

� Well-defined because of the lack of anomalies in 
odd dimensions. 

� A measure of the number of d.o.f.s per unit 
volume per unit energy scale. Perhaps it’s 
monotonic under rg flow.

� Constant under exactly marginal deformations.



Localization in 3dLocalization in 3d

� Here one adds Q-exact irrelevant super-
renormalizable operators to an IR CFT, which 
render it free in the UV. 

� The partition function is independent of the 
radius of the sphere, so can compute the IR 
CFT result from the simplified UV, up to local 
terms in the background fields. 

1
g2YM

∫
F µνFµν

[Kapustin Willett Yaakov; DJ; Hama Hosomichi S. Lee]



5d theories5d theories

� There is no conformal extension of maximal 
susy in 5d. Maximal susy YM lifts to 6d. 

� There is the F(4) exceptional superconformal
algebra, containing the non-conformal N=1 susy

� Many theories with vector and hypermultiplets. 
Some have non-trivial UV fixed points.

[Seiberg]



Topological flavor symmetryTopological flavor symmetry

� This current can be coupled to a background 
vector multiplet. The real scalar in that multiplet
couples to the Yang-Mills kinetic term. 

� There are charged instanton-solitons. Satisfy a 
BPS bound, with central charge

� These become light at strong coupling. 

j = ∗ tr(F ∧ F )

Z = 1
g2eff

I



USp(2N) theoriesUSp(2N) theories

� The simplest class of 5d CFTs with gravity duals 
are the UV fixed points associated to USp(2N) 
gauge theories with a hypermultiplet in the anti-
symmetric representation, and Nf < 8 hypers in 
the fundamental. 

� Arises in string theory from N D4 branes in 
massive IIA with D8 branes and O8 planes. 

[Seiberg; Intriligator Morrison Seiberg ]

See Bergman Rodriguez-Gomez for an orbifold generalization.



Coulomb branch and effective 

coupling

� There is a real scalar in 5d vector multiplet, 
whose vevs describe the Coulomb branch. 

� On the moduli space, the Yang-Mills coupling 
receives 1-loop corrections from the hypers and 
massive vectors. CFT at the origin, when YM 
deformation is turned off.

1
g2
eff,i

(σ)
= 1

g2
YM

+ 1
12π2 (8−Nf )σi



The UV CFTThe UV CFT

� The UV theory has an enhanced         flavor 
symmetry, in which the instanton-solitons play a 
crucial role. It contains both the flavor 
symmetry of the fundamentals, and the 
topological symmetry. Confirmed recently in the 
superconformal index. 

� The YM deformation is like a real mass from the 
UV point of view.

ENf

[H.-C. Kim, S.-S. Kim, K. Lee]



Gravity dualGravity dual

� Massive IIA AdS6 solution. The internal space is 
half of an S4, the coupling blows up at the 
equator. The exceptional flavor symmetry is 
associated to that singular boundary. This is 4-
form flux wrapping the S4. 

ds2 = 1
(sinα)1/3

[
L2−dt2+d�x2+dz2

z2 + 4L2

9

(
dα2 + cos2 αds2S3

)]

e−2φ = 3(8−Nf )
3/2

√
N

2
√
2π

(sinα)5/3
L4

ℓ4s
= 18π2N

8−Nf

[Brandhuber Oz]



Supersymmetry on the five sphereSupersymmetry on the five sphere

� It is possible to preserve supersymmetry on S5, 
without conformal invariance. One has SU(1|4), 
which contains the SO(6) rotations, and a U(1) 
subgroup of the flat space SU(2) R-symmetry. 

� The Killing spinors square to Hopf isometries, 
with no fixed points. The base space is CP2.

vµ = ξIγµξI {Q, Q̃} = J + R



Background fieldsBackground fields

� The possible supersymmetry preserving 
curvature couplings of a 5d N=1 theories can be 
determined by taking the Mpl →∞ limit of off-
shell 5d supergravity, and finding configurations 
of the background fields that are invariant under 
some rigid supersymmetry. They need not satisfy 
any equation of motion or reality conditions.

� SU(2)R gauge fields and scalars, graviphoton and 
dilaton, anti-symmetric 2-form and scalar.

[Kugo Ohashi]



� On the round S5, only the scalars in the above 
list will preserve isometries. The R-scalar breaks 
the SU(2)R to U(1). 

� The spinor equation is

� The resulting susy Yang-Mills action 

SYM = 1
g2
YM

∫
tr
(
1
4FµνF

µν − 1
2DµσD

µσ − YijY
ij + 4σtijYij − 8t2σ2+

2iλi(γµDµ + t
j
i )λj − 2[λi, λi]σ

)

δΨµ ∼ ∇µηi + γµt
j
iηj = 0

[Hosomichi Seong Terashima]



Localizing the path integralLocalizing the path integral

� Adding Q-exact terms, the path integral reduces 
to an integral over a finite dimensional space.

� The localizing term for the vector multiplet is 
not rotationally invariant.

� All fields in the hypermulitplets are localized to 
0 by a rotationally invariant Q-exact action. 

[Kallen Zabzine; Hosomichi Seong Terashima; Kallen Qiu Zabzine; Kim Kim]

vµFµν = 0, ǫµνρστvµFνρ = Fστ , Dµσ = 0



Classical actionClassical action

� The only part of the original action is that is not 
Q-exact is the Yang-Mills term. 

