
Lifshitz Solutions in String 
Theory	



Ruth Gregory 
Durham Centre for Particle Theory 

IPMU, 26 Sep 2012 

With: Barclay, Braviner, Parameswaran, Ross, Tasinato, Zavala 



OUTLINE	



   Lifshitz spaces 

   Embedding into string theory 

   Panorama of solutions: flows 

   Black hole solutions 

   Thermodynamics 

   Summary 



background	


By its nature, the ADS/CFT correspondence 
concerns scale invariant systems, but often we 
want to study more general systems. 
An interesting scaling is Lifshitz, in which 
there is a dynamical exponent: 

Can we have such spacetimes within string 
theory? 
Can we build black holes?  
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Lifshitz Spacetime 
The Lifshitz spacetime is an anisotropic generalization of 
ads, where time and space warp differently across the 
bulk: 

ρ	
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ds2 = e−2ρ [e−2(z−1)ρdt 2−dx 2]− dρ2

(Poincare-style coords)
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Rt
t = z z + 2( ) , Rx

x = z + 2 , Rρ
ρ = z2 + 2

Requires background matter 



Bottom up models 

   First achieved in 4D by having an empirical model with 
coupled 1 and 2-form gauge fields. (Kachru, Liu, Mulligan) 

Dual to a massive vector theory: 
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Where the scaling is supported by a 
massive vector flux, with very specific 
values for q, m, Λ
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  Bottom up models very useful to explore possibilities with 
Lifshitz scaling, e.g. black holes & superconductors. 

  The Lifshitz scaling as r -> 0 is problematic. 

  In spite of the field content, no string theory model found 
with the specific values of m and Λ, although some models 
with specific z later found. 

  Would like to embed generic Lifshitz in string theory, and 
explore the range of geometries possible. (Ideally 
analytically!) 



Tops Down! 

In spite of the apparently simple field content, string theory 
embeddings were not simple to find. 

The key feature of the Lifshitz spacetime is the matter source 
which is anisotropic in space and time, and has a strong 
asymptotic presence. 

For string motivated spacetimes, we will have to compactify in 
such a way as to preserve the Chern-Simons structure of the 
prototype model, but Λ can be replaced by a false vacuum.


Can achieve this via consistent truncations of IIA and IIB 
supergravity: 6D and 5D Romans SUGRA, together with a flux 
compactification on H2. 
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6D Romans has dilaton,1-form, massive 2-form and 
nonabelian gauge field:  
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Lifshitz solution has compact H2 carrying flux. A1-parameter 
family of analytic solutions determined by z for ANY z. 
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(RG, Parameswaran, Tasinato, Zavala: 1009.3445) 

The Geometry 



In more detail….. 
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With the assumption of flux 
threading the H2, the gauge eqns 
reduce to just one function, 
which then gives the requisite 
structure for the “energy-
momentum”, and Einstein eqns 
become algebraic relations. 



Solution Space 

Given the SUGRA parameters g and m, L and the dilaton 
can be tuned to give any value of z. There is also a 1-
parameter family of ads solutions. 
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General Lifshitz Spacetimes 
The flux on the internal H2 is a constant of the system, 
but in principle the dilaton and L can take more than 
one value.  

dilaton 

F
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Q = ˆ q 2 ˆ g 2 ˆ a 4



For example, for Q = 0.5, we have 4 solutions: two 
ads (below) and two lifshitz: z = 1.48 and z = 10.3
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For Q > 1.2, there are only Lifshitz solutions, and for 
Q<0.227, there is only one Lifshitz (larger z) solution.

For Q = 0.227, the Lifshitz (smaller z) and ads 
branches join. 




More General Solutions 

Studying the general radial eqns of motion shows the 
solution space is 7 dimensional. Critical points in this 
space are the ADS/LIF solutions. Perturbing around the 
critical points gives (ir)relevant operators in the dual 
field theory. It also reveals flows and asymptotic black 
hole solutions. 
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Lifshitz Spectrum 
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Flows 
Analyzing the perturbations around the critical points 
shows that we can flow between LIF and ADS solutions. 
These will correspond to a field theory with different 
dynamical scaling at different scales 

(Braviner, RG, Ross:1108.3067) 
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Lif - Ads 



ads - lif 



Lif – Ads - ads 



Black Holes 
To find a black hole, we must solve the radial equations with 
a horizon. Know from eigenvalue analysis that all fields are 
involved. 
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F = D = H = P =1   

€ 

F ~ f1(r − r+) +…
D ~ d1(r − r+) +…
P ~ P0 +…
H ~ H0 +…
ϕ ~ ϕ0 +…

(Barclay, RG, Parameswaran, Tasinato, Zavala: 1203.0576) 



Ads example 
Can we use our knowledge of ads to help?  
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To leading order we can solve the scalar and gauge equations 
in this background, to get hairy or charged black holes.
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A bit of work gives the eigenvectors and eigenvalues of this 
operator, and a solution in terms of hypergeometric functions.




Scalar charged ads 
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Gauge charged ads 
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Identifying Eigenvectors	



Black hole 

Gauge 
Scalar 



Lifshitz structure 
Although can identify the ads black hole in the phase 
diagram, the Lifshitz solution is much more complicated. 
The eigenvectors degenerate at the crossing point, and the 
solution is distinct from ads. 
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Near ADS Solutions 
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Expanding near z=1, focussing on the gauge and pure 
black hole degrees of freedom on ads side:




Pure “Black Hole” Linearized 	
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General Solutions 

The general solutions are found numerically, integrating out 
from horizon and exploring possible parameter space. 
Solutions characterised by two parameters (fix r+=1), the 
scalar and vector initial data at the horizon.


(T = 0.243, vs 0.238 for ads-sch)




Numerical Solutions (z=2) 



Z-dependence 

Z=2, 3, 5.75




Generic features 

 The generic Lifshitz black hole tends to have a sharp 
peak in the Newtonian potential – this can sometimes be 
extremely high (O(100)). By contrast, the radial metric 
function is relatively well behaved. 


 This suggests the area gauge is not the most natural 
for these black holes, and numerics are possibly missing 
wormhole type features.


 All the fields have strong modulation in this region, 
again suggesting instability.




Thermodynamics - ads 

Varying gauge ‘charge’ 
0, 1, 2, 3, 4 

Varying scalar ‘charge’ 
-0.2, 0, 1, 2, 3, 4 

The temperature of ads black holes shows some similarity 
with RN solution – T drops as p0 is increased, falling to zero. 
The scalar ‘charge’ is more interesting: scalar charge initially 
increases the range of p-charge, but then dramatically 
decreases it.




Thermodynamics - LIF 

Varying scalar ‘charge’: 0, 1.5, 3 Varying gauge ‘charge’:0, 1, 2 
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4π ʹ′ D (r+) ʹ′ F (r+)Temperature scales as r+
z 




Temperature – z dependence 

z=5


z=3


z=2
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ϕ0 =1

€ 

ϕ0 = 0, ˆ p 0 =1
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ϕ0 = 0, ˆ p 0 =1.25

€ 

ϕ0 =1, ˆ p 0 = 2

Changing z typically scales the temperature away from T=1: 
although the geometries seem smoother for higher z, the range 
of charge becomes smaller.




 Temperature decreases as we increase the 
gauge field near the horizon. This would seem to 
correspond to ‘charging up’ a black hole.


 The scalar field has a different effect, as in ads, 
and first increases, then decreases the 
temperature. 


 With the gauge used, there is no extremal limit 
with r+=1. As T drops, the radial metric potential 
becomes sharper, which can be ameliorated by 
dropping r+, suggesting zero temperature black 
holes have zero entropy.




Entropy 

Varying scalar: 0, 1, 2, 3 Varying gauge: 0.75, 1, 1.5, 2 

Typically, increasing scalar or gauge initial data lowers the  
entropy, though the response to changing the scalar is much 
more dramatic.




 Entropy density is directly proportional to the 
value of the breather at the horizon. Since the 
breather and dilaton are coupled strongly in the 
eigenvalue equations, we expect this stronger 
response to scalar initial data.


 The presence of two equal temperature solutions 
with different entropy suggests that the black hole 
will shed scalar charge to increase its entropy.


 Clear indication of black hole instability.




Summary 
  Have developed a prescription for embedding Lifshitz 
into string theory – probably for any z, though issues of 
quantization arising from compactification of H2 

  Rich structure of flows and black holes, though mostly 

have to be found numerically 

  Black holes are generally rather involved solutions, with 

all of the fields switched on, and rather strongly distorted 

geometries near the horizon. 



IIB solutions 



Iib Eigenvalues 