� It differs from a (non-rotationally invariant) Q-
exact action by the supersymmetric completion 
of the instanton action. 

Sinst =
1

g2
YM

∫
v ∧ Tr(F ∧ F ) + Tr(σ2) + fermion terms



Matrix integralMatrix integral

� The instantons are not well-understood, but in 
the 0-instanton sector, the 1-loop determinants 
are known. 

f(y) = iπy3

3 + y2 log
(
1− e−2πiy

)
+ iy

π Li2
(
e−2πiy

)
+ 1

2π2Li3
(
e−2πiy

)
− ζ(3)

2π2

[Kallen Qiu Zabzine; Kim Kim; Kallen Minahan Nedelin Zabzine]

Z = 1
W
∫
Cartan

dσ e
− 4π3r

g2
YM

trσ2+πk
3
trσ3

detAd
(
sin(iπσ)e

1

2
f(iσ)

)

×∏I detRI

(
cos

1

4 (iπσ)e−
1

4
f( 12−iσ)− 1

4
f( 12+iσ)

)
+ instanton contributions



Leading behaviorLeading behavior

� At large values of σ, this simplifies.

Z = 1
W
∫
Cartan dσ e−F (σ)

FV (y) ≈ π
6 y

3 − πy, FH(y) ≈ −π
6 y

3 − π
8 y

F (σ) = 4π3r
g2
YM

trσ2 + trAdFV (σ) +
∑

I trRI
FH(σ)



Effective gauge couplingEffective gauge coupling

� Recall that on the Coulomb branch, the gauge coupling 
is corrected. This is captured by the cubic terms in the 
1-loop determinants.

� But it is the same effective coupling that weights the 
instantons

� In the instanton background, the cubic terms in the 1-
loop determinant must be unchanged, and the linear 
term must shift in this way.

Z ∼
(
2(8−Nf )σ + r

g2
YM

)
I

[Seiberg]



Cancelling forcesCancelling forces

� In the USp(2N) case, one has

� Note that the cubic long-range interactions 
cancel between vectors and hypers. This causes 
the clump of eigenvalues to spread to size 

+
∑

i [FV (2σi) + FV (−2σi) +NfFH(σi) +NfFH(−σi)]

F (σi) =
∑

i�=j
[FV (σi − σj) + FV (σi + σj) + FH(σi − σj) + FH(σi + σj)]

√
N



Large N saddleLarge N saddle

� The eigenvalues form a density, and one can 
easily minimize the action.

ρ(x) = 2x
x2
∗

, x2∗ =
9

2(8−Nf )

F = −9
√
2πN5/2

5
√

8−Nf

F ≈ −9π
8 N2+α

∫
dx dy ρ(x)ρ(y) (x− y + x+ y) +

π(8−Nf )
3 N1+3α

∫
dxρ(x)x3



Exponential suppression of Exponential suppression of 

instantonsinstantons

� Since the eigenvalues spread out to large values 
on the Coulomb branch, the effective gauge 
coupling is small. Therefore one is justified in 
ignoring the instanton contributions, even in 
this calculation for the CFT. This is a special 
feature of large N. 

� Interestingly, the YM quadratic term wouldn’t 
change the saddle as long as r

g2YM
≪
√
N



The sphere free energyThe sphere free energy

� To compare to gravity, we should compute the 
on-shell action. However this receives 
contributions from the singularity, so instead…



Entanglement entropyEntanglement entropy

� For conformal field theories in any dimension, 
the sphere partition function equals the 
entanglement entropy in the conformally
invariant vacuum.

� Consider a solid ball in Rd-1. Trace over the 
exterior, and compute the entropy of the 
resulting interior density matrix. 

S = Tr(ρ log ρ)

[Casini Huerta Myers]



From entanglement to spheresFrom entanglement to spheres

� The ball in flat space is conformal to the 
hemisphere in Sd-1 × R. Its casual diamond can 
be mapped by a time dependent Weyl rescaling 
to the static patch in de Sitter. The CFT vacuum 
maps to the euclidean vacuum.

� The reduced density matrix of any QFT in the 
static patch is thermal at the dS temperature.

� Analytic continuation of the static patch is Sd. 

ρ = e−βH

tr(e−βH ) S = tr(ρ log ρ) = tr(ρ(−βH − logZ)) = − logZ



Holographic prescriptionHolographic prescription

� One finds a minimal surface in AdS, completely 
wrapping the internal manifold, that asymptotes 
to the edge of the entangling region (a ball of 
radius R) in the CFT on the boundary of AdS.

� The entanglement entropy is the minimized 
generalized area. 

S = 2
(2π)6ℓ8s

∫
d8x e−2φ

√
g

[Ryu Takayanagi; Klebanov Kutasov Murugan]



Perfect agreement!Perfect agreement!

� Minimized by 

� Non-universal divergences in R and R3 are 
removed.

� Exactly matches the field theory result

S = 20(N)5/2

27π3
√

2(8−Nf )

∫ ρ(z)3
√

1+ρ′(z)2

z4 (sinα)
1

3 (cosα)3dz ∧ dα ∧ volS3 ∧ volS3

F = −9
√
2πN5/2

5
√

8−Nf

ρ(z) =
√
R2 − z2



PunchlinesPunchlines

� Exact results may sometimes be extracted from 
non-renormalizable field theories.

� Instantons are exponentially suppressed at large 
N in the five sphere partition function.

� Perfect match between AdS6 and CFT5.


